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Abstract—Transfer learning can solve the problem of low
recognition accuracy caused by dataset insufficiency. However,
the improvement in performance for conventional transfer
learning is limited. In this paper, we propose an iterative
transfer learning (ITL) framework to solve the problem. Using
a predetermined iteration strategy to perform ITL, the model
with the best performance is selected to generate a new extended
dataset. The standard dataset and the extended dataset are
mixed for training in the next round. This type of training
process fully demonstrates the effects of transfer learning and
data amplification. The experimental results show that the ITL
framework proposed in this paper improves the accuracy of the
optimal model from 91.63% to 97.70%. The ITL framework
has practical significance for improving model performance in
small datasets. It is suitable for the analysis of action sequences
on video streams with temporal characteristics and normative
definitions.

Index Terms—Transfer learning, iterative model, ITL, data
amplification, motion sequence analysis.

I. INTRODUCTION

AS an extension of human vision, cameras are widely
used in many fields such as bank security and traffic

management [1]–[3]. At present, there are a large number
of standard datasets on pedestrians and vehicles [4], [5],
and intelligent monitoring is widely used in pedestrian and
vehicle detection. However, due to the private nature of
production materials and the confidentiality of production
techniques, the analysis of standard industrial production
lines does not have a standard dataset. The lack of a standard
dataset has been an important bottleneck that affects the
accuracy of motion sequence recognition [6].

To solve the problem of a lacking dataset, the three
mainstream methods are the following. (1) Generate data by
cropping, flipping, scaling, and adding noise to the original
image. This method is relatively low-cost and relatively easy
to implement. However, the generated image is prone to
distortion, and the accuracy of the target detection algorithm
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is limited [7], [8]. (2) Use GAN-based image conversion to
generate data. This method has a high calculation cost, is
time-consuming, and has the problems of low image quality,
lack of detail and realistic texture [9]–[11]. (3) Using transfer
learning, pre-train on a large-scale general dataset, and then
use the model transfer for recognition in a specific field. The
iterative transfer learning(ITL) framework in this paper is a
new method for data augmentation based on the third way,
i.e., using the previous round of the transfer learning model to
identify the video stream, and then generating a new dataset
to expand the data. This method of generating data via the
model and then using them to optimize the model greatly
eases the problem of scarcity of datasets in specific fields,
making it possible to use large amounts of data for deep
learning training.

During the experiment, we divide the model training
process into iteration processes. In each iteration, we improve
the recognition accuracy of the model. With these multiple
iteration processes, our model recognition accuracy rate
achieves a good result. In our model training process, we
performed a total of 3 iterations, and the final accuracy was
6% higher than the first round of model recognition.

The major contributions of this paper are summarized as
follows:

1. We propose an iterative training framework suitable for
fields with small sample datasets. Experiments show that the
framework significantly improves the recognition accuracy.

2. A new data amplification method is proposed. With this
method, we generate a large number of standard datasets in
the industrial production field, thus solving the problem of
dataset scarcity in the industrial production field.

3. We compare and analyze the performance of the models
in different stages, and found the transfer learning model
suitable for the motion analysis of time-series and normative
videos.

II. RELATED WORK

A. Transfer learning

The main purpose of transfer learning is to solve the
problem of insufficient datasets in the specific field of
interest. The concept of transfer learning includes source
tasks and target tasks. If we define the tagged source
tasks as Ds={xi, yi}ni=1, and the unlabeled target tasks as
Dt={yj}n+m

j=n+1, then we use the knowledge in Ds to improve
the accuracy of the prediction function in Dt, where the
relation between Ds and Dt are not equivalent.

Transfer learning can be divided into four categories based
on ”the type of transfer”: 1) the instance-based approach, 2)
the feature-representation-based approach, 3) the parameter-
based approach, and 4) the relational-knowledge-based ap-
proach. The first approach believes that part of the data in
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the source domain can be reused by adjusting the weights.
Weight adjustment and importance sampling are two main
techniques used in the instance-based approach. In the second
approach, the knowledge for cross-domain transmission is
encoded as a feature expression of the learning. The goal is
to train a ”good” feature representation. In the third approach,
the hyperparameters of the source task and the target task are
assumed shareable, and the goal of model training is to obtain
the hyperparameters in the source task. The fourth approach
differs from the first three methods because it deals with the
domains where the source domain is related to the target
domain, and the relations between the data in the domains
are transferred [12].

