
Abstract—A potential limitation of motor imagery (MI)
based brain-computer interface (BCI) is that it usually takes a
long time to record sufficient electroencephalogram (EEG)
data for a robust classifier. Besides, the well-trained classifier
has weak adaptability in cross-session or sample-wise online
testing. We propose an adaptive classifier with a nonparamet-
ric filter to tackle this problem by incorporating test data into
the self-training process to alleviate the over-fitting and
non-stationarity  in  EEG.  In  the  framework,  we  exploit  the
natural neighbor to explore the underlying structure of labeled
and unlabeled data, then introduce a novel neighborhood edit-
ing  filter  (NENaN)  to  measure  the  contribution  of  an  instance
to  the  classifier.  We  focus  on  LDA  as  a  base  classifier.  Com-
parative studies with several representative filters in the liter-
ature on three datasets demonstrate that NENaN is outstand-
ing  in  filtering  out  mislabeled  samples  and  outliers,  and  has
advantages in improving the performance of an adaptive clas-
sifier.

Index Terms—Adaptive classifier, Self-training method,
Natural Neighbor, Motor imagery, Brain-computer interface

I. INTRODUCTION

RAIN-Computer Interface (BCI) is a human-computer
interaction technology that establishes a direct infor-

mation pathway between a human brain and external
equipment without relying on the peripheral nerve and mus-
cle system[1][2][3]. It has demonstrated prospects in the
rehabilitation and assistance of disabled people such as in-
telligent wheelchairs, artificial limbs, spelling systems [4] [5]
[6]  [7],  etc.  Motor  imagery  (MI)  is  prized  for  its  ease  of
set-up, simple stimulus, and closer to the human being's
natural thinking way [8][9], which has become an emerging
research area.

Brain-Computer Interface based on motor imagery
(MI-BCI) has not been applied in practice despite extensive
research. Generally, the main challenges faced by online
MI-BCI system are the limited amount of training data and
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non-stationarity in EEG over time, which may induce poor
robustness and generalization ability of the offline model,
and poor adaptability in the testing phase [10] [11] [12].

The semi-supervised adaption was developed to deal with
limited training data by employing both labeled data and
incoming unlabeled data to accommodate a classifier, thus
requiring fewer offline data [13] [14] [15]. Clustering analy-
sis provides an option for mining unlabeled data distribution.
Wu [16] discovered the structure of unlabeled data by find-
ing density peaks of data and then integrated the structure
space into the self-training process to train a classifier itera-
tively. Gan [17] combined the fuzzy c-means algorithm into
self-training classification to introduce a better SVM classi-
fier. In [18], the co-labeling method with a random forest
was adopted to enhance the performance of a self-training
classifier degraded by insufficient labeled data. However, in
the process of self-training, the adaptive classifier may treat
the mislabeled or noisy samples as confident instances and
incorporate them into the train set [21], which worsens the
classifier's robustness.

To effectively remove outliers or noise from an unlabeled
dataset, Triguero [22] focused on the nearest neighbor as a
base classifier and analyzed the integration of a wide variety
of noise filters into the self-training process to distinguish
the most relevant features, such as ENN, SETRED [23] and
CEWS.  However,  those  mentioned  filters  all  take  KNN  as
the primary classifier, whose parameter significantly influ-
ences the filter. Zhu [24] proposed a parametric clustering
algorithm, i.e., natural neighbor clustering (NaN), compared
with KNN, K-means [25], and density peaks clustering
(DPC), NaN is not sensitive to the selection of clustering
center and parameters [23] [25]. Based on NaN, Huang [26]
introduced a natural outlier factor to measure the outliers.
Yang [27] presented a natural neighborhood graph-based
instance reduction algorithm, which exploited a natural
neighborhood graph to divide the data into noisy, boundary
point, and core instances. Li [28] introduced a novel
self-training method based on density peaks with a parame-
ter-free local to removed mislabeled samples. Other outlier
detection algorithms, such as LOF [29], INFLO [30], and
INS [31], also show effectiveness in outlier filtering. How-
ever, the above noise filters either evaluate the density of the
sample distribution, or measure the label’s frequency, which
do not perform well when the labeled data are insufficient.