The typical application research of transfer learning in-
cludes text processing [13], sentiment classification [14]–
[16], image classification [17]–[19], collaborative filtering
[20], [21], etc.

We use a parameter-based approach, the COCO dataset
as the source dataset and the actual image on the industrial
production line as the target dataset. When the first round
of transfer learning identifies the actions on the industrial
production line, the initial parameters of the model are
derived from the model parameters obtained based on the
fine adjustment of the COCO images.

B. Action sequence analysis
In the process of the motion analysis of video actions,

many different methods have been applied. According to
the different modeling methods, the classification of motion
analysis can be divided into four categories: (1) temporal
templates [22]–[24], (2) state space [25], [26], (3) grammar
model [27], [28],and (4) deep learning.

The motion analysis method based on temporal templates
considers the motion characteristics of time and space at the
same time, and recognizes the video as a whole [22]–[24].
The main research method is template matching [23], [29]–
[32]. Although the computational complexity of template
matching is low, the method performs well on simple static
actions and is not applicable to complex actions. Moreover,
the inconsistency of the motion interval of the same action
affects the accuracy of recognition.

The state space-based method considers the sequence of
changes in human behavior in time. This method uses dense
optical flow features to describe video content and a motion
boundary histogram to describe dense optical flow features
[33], [34]. However, the state space-based method is complex
for long-scale action, and the process of state transition
is not suitable for the monitoring of uninterrupted surveil-
lance video [25], [26]. The grammatical model-based motion
analysis method uses grammar analysis in natural language
processing as its key technology [27], [28]. Common gram-
mar models are context-free grammar (CFG) and random
CFG [35]–[37]. A grammatical model-based motion analysis
method describes a human motion as a series of symbols,
each of which is an atomic decomposition of an action
[38], [39]. The motion recognition process needs to identify
these atomic actions first. Consequently, the robustness of its
spatial scale mainly depends on the underlying description,
and the computational complexity is high.

The motion analysis method based on deep learning is the
current mainstream method used in motion recognition. The

existing deep learning-based algorithms can be divided into
region-based methods and region-free methods.

The former uses the algorithm to generate a series of
region proposals as samples, and then classifies the samples
through a convolutional neural network. The latter does not
generate region proposals, but directly converts the problem
of target positioning into a regression problem. It is precisely
because of the differences between the two methods that
there are also differences in performance. The former is
better in detection accuracy and positioning accuracy, while
the latter is better in algorithm speed.

Representative methods of the former include Fast R-
CNN [40] and Faster R-CNN [41]. Representative methods
of the latter include SSD [42]and YOLO [43]. Due to the
high requirements for accuracy in motion analysis, the deep
learning model used in this paper mainly considers the
region-based method.

III. THE PROPOSED METHOD

The entire framework is shown in Fig. 1. As shown in
the figure, the ITL framework consists of five modules,
i.e., the generation of the standard dataset, the pre-training
of the models, the segmentation of the surveillance video,
the generation of the extended dataset, and the training of
the iterative transfer learning models. The segmentation of
the surveillance video is a prerequisite for generating the
extended dataset; therefore, we introduce it in the third part
(Generate extended dataset)

A. Generate the standard dataset

The standard dataset is extracted from a field video
recording in a standardized operation scenario. Our action
decomposition standard is to divide the motion sequences
into N(N ∈ N+) standard actions. Each standard action is
a class, and the i-th standard action is recorded as Ci. In
the process of generating the standard dataset, we collect
the raw video by repeatedly recording M(M ∈ N+) videos
of motion sequences on each collection site. We use R =
{R1, R2...Ri...RM} to indicate the M raw video, where Ri

is a motion sequence consisting of {C1, C2...Ci...CN}. After
obtaining M videos of motion sequences, we cut each video
according to the decomposition standard, i.e., cutting each
Ri into video clips by classes, such that the resulting video
clips only include a single class. The j-th video clip about
the class Ci obtained from the k-th raw video is recorded
as V Ci

kj
, then the resulting M videos about the class Ci are

V Ci
1j
, V Ci

2j
, V Ci

3j
, , , V Ci

Mj
.