Moreover, semi-supervised adaptive classifiers require
full retraining with new incoming data. Most existing
semi-supervised methods use SVM [12] [14-18] or KNN as
base classifier [26] [29] [30], which are time-consuming for
the parameter-dependent character [19] [20]. Herein we
prefer the LDA without hyperparameters as the basic classi-
fier in this paper.
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In the light of background, a nonparametric local outlier
filter, neighborhood editing based on natural neighbor (NE-
NaN), is proposed to evaluate the newly added data by ex-
ploiting labels and distribution information. NENaN divides
the data into four categories: mislabeled instances, isolated
instances, boundaries, and supporting instances. Isolated
points are far from cluster centers, borders near the hyper-
plane, and supporting instances around cluster centers. A
self-training classifier based on NENaN can efficiently track
changes in EEG over time by incrementally re-estimating
and updating parameters with borders and supporting.
Moreover, we present the local representative (LR) concept
to reduce the size of supporting samples to decrease training
time and computation complexity, which is of great signifi-
cance to an online BCI system.

In brief, the main contributions of our work include:
1)We propose an adaptive LDA classifier based on

semi-supervised learning to mitigate non-stationarity in
EEG.

2)We integrate a nonparametric local filter into the LDA
self-training process, which is also beneficial to initialize the
classifier.

3)We introduce the local representative (LR) concept to
shrink the scale of supporting instances to reduce the com-
putation complexity and storage consumption in the
self-training process.

4)The feasibility of our adaptive classifier framework is
verified in discrete and continuous BCI datasets.

The rest paper proceeds as follows: Section II introduces
related works, and Section III details our proposed algorithm
and its implementation framework. Section IV provides a
detailed description of the experiment design and results on
three datasets. Finally, section V draws a conclusion and
directions for future work.

II. BACKGROUND

A. Notations
m

ix R : a m -dimension feature vector.

1 1 2 2{( , ), ( , ), ..., ( , )}n nL x y x y x y : the samples set with
labels.

1 2{ , ,..., }u u u
tU x x x : the set without labels.

( )Nb x : the number of natural neighbors of x .
( )kN a N x : the natural neighbors set of x .

( )kN N x : k -th nearest neighbors set of x .
( )kR N N x : k -reverse nearest neighbors set of x .

( , )i jdist x x : the Euclidean distance between ix and jx .

B. Natural Neighbor
The concept of natural neighbor is inspired by the human

social relationship that we call a friend if we know each
other. Similarly,  is a natural neighbor of , only if  is
also a natural neighbor of . Although the natural neighbor
relationship derives from the k -th nearest neighbor (KNN)
searching [24] [27], there are differences. KNN establishes a
neighborhood by actively searching its k nearest neighbors,
whereas  NaN  is  a  byproduct  of  KNN,  and  its  procedure  is
entirely passive. Besides, KNN relies greatly on the param-

eter k , whereas NaN, without setting any parameters, au-
tomatically searches based on the distribution of feature
space until a natural stable structure is formed. The NaN
searching procedure for ,  and  is stated in Fig.1.

We first conduct a nearest neighbor search with = 1 for
the three samples, respectively, where we get:

1

1

1

( )
( ) ( )
( )

NN A C
NN B C NaN B C
NN C B

 has no natural neighbors yet, therefore, the searching
continues with = 2:

2

2

2

( )
( )

( )
( )

( )

NN A B
NaN B A

NN B A
NaN A C

NN C A
When = 3, the natural neighbor relationship of the

three objects no longer changes; let’s say that the three have
established a stable natural structure. It is clear, throughout
the searching process, the association of natural neighbors
needs no specific k value.

Definition 1 (Natural Neighbor). If  is the k-th nearest
neighbor of , and  is the r-th nearest neighbor of ,
is a natural neighbor of .

( )&&       (1)
Definition 2 (Natural Stable Structure). Suppose each

object has at least one natural neighbor, and the number of
neighbors remains unchanged with the expansion of the
search scope. In such case, the set is considered to have
formed a relatively stable state, called a natural stable
structure.