In this paper, our surveillance video contains a total of 7
standard actions(N = 7), and C1, C2, C3, C4, C5, C6, and
C7 correspond to the classes Qu-shang, Shuli, Anya, Fang-
zhua-you, Suo, Cha4, and Bai-you, respectively. During the
experiment, we collected 30 video clips for each class(M =
30). Taking the class ”Suo” as an example, 30 video clips of
this class are shown in Fig. 2.

After obtaining the video clips of each class, the standard
dataset is labeled using the annotation tool VOTT(Visual
Object Tagging Tool) with manual assistance. The format
of the dataset is PASCAL VOC and the resolution of the
image is 1280 * 720. Due to the inconsistent lengths of
the different actions, the labeled standard data volume is
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Fig. 1. ITL framework diagram. (a) Determine the standard actions and generate the standard dataset; (b) Pre-train the model on a large source dataset;
(c) Segment the entire video into multiple small video parts; (d) Generate the extended dataset; (e) Mix the standard dataset with the extended dataset for
iterative transfer training.

TABLE I
SAMPLE SIZE OF THE STANDARD DATASET.

Anya Bai-you Fang-zhua-you Cha4 Shuli Qu-shang Suo

Raw data 415 124 576 1290 2323 978 363

Data 1 415 372 400 400 400 400 363

unbalanced across categories. Considering that the imbalance
of data will lead to larger training errors, we use a heuristic
method to selectively extract and balance the original data.
The standard dataset finally generated is Data 1. The number
of labeled samples in each class is shown in Table 1.

B. Iterative transfer learning process

Conventionally, transfer learning only considers the single-
round approach with a single model [44], [45]. In our
ITL framework, we use multiple deep learning models for
iterative transfer training. In the process of generating a new
extended dataset, we choose the model that performs best in
the previous round of transfer learning.

We use the first round of the model transfer I1 as an
example to describe an iterative process as follows. In the
first round of iterative transfer learning, the COCO dataset
is the source domain (denoted as DI1

s ), the target domain
(denoted as DI1

t ) is Data 1. The training process in DI1
s is

the part(b) in Fig.1. The first round of target domain training
uses DI1

t shown in part(e1) in Fig.1. Data 1 is also the
source domain in the second round(denoted as DI2

s ). If our K
pre-trained models are represented by PrMod 1, PrMod 2,
..., PrMod k, then after ignoring some details, the training
processes of these K models can all be described using CNN
models.

CNN is a deep neural network consisting of alternately
stacked convolutional layers and pooling layers. The convo-
lutional layer is used to extract features. The current neural
layer is connected to the feature map of the previous layer
through a convolution kernel that performs a convolution
operation; then, biases are implemented to obtain the feature
map of the current layer. The convolution kernel is shared
by all neural units of the same feature map, that is, weight
sharing. In this way, CNN greatly reduces the scale of the
parameters.

The forward propagation process of the convolutional layer
is as follows:

Zl = al−1 ∗W l + bl; (1)

al = σ(Zl). (2)

where Zl is the input of the convolutional layer in the l layer,
al−1 is the output of the (l−1) layer, W l is the weight, and
bl is deviation, and σ is the activation function.

In the process of backpropagation, to facilitate the deriva-
tion, the partial derivative of the error in the l layer is
expressed as δl, and the partial derivative of the error in
the l − 1 layer is δl−1. Then the relation between δl−1 and
δl can be expressed as follows:

δl−1 =
αJw, b

αzl−1
=
αJw, b

αzl
αzl

αal−1

αal−1

αzl−1

= δl ∗ rot180(W l)� σ′(zl−1).

(3)

where rot180(W l) represents the rotation of the matrix W l

by 180 degrees.
In the process of backpropagation, the rules for updating

the weights and biases of layer l are as follows:

αJ(w,b)

αwl
=
αJw,b

αzl
αzl

αwl
= al−1 ∗ δl; (4)
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Fig. 2. 30 video clips of ”Suo”.

αJ(w,b)

αbl
=

∑
(δl)u,v. (5)

To verify the effectiveness of the ITL framework and
combine the advantages of each model, we select 4
models for iterative transfer. In this paper, PrMod 1,
PrMod 2, PrMod 3 and PrMod 4, which represent the four
commonly used pre-training models, faster rcnn+inception,
faster rcnn+resnet101, rfcn+resnet101, and faster rcnn +
resnet50, respectively. During the pre-training process, the
weights and biases in the CNN structure are continuously
optimized and adjusted by training on the COCO dataset.
After the first round of transfer learning I1, the models that
saved the adjustment parameters during the training of the
dataset were named TMod 1 I1, TMod 2 I1, TMod 3 I1,
and TMod 4 I1. In the transfer learning process, we use
the model parameters obtained during the pre-training and
modify the parameter settings of the last fully connected
layer of the network to use the pre-training model. The
schematic diagram is shown in Fig.3.

C. Generate the extended dataset

The extended dataset is obtained from surveillance video,
which has the same shooting angle, height, and distance as
the standard dataset. In theory, the length of the surveillance
video we can obtain is infinitely long, and the length of the
video is positively related to time, that is, L=f(t), where
t represents time. Unlike the generation process of standard
datasets, the generation of extended datasets does not require
the manual labeling of data. Its generation mainly goes
through two steps. The first one is to segment the raw surveil-
lance video into small video parts based on a time interval
(e.g., 5 min), as shown in part(c) of Fig. 1. The second is
to generate a new extended dataset by using the previous
transfer learning model as shown in part(d) of Fig. 1. In step
one, we segment a raw video with a length of L according
to time. The process is Rwhole=Rcut1

⋃
Rcut2

⋃
...
⋃
RcutK ,

the length of each video after segmentation is the same, and
each video contains data of sufficient duration for the class
with the least time.

The model with the highest testing accuracy is defined
as the optimal model. The extended dataset is generated
using the optimal model of the previous round of the training
process, applying it to the segmented video RcutK to detect
the segmented video. After detection, the class Ci and the
likelihood scores P i

t of the corresponding frame in the video
are generated. Take the process of generating the first batch
of extended dataset as an example to illustrate the entire
process. We select the optimal model in the first round

TABLE II
SAMPLE SIZE OF THE EXTENDED DATASET.

Anya Bai-you Fang-zhua-you Cha4 Shuli Qu-shang Suo

Data 2 800 800 800 800 800 800 800

Data 3 1200 1200 1200 1200 1200 1200 1200

of transfer learning to do the video target detection. After
using our optimal model for target detection, from the t-
th frame in Rcut1, we can obtain the data as D(t) 1 =
{(dC1

t , p1t ), (d
C2
t , p2t )...(d

Ci
t , pit)}, where Ci is the class of

an image; and pi is the likelihood of belonging to the class
Ci, where the value pi is between 0 and 1.

We set a threshold of p0. When the value of pmax
t , where

pmax
t = max{p1t , p2t ...pit}, greater than the threshold, we

add it to the optional extended dataset. The data whose
recognition probabilities are below the threshold p0 are
discarded. Then the data of the t-th frame image in the
segmented video Rcut1 generated by the iterative model is
Ext(t) 1 = (dCi

t , Ci). The data generated by the iterative
model is not directly used for the next round of training.
We select n samples that are closest to the category and
add them to the extended dataset. The extended dataset
formed by the final segmented video Rcut1 is ExtData 1 =
{(dCi

t , Ci)|t ⊂ 1, 2, 3...T, i = 1, 2, 3...N}.
For each iterative transfer learning training, we select data

similar to the quantity of the standard dataset, and mix the
newly generated extended dataset with the previous round of
data to generate the current round of data. Then the datasets
for each iterative transfer learning training is Data 2 and
Data 3. The quantity of data is shown in Table 2.

D. Overall process

The iteration process is divided into eight steps as follows:
Step 1: Generate the standard dataset Data 1: Determine

the standard action of the motion sequence, and then generate
the standard dataset Data 1 according to the standard action;

Step 2: Perform the first round of transfer learning: Use
Data 1 as the dataset for the training models (PrMod 1,
PrMod 2, PrMod 3 and PrMod 4), which are objec-
t detection pre-training models from Tensorflow. Then the
accuracy and recall rate of each model are recorded;

Step 3: Export the transfer learning models: Export the
models from the first round of transfer training in Step 2
and name them TMod 1 I1, TMod 2 I1, TMod 3 I1 and
TMod 4 I1. Select the model with the highest recognition
accuracy as the optimal model and name it Model A.
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Fig. 3. Structure of the first round of iterative transfer training.