, ( ) = ( )            (2)
Definition 3 (Natural Eigenvalue). The natural eigenvalue

is the minimum k  when reaching a natural stable structure,
marked as sup k .
sup ( ) min{ | ( ( ))}k i i j i j i r jx r x x x x x NN x

(3)
The natural neighbor searching pseudo-code is

demonstrated in Algorithm 1.
Algorithm 1: Natural Neighbor searching (NaNSearch)
Input: Training dataset ( )iX x X
Output: kNN ,
1.Initialization 1k , ( )iNb x , ( )k iNN x

, ( )k iRNN x
2. create a k-d treeT of dataset X
3. for each sample find ix its -th neighbor jx  by T

C
A

B

Fig. 1. The schematic of a natural neighbor search.
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( ) ( )

( ) ( )

( ) ( ) 1

k i k i j

k j k j i

j j

NN x NN x x
RNN x RNN x x
Nb x Nb x

  end for
5.compute the number of satisfy ( ) 0iNb x
6.if the num does change
    return kNN ,
  else

1k
goto step 3

end if

C. Local Representative
The LR aims at finding representatives of neighborhoods

to simplify the complex manifold structure [26].
Definition 4 (Local Representative). ix is a local repre-

sentative for ( )k jNaN x , if ix is a natural neighbor of

( )k jNaN x and the density of ix  is greatest in

( )k jNaN x .

( ) ( ) ( )
&&( , ( ))

i k

i k j i k j

x x k k j

LR x NaN x x NaN x
x NaN x

      (4)

  In ( )k iNaN x ,the density of ix is defined as:

( )

sup
( ( , ))

j k i

k
i

x NaN x i jdist x x                   (5)

Definition 5 (Representative Transfer Rule (RTR)). If
( ) = ( ) , ( ) = ( ) , and

( ) then ( ) = ( ).

D. LDA
LDA has the advantages of a simple model, less compu-

tation cost, and high efficiency in binary classification. LDA
optimization is to make the inter-class distance large,
whereas  the  intra-class  distance  is  as  close  as  possible.  Its
objective function is to solve a generalized Rayleigh quo-
tient without hyperparameters, making LDA very applicable
as  the  basic  classifier  for  an  online  BCI  system.  The  LDA
classifier can be expressed as:

1 2
1

1 2

( )

( ) / 2
( )

T
i i

T

f x x b
b                        (6)

where , b are projection vector and bias of the opti-

mal segmentation hyperplane, respectively. c is the c-th

class mean( {1, 2}c ). 1 2 , c is c -th covari-

ance matrix. If the observation ix satisfies ( ) 0if x , it is
classified as class 1, otherwise, as class 2.

Fig. 2 demonstrates the first 100trials feature distribution
of subject 'AA'(see Section IV, Dataset2) extracted by one
pair of Common Spatial Pattern (CSP) spatial filer. Three
types of samples are marked, mislabeled (indicated as 1,2),
isolated (as 3,4), and overlapped samples (as 5,6). Isolated

instances increase the intra-class mean, which defeats the
optimization goal of LDA.  Removing mislabeled instances
facilitates accuracy, whereas removing overlapping instanc-
es  has  little  impact  on  the  inter  or  intra-class  mean.  The
LDA with a NENaN filter can effectively overcome the de-
viation by eliminating isolated and mislabeled instances
from the dataset.

Moreover, due to non-stationary factors such as fatigue,
emotion, and psychological state, the feature distribution
between the train and test dataset shows significant fluctua-
tion. The classifier trained offline may have limited gener-
alization ability in the testing phase, especially for a
long-duration test. Thus, an adaptive classifier combined
with a NENaN filter is conductive to relieve feature drift.

III. PROPOSED ALGORITHMS

In this section, we detail the framework of an adaptive
classifier  based  on  NENaN.  As  shown  in  Fig.3,  the
flowchart consists of two parts: offline training and online
testing. In the offline stage, the NENaN first divides the
offline dataset into four categories: noise, outliers, support-
ing samples, and boundaries, and then an LDA classifier is
initialized by the supporting and boundary instances. More-
over, we replace the large-scale supporting samples with a
small number of representatives with local maximum densi-
ty, resulting in a core dataset consisting of representatives
and boundary  points.  In  the  online  phase,  NENaN evaluate
the test data by working with the obtained core set, where
boundaries are used to re-estimate a classifier, and the core
set is preserved for another round of assessment.