Use Model A to detect the segmentation video Rcut1, and
generate the extended dataset ExtData 1;

Step 4: Generate the extended dataset for the second round
of transfer learning: Mix the datasets Data 1 and ExtData 1
to generate a second batch of training data Data 2;

Step 5: Repeat Step2 to Step4: Use TMod 1 I1, T-
Mod 2 I1, TMod 3 I1 and TMod 4 I1 to perform a second
iterative transfer training on Data 2, recording the accuracy
and the recall rate. Export the model after the second
round of training and name them TMod 1 I2, TMod 2 I2,
TMod 3 I2 and TMod 4 I2. Select the optimal model, and
name it Model B.

Step 6: Determine the iteration stop condition: Compare
the accuracy of Model A and Model B . If the accuracy
rate of Model B is greater than that of Model A, perform
Step 2. If the accuracy rate of Model B is less than that of
Model A, or the training time exceeds the tolerance range,
stop the iterative transfer training.

IV. EXPERIMENT AND ANALYSIS

A. Experimental equipment

The experiment was performed on two 32G memory alien
Alienware machines with 64-bit Windows 10 and NVIDIA
GTX 1070Ti dual GPU for the CNN calculations. The
Software relies on the deep learning framework Tensorflow-
GPU 1.5, on the NVIDIA parallel computing architecture
CUDA9.0, and the deep learning GPU acceleration library
cudnn V7.0.

B. Evaluation index

We evaluate the model using mAP values and recall values.
In machine learning, the common indicators for model

evaluation are the accuracy and the recall. The accuracy de-
termines the proportion of positive samples that are correctly
classified in the detected results, and the recall determines
the correct positive samples to account for the weight of all

positive samples. The accuracy and recall can be expressed
as follows:
Recall = TP

TP+FN

Accuracy = TP+TN
TP+FN+TN+FP

TP: Model predicts positive categories as positive.
FN: Model predicts positive categories as negative.
FP: Model predicts negative categories as positive.
TN: Model predicts negative categories as negative.
In model training, we hope for both greater accuracy

and greater recall; however, the two are in contradiction
in extreme cases. Generally, the precision-recall (PR) curve
is used to measure the effect of the model, with recall as
the horizontal axis and precision as the vertical axis. The
optimization target requires the recall to increase and the
precision to increase as well. The larger the area AP under
the curve, the better the performance of the classifier. The
mAP value is the average of all types of APs.

C. Experimental Results

1) Comparison of the accuracies of the three-round it-
erative models: We start training the 4 models: PrMod 1,
PrMod 2, PrMod 3 and PrMod 4. The training is stopped
when the model accuracy stops increasing.

When the first round of model training is completed,
the trained models are exported and named TMod 1 I1,
TMod 2 I1, TMod 3 I1 and TMod 4 I1. The accuracy and
the recall of the four models are shown in Table 3 and Table
4. The data in the tables show that TMod 2 I1 performs
better than the other three models. Therefore the model
TMod 2 I1 based on the model PrMod 2 is our first-round
optimal model, which is Model A in Fig. 1.

We use Model A to generate the first batch of extended
dataset, ExtData 1. Then, ExtData 1 and Data 1 are mixed
to form the second batch of standard dataset Data 2.

Then, TMod 1 I1, TMod 2 I1, TMod 3 I1 and T-
Mod 4 I1 are used to perform a second round of iterative
transfer training on Data 2, with a the training epoch equal
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TABLE III
ACCURACY IN THE FIRST ROUND OF TRANSFER TRAINING, THE VALUE

CHANGES WHEN TRAINING NUMBER CHANGES.

10000 20000 40000 80000 120000 150000

TMod 1 I1 0.4658 0.5988 0.7836 0.8276 0.8492 0.8518

TMod 2 I1 0.8145 0.8727 0.8994 0.9008 0.9102 0.9163

TMod 3 I1 0.7757 0.8315 0.9079 0.9125 0.9149 0.9148

TMod 4 I1 0.7892 0.8491 0.8707 0.8973 0.9018 0.9064

TABLE IV
RECALL IN THE FIRST ROUND OF TRANSFER TRAINING, THE VALUE

CHANGES WHEN TRAINING NUMBER CHANGES.