A. Structure Discovery Based on NaN
It  figures  out  from  Fig.2  that  mislabeled  samples  and

outliers will sharpen LDA deviation. In contrast, supporting
samples reflect the overall distribution and determine the
optimal projection direction, and the boundary samples
determine the bias. Therefore, it is necessary to eliminate
samples with adverse effects. Clustering is a conventional
method for structure analysis, such as KNN, DPC, etc., but
it is difficult to determine appropriate parameters [24] [26]
[27]. NaN automatically clusters according to the
distribution of samples without any parameters. See
algorithm 1 for the detailed process. The termination criteria
for algorithm 1 is that the most isolated sample contains at
least one -th neighbor. However, this standard of linking
each point to its min{ ( ), sup }i kNb x nearest neighbors

Fig.2. The feature space and its projection vector.
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does not guarantee a stable neighbor relationship, i.e. if ix

is a neighbor of kx , kx  is not necessarily a neighbor of ix .
So, we improve the termination criteria to make the most
isolated sample has at least one natural neighbor. According
to this criterion, each point will relate to max{ ( )}iNb x
neighbors to form a relatively stable neighbor relationship.
A density-based detection algorithm can be employed to

find outliers without any parameters in a stable neighbor
relationship. However, actual experiments demonstrate that
the natural eigenvalue will exceed the number of samples,
resulting in substantial time-consuming when outliers are
considerably away from cluster centers. For this reason, the
restriction is added ( ) 2iNb x N .  Algorithm  2  is  an
improved NaN search algorithm.

Algorithm 2: Improved NaN searching (INaNSearch)

Input: Training data , ( 1, 2,... )m
ix R i N

Output: kNaN ,

1.Initialization 1k , ( )iNb x , ( )k iNN x ,

( )k iRNN x , ( )k iNaN x

2. create a k-d tree T of data set ( )iX x X

3. for each sample find ix its -th neighbor jx  by T

( ) ( )

( ) ( )
k i k i j

k j k j i

NN x NN x x

RNN x RNN x x
end for

4. for each sample find ix
( ) ( ) ( )k i k i k iNaN x RNN x NN x

end for
5.compute the number of neighbors in ( )k iNaN x

( ) ( ( ))i k iNb x num NaN x
6.if each ( )! 0iNb x or / 2N

k
    return kNaN ,
else

1k
    goto step 3
end if

B. Neighborhood Editing Based on Natural Neighbor
NENaN edits each neighborhood generated by the natural

neighbor, and the type and number of labels in ( )kNaN x
reflect the difference between the query and its neighbors.
The NENaN addresses how to quantify such difference and
employ the quantized difference to distinguish border, core,
and mislabeled samples.

In the filters based on KNN (such as ENN, RENN,
ALLKNN, MLSTE) [21] or NaN (such as NNGIR[27],
STDFNF[28]), a noisy instance is determined by whether the
identical frequency is more than half of all neighbors. How-
ever, it is rough to evaluate a sample only based on the fre-
quency of identical tags in the neighborhood. Fig.4, as an
example, explained this view.

Fig.4 depicts 10 neighbors of query ‘A’. Although the
number of positive instances (denoted by ‘ ’) is less than
that of negative ones (denoted by ‘ ’), positive neighbors in

the neighborhood are relatively denser than the distribution
of negative instances, so 'A' is more likely to be positive.

In NeNaN, we consider the first and second echelon
neighbors and their labels to quantify the confidence of a
query instance. The first echelon members consist in the do-
main split by the first ‘Target-Others’ line, and the second
echelon refers to the domain cut by the second ‘Tar-
get-Others’ line. The ‘Target-Others’ is the cut-off line,
where the tag of the current instance differs from that of the
following one. We defined two indexes, distribution sparsity

 and tag tendency , as expressed in (7).

Training set L

Discover underlying
structure by NaN

Filter noise and
outliers with NENaN

Initialize classifier C
using borders and
support instances

Output core set CS Testing set U

Classified by  C

Find borders by
NENaN

Retrain classifier C
update

Online Testing

Find local
representatives by

DPC

Offline Training

Find  core set by
NENaN

update

Fig.3. the framework of proposed adaptive classifier

A

Fig.4.  An example of density versus frequency
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1( ) sup
2( ) sup

( ) ( )
sup

k

k

k

fHom x

Het x

fHom x sHom x
                  (7)

  Definition 6 (the first homogeneousness of x ,
( )fHom x ). In the set composed of x  and its natural

neighbors, ( )fHom x is the number of elements with the
identical label as x  in the first echelon domain.

1( ) |{ | ( ( ) )& ( ) ( ) ( )} |i ifHom x z z NaN x x l z l z l x
                                               (8)

( )sHom x  denotes the number of elements consistent
with the label of x  in the second echelon domain.

Definition 7 (heterogeneousness of x , ( )Het x ).

( )Het x is the number of elements with labels different from
x  in the first echelon domain.

1( ) |{ | ( ( ) )& ( ) ( ), ( ) ( )}|i i iHet x z z NaN x x l z l z l z l x
                                               (9)

where |. |indicates the number of a set, (. ) is the label of
the sample.

 is the ratio of ( )fHom x  and ( )Het x , represent-
ing the distribution density of a query among its near neigh-
bors. When 1 2 , the label of the query is the minority
in its nearest neighbors, which has the risk of misclassifica-
tion, otherwise, when 1 2 , the larger the  is, the
closer the query instance is to its cluster center, and the high-
er reliability of the prediction is.

 is the ratio of the number of samples with the same
label as the query to the natural eigenvalue, indicating the
probability of the query label converting to other types.
When 1 2 , the current tag is quite possible to shift to
another type as the neighborhood expands, conversely, the
current type tends to remain constant, when 1 2 . The
combination of two indicators can evaluate the prediction
confidence of a test sample.

Definition 8 (mislabeled sample, (MS)). If an instance
satisfies 1 2  and 1 2 , it is misclassified, i.e. the
label of query instance is different from that of its near
neighbors, and with the expanding of neighborhood, it tends
to transfer to other categories.

Definition 9 (isolated sample, (IS)). The isolated instance
are far from the cluster center and have at most one natural
neighbor, subjecting to 1 and 1 2 .

Definition 10 (boundary sample, (BS)). A border satisfies
1 2 1, i.e., the natural neighborhood of a border con-
tains different categories, but the category to which it be-
longs predominates.

Definition 11 (supporting sample, (SS)). The category of
the query is absolutely dominant in its nearest neighbors, and
this advantage will not change with the domain expansion,
i.e., a core instances satisfy 1and 1 2 .

Fig.5 depicts four examples for the query instance based
on the natural neighbors editing.

By  employing  the  NENaN  filter,  we  can  filter  out  noisy
instances and outliers, and initialize an LDA classifier with
supporting samples and boundaries. Algorithm 3 details the
process of a Neighborhood Editing filter based on NaN.

Algorithm 3: Neighborhood Editing on NaN (NENaN)

Input: kNaN , and training dataset L
Output: B S , SS

1.Initialization BS , NS , IS , SS

2. calculate HetP x HomP x
3. for each sample ix in L

if 1 && 1 2
{ }iIS IS x

else if 1 2 && 1 2
{ }iMS MS x

else if 1 2 1
{ }iBS BS x

else if 1&& 1 2
{ }iSS SS x

end if
end for

4. ( , )SS setdiff SS IS ( , )BS setdiff BS IS
( , )BS setdiff BS SS

The time complexity of NENaN is ( ) , where
 is the number of the current train set and unlabeled sam-

ples. However, with the incremental learning going, the train
set expands continuously, which increases the time con-
sumption of natural neighbor clustering. To this end, we re-
place the supporting samples with fewer representatives.
According to definition 4, we need to calculate the represent-

9 3,
26 8u

(a) mislabeled instance,
12,
4u

(b) outlier
1 1,
2 2u

11,
2u

31,
8u

(c)border instance
71,
8u

71,
8u

(d) supporting instance
Fig.5. four examples of natural neighborhoods, where = 8, and
the left of the dotted line is the prediction label of the query sample,'+'
represents a positive instance, and '-' represents a negative one.
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atives of each NaN(x) using (5), and then get a representative
set of the supporting set according to the RTR rule (defini-
tion 5). The LR method reduces the size of the train set while
maintaining the distribution characteristics of the core set.