10000 20000 40000 80000 120000 150000

TMod 1 I1 0.6007 0.6866 0.7774 0.8603 0.8806 0.8829

TMod 2 I1 0.8663 0.8983 0.9259 0.9384 0.9355 0.9413

TMod 3 I1 0.8099 0.8598 0.9323 0.9367 0.9383 0.9359

TMod 4 I1 0.8257 0.8824 0.9096 0.9243 0.9274 0.9340

to that in the first round. The recognition accuracy and the
recall of the four models are shown in Table 5 and Table 6.

The data in these tables show that TMod 2 I2 performs
better than the other three models. Therefore, the model
TMod 2 I2 based on the model TMod 2 I1 is our second-
round optimal model, which is Model B in Fig.1.

We use ModelB to generate the second batch of extended
dataset, ExtData 1. Then, ExtData 2 and Data 2 are mixed
to form the third batch of standard dataset Data 3.

After the second round of model iteration is completed,
the iterative models are exported and named TMod 1 I3,
TMod 2 I3, TMod 3 I3, and TMod 4 I3. We then perform
the third round of iterative transfer training on Data 3, with
the number of trainings equal to that in the first round. The
recognition accuracy and the recall of the four models are
shown in Table 7 and Table 8.

The data in these tables show that TMod 2 I3 performs
better than the other three models. Therefore, we export the
trained model as our final model, which is Model C in Fig.
1.

TABLE V
ACCURACY IN THE SECOND ROUND OF TRANSFER TRAINING, THE

VALUE CHANGES WHEN TRAINING NUMBER CHANGES.

10000 20000 40000 80000 120000 150000

TMod 1 I2 0.7678 0.7939 0.8372 0.8621 0.8678 0.8899

TMod 2 I2 0.8907 0.9255 0.9408 0.9480 0.9485 0.9536

TMod 3 I2 0.8091 0.8624 0.9360 0.9406 0.9424 0.9432

TMod 4 I2 0.8641 0.8943 0.9081 0.9237 0.9388 0.9390

TABLE VI
RECALL IN THE SECOND ROUND OF TRANSFER TRAINING, THE VALUE

CHANGES WHEN TRAINING NUMBER CHANGES.

10000 20000 40000 80000 120000 150000

TMod 1 I2 0.8106 0.8318 0.8714 0.8930 0.8984 0.9100

TMod 2 I2 0.9159 0.9471 0.9613 0.9663 0.9664 0.9706

TMod 3 I2 0.8363 0.8882 0.9573 0.9602 0.9604 0.9605

TMod 4 I2 0.8929 0.9187 0.9320 0.9465 0.9592 0.9601

TABLE VII
ACCURACY IN THE THIRD ROUND OF TRANSFER TRAINING, THE VALUE

CHANGES WHEN TRAINING NUMBER CHANGES.

10000 20000 40000 80000 120000 150000

TMod 1 I3 0.8036 0.8466 0.8710 0.8953 0.9011 0.9035

TMod 2 I3 0.9024 0.9417 0.9554 0.9648 0.9715 0.9770

TMod 3 I3 0.8451 0.8762 0.9465 0.9521 0.9575 0.9563

TMod 4 I3 0.8969 0.9237 0.9429 0.9477 0.9467 0.9570

TABLE VIII
RECALL IN THE THIRD ROUND OF TRANSFER TRAINING, THE VALUE

CHANGES WHEN TRAINING NUMBER CHANGES.

10000 20000 40000 80000 120000 150000

TMod 1 I3 0.8106 0.8318 0.8714 0.8930 0.8984 0.9100

TMod 2 I3 0.9159 0.9471 0.9613 0.9663 0.9664 0.9706

TMod 3 I3 0.8363 0.8882 0.9573 0.9602 0.9604 0.9605

TMod 4 I3 0.8929 0.9187 0.9320 0.9465 0.9592 0.9601

To better demonstrate the improvement of the model
performance with our proposed ITL method, we show the
mAP curves in the three rounds of training in Fig. 4, Fig. 5
and Fig. 6. The data in these figures show that, in the first
round of model training, the accuracies of the four models
are less than 95%. However, in the second round of model
training, the accuracies of the three models are close to 95%.
In the third round, there are three models with accuracy rates
greater than 95%. The improvement of accuracy by ITL is
significant.