Algorithm 4: LDAbasedonNENaN (NELDA)
Input: , ,
Output: the retrained LDA classifier

Initialization:
1. [ ]=INaNSearch( )
2. [ ]=NENaN( )

3.  =LRsearch( )
% LR searching,  is the core set for train set
4.Train an initial LDA classifier  with [ ; ]
Begin:

Repeat until the online testing process is complete
5. label  using the trained classifier
6.  =eNENaN( )% extended NENaN
7.Update cu , according (2) and (4) using
8.retrain classifier  using

C. Adaptive LDA Classifier with NENaN
The adaptive classifier incorporates new coming data to

re-estimate parameters to adapt to the current feature space.
Equation (1) illustrates that the classifier is determined by
global covariance  and class mean c . In this paper, we

update  and c  in a supervised way wherein NENaN
assesses the prediction confidence of the new data.

We assume ( 1)c t  as the class mean of previous iter-

ation, and the current mean ( )c t can be inferred by the fol-
lowing formula:

1

( ) (1 ). ( 1) .
1 ( )

c

c c c
n

i
c

i

t t G

G x t
n

              (10)

where ( )
c

ix t {1, 2,.... }i n denotes the current new

coming instances of c -class. G  is global mean of new

data, and cG  denotes class mean of c -class new data.

is an update coefficient a compromise between the update rate
and the system robustness.

Here, the inverse of covariance matrix ( )t can be re-
cursively estimated by the Sherman-Morrison-Woodbury
theorem, which avoids roughly complicated matrix inverse.

1

1 1
1

1

1( ) *
(1 )

( 1) ( ( 1) )( 1) 1 ( 1)

T T

T

t

t GG tt
G t G

(11)

By (10) and (11), the covariance  and mean vector

c  are estimated online, and then substituted into (6) to
retrain the LDA classifier. Algorithm 4 is a self-training
process based on NENaN.

IV. EXPERIMENTS

A. Dataset Description and Experiment Design

1) BCI competition IV Dataset 2b [32] (Dataset1) was
collected using 3 bipolar active electrodes C3, Cz, C4 at a
sampling rate of 250Hz from 9 subjects (noted as B01~B09).
Each subject performed left-and right-handed motor image-
ry for 5 sessions. The rst two sessions comprise 120 trials
per session without feedback, while the last three sessions
are 160 trials per session with feedback.

2) BCI Competition III Dataset IVa [33] (Dataset2) con-
tains EEG signals recorded at 118 channels with a 1000Hz
sampling rate (downsampled to 100Hz in this paper) from
five subjects (named as ‘AA’’AY’’AW’’AL’’AV’). For
each subject, a total of 280 cue-based trials are available
(half per MI task). In each trial, a cue was indicated for 3.5s,
during which two MI tasks were performed: (R) right hand,
(F) right foot. Then the cue was intermitted by periods of
random length, 1.75 to 2.25s, in which the subject could
relax. Herein eight active electrodes in the motion region
FC3, FC4, C3, C1, C4, C2, CP3, CP4 were selected for
analysis.

3) BCI Competition III Dataset V [34] (Dataset3) is con-
tinuous EEG for three cued mental imagery, left-hand
movement, right-hand movement and word generation.
Each subject performed 4 sessions, each lasting 4 minutes
with 5-10 minutes breaks in between them. The subject
performed a given task for about 15seconds and then
switched randomly to another task. Our work employed
precomputed features dataset that raw EEG signals were
computed power spectral density (PSD) 16 times per sec-
ond in the band 8~30Hz.

Dataset1 and Dateset2 both were filtered by a 4-order
Butterworth bandpass filter of 8-30Hz with bandpass atten-
uation  0.5dB.  In  Dataset1,  data  of  4~6s  was  selected  as  ef-
fective motor imagery duration of each trial, and a 3-second
segment was captured after the cue appearing 0.5s in Da-
taset2. We extracted the power spectral density (PSD) of ,
 bands as features, and each channel 12 frequency compo-

nents (2Hz frequency resolution). A 0.5-second sliding
window captured Dataset3 without overlapping, and the
average of 8 consecutive samples was regarded as feature,
i.e., the BCI system output every 0.5 seconds.

We designed three experiments to verify our algorithm
framework: Experiment I demonstrated the advantage of
NENaN in initializing a LAD classifier, and performed the
selection of ; Experiment II confirmed the merits of the
proposed adaptive LDA by comparing NENaN with exist
state-of-art filters; Experiment III explored the effectiveness
of NENaN in the multi-category continuous motion imagery
scenario, with SVM, KNN and LDA being the base classifi-
er, respectively. Experiment I and II were conducted on Da-
taset1and 2, Experiment III on Dataset3. Table I summarizes
a detailed description of these datasets.
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The specific settings of each experiment are as follows:
1)Experiment I. Random half of Dataset1 was used for

training, the rest for evaluation, and three sessions of Da-
taset2 for training and the rest for testing. For an optimal ,
LDA was retrained according to (10) and (11) with five-fold
cross-validation on testing data, ranging in
{0.01, 0.1, 0.2, 0.3, 0.4, 0.5} .

2)Experiment II. A series of experiments were conducted
to compare LDA based on NENaN (NELDA) with repre-
sentative filters, where the test sets of Dataset1&2 were
consistent with Experiment I, while the train sets were ran-
domly divided into labeled data (40%) and unlabeled ones.
Moreover, we discussed the impact of update frequency on
the classifier, where the classifier was initialed with 10%
labeled data. Table II detailed the description and parame-
ters of the state-of-art methods.

3)Experiment III investigated the performance of the pre-
sented filter in continuous multi-mental tasks (Dataset3).

B. Experiment I: NENaN in Training Phase

We used a synthetic 2-dimensional dataset with 500 in-
stances (half per class) to qualitatively illustrated the opera-
tion of NENaN. Fig.5 visually illustrates the outputs of
NENaN: (a) is the initial distribution, (b) marks the misla-
beled and isolated instances (total 46 instances) with circles,
(c) marks the boundaries with circles, (d) picks out repre-
sentatives of supporting instances by Algorithm 4, (e) de-
picts  the distribution of 454 instances without interfer-
ences,  (f)  shows  162  core  instances.  As  shown  in  Fig.5,
NENaN removes mislabeled and isolated instances and re-
tains boundaries and supporting instances that contributed
significantly to robust the classification decision. Addition-
ally, the large-scale supporting instances are pruned by the
local representation method, which reduces the computation
and storage consumption of self-training while preserving
the shape of feature space faithfully.

Fig.6 depicts the average values of five times with and
without NENaN in initialization. NENaN improves the LDA
performance in all data sets, with an average accuracy of
79.5% and 76.74%, respectively. A one-sided signed-rank
test result is 0.0348, proving the edited train set is beneficial
for LDA initialization.

Since we got a better recognition result in the range of
0.01~0.1, we repeated the experiment at 0.01 step. An opti-
mization =0.03 was obtained, which would be the fixed
update coefficient for subsequent studies.C. Experiment II:
the merits of NENaN

C. Experiment II: The Merits of NENaN

1) compared with other filters
This section compared NENaN with exiting representa-

tive filters with LDA being basic classifier, and parameters
referred to their work (see Table II).

Table III shows the recognition accuracy of different
methods versus NENaN after five times repeats according to
the setting in Experiment II. NENaN achieved good perfor-
mance in general, STDPNF was also a competitive method,
Pmean was the worst, with the average accuracies
SFCM=71.76%, STDP=72.41%, NoFNaN=70.29%,
PWKnn=75.42%, Pmean=66.63%, STDPNF=78.345%,
NENaN=79.06%. A Wilcoxon signed-rank test illustrated
that NENaN was significantly better than SFCM, STDP and
NoFNaN, PWKnn, and Pmean ( -value<0.05), but had no
significant difference relative to STDPNF (p-value= 0.4487).
It  comes  down  to  the  following  reasons.  One  is  that  it  is
difficult to select suitable parameters for structural analysis
in unstable feature space. Generally, the performance of
parameter-dependent clustering methods such as SFCM,
STDP, NoFNaN, and PWKnn is inferior to that of STDPNF,
NENaN [28]. Pmean is nonparametric, but ignores the dis-
tribution difference of different classes [35]. Besides,
PWKnn and STDP predict an unlabeled instance based on
existing labeled data, and have poor performance in the in-
sufficient situation. NoFNaN has the advantage of eliminat-
ing outliers, but it fails to handle mislabeled samples. By
contrast, NENaN and STDPNF search natural neighbors by
considering both labeled and unlabeled data, but STDPNF
only focuses on mislabeled instances and ignores outliers
that may induce a serious deviation in an adaptive classifier.

Fig.7  shows the  training  time on a  data  set  consisting  of
144 labeled instances and 216 unlabeled instances. The

TABLE I
DESCRIPTION OF EXPERIMENTAL DATA SETS

No.
Data sets Size Attribute Class

1 BCI Competition IV-2b 720 36 2
2 BCI Competition III-IVa 280 96 2
3 BCI Competition III-V 1754/1734/

1722
96 3

TABLE II
COMPARISON ALGORITHMS AND PARAMETERS IN EXPERIMENT II

Symbol Algorithm
SFCM The classifier was self-training with FCM [19], and

threshold = 1 C where C is the number of classes.
STDP the structure of feature space was revealed by DPC [18];

pa=2.
STDPNF the structure of feature space was revealed by DPC with

a NaN based filter [29]; pa=2.

NoFNaN NaN was used for structure discovering and NOF to filter
out outliers [27].

PWKnn Current test instance was assessed by a probabilistic
weighted K-nearest neighbor (K=5) with a con dence
threshold ( = 0.75)[10].

Pmean The global mean and covariance matrix of LDA were
updated without labels [35].

NENaN After NaN revealed the data structure, a neighborhood
editing method was used for filtering.
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Fig.5. An example of NENaN dealing with a 2-dimensional synthetic dataset.
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re-estimated the classifier every 200 test trials. TABLE III
depicts the performances of STDPNF, NENaN and the
competition winner with Improved DB Discriminator (IDB).
NENaN based classifier overwhelms the rivals in most sce-
narios, the average accuracies are 70.17% 66.74%
67.87%, respectively. Fig.10 shows the average time of
eight times retraining. Although both NENaN and STDPNF
filters are both based on the principle of natural neighbor-
hood editing, NENaN consumes less time and has a smaller
standard deviation. As a compromise between time con-
sumption and accuracy, NENaN-based LDA is more appli-
cable for continuous classification scenario.

V. CONCLUSIONS AND FUTURE WORK

Aiming at the deficiency of train data and poor stability in
the online MI-BCI system, we proposed an adaptive frame-
work that integrates the test data into the self-training pro-
cess to compensate for overfitting and mitigate distribution
drifts. We design a nonparametric filter (NENaN) to evalu-
ate the contribution of an instance to the classifier, filter out
mislabeled samples and outliers, and retain the
high-confidence data. Additionally, we introduce the local
representative method to reduce the train set and produce a
core set, which speeds up the retraining process and reduces
the computation and storage consumption at the same time.

We conducted a series of experiments, where 5 repre-
sentative filters and 3 datasets, a total of 17 subjects, were
adopted. The experimental results demonstrate that: (a)
NENaN improves the stability of LDA and has a better per-
formance compared with the classifier without sample se-
lection; (b) NENaN is a parameter-free filter and removes
mislabeled samples and outliers by exploiting the underlying
structure of unlabeled data, even when labeled data is insuf-
ficient; (c) NENaN based adaptive classifier is robust and
performs pretty well in multi-task scenario;(d) The average
running time is about 0.593s, which provides a promising
method for an online BCI system. The subsequent work will
focus on validating the real-time online MI-BCI systems
with the proposed adaptive classifier in reality.
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