As seen from the comparison, to make the recognition
accuracy of the model reach 90%, the minimum training e-
pochs of the first and second round are approximately 40,000
and 20,000, respectively. In the third round of iterations,
two models already reach 90% accuracy when the number
of training steps is less than 20,000 (using TMod 2 I3 or
TMod 4 I3).

The mAP and recall curves of the optimal model for each
round, Model A, Model B and Model C are shown in the
Fig. 7 and Fig. 8.

The data show that the accuracy of the optimal model of
each round increases, the order of the model accuracy rate is
ModelA <ModelB <ModelC. In addition, compared with
the performance of the first round iterative transfer learning,
the improvement of the performance of the last two rounds
decreases. The Model C with three rounds iterative transfer
learning is our final model.

Fig. 4. The mAP curves of all models in the first-round model.
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Fig. 5. The mAP curves of all models in the second-round model.

Fig. 6. The mAP curves of all models in the third-round model.

Fig. 7. The mAP curves of the three optimal models in three rounds of
iterations

Fig. 8. The recall curves of the three optimal models in three rounds of
iterations

(B)

(A)

Fig. 9. (A) Action sequence diagram obtained from the first round of
model recognition; (B) Action sequence diagram obtained from the second
round of model recognition.

2) Comparison the of action sequence diagrams: The ac-
tion sequence diagram is from our iterative transfer learning
based on the frames’ classes. The categories 1, 2, 3, 4, 5, 6
and 7 in the action sequence diagram correspond to the Qu-
shang, Shuli, Anya, Fang-zhua-you, Suo, Cha4 and Bai-you.

A complete cycle of action sequences is Qu − shang >
Shuli > Anya > Shuli > Fang − zhua − you > Suo >
Fang − zhua − you > Suo > Cha4 > Bai − you >
Cha4 > Bai− you > Qu− shang > Fang− zhua− you.

We identify a video containing multiple cycles of standard
actions using the first-round optimal model Model A (re-
ferred to as I1) and the second-round optimal model ModelB
(referred to as I2). This results in the two action sequence
diagrams shown in Fig. 9, where (A) is from Model A and
(B) is from Model B.

The comparison chart is shown in Fig.9.
The data show that when using the I2 for motion recogni-

tion, the recognition performance is better than when using
the I1. The I1 is prone to misjudge two similar classes. The
category Shuli is identified as the category Qu-shang, and the
category Suo is identified as the category Cha4. In addition,
the category Suo appears twice in a cycle, but in Fig.9, it is
identified once in the first cycle, but not identified in cycle
2 or 3.

D. Discussion

The results of the experiment show that using our transfer
learning improves the accuracy. The new extended dataset
generated by the iterative model plays a key role in this
improvement. To verify whether only by adding the extended
dataset improved the accuracy or if both the dataset and the
iterative model improve the performance, we use the same
dataset, Data 3 (the total amount of data is 8600 examples),
to compare the models with different iteration cycles.
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Fig. 10. Comparison of the model without iterative transfer train-
ing(TMod 2 I1) and the model with one iteration of transfer train-
ing(TMod 2 I2) on Data 3.

The three models compared are TMod 2 I1, TMod 2 I2
and TMod 2 I3. TMod 2 I1 has undergone one iteration of
training, TMod 2 I2 has undergone two iterations of training
and TMod 2 I3 has undergone three iterations of training.

The comparison chart is shown in Fig. 10.
The data show that model after iterative transfer learning

training performs better than the model trained with the same
amount of data but without iterative transfer learning.

The reason is determined by the network structure of
resnet [46]. In resnet, the learning task changed from learning
the basic mapping H(x) to learning the difference between x
and H(x), i.e., the residual. To obtain H(x), we only need to
add this residual to the output. Suppose the residual is F(x)
= H(x) -x, then our network does not learn H(x) directly, but
instead learn F(x) + x. Its implementation is to propose a
method called residual structure block.

If we represent the output of the residual block as al, and
wl represents the weight value in the l-th residual block, then
the convolutional layer and activation layer are represented
by F (al, wl). We use al+1 to represent the output of the l-th
residual block, and al+2 to represent the output of the (l+1)-
th residual block. When al+1 = xl +F (al, wl), al+2 can be
expressed as follows:

al+2 = al + F (al, wl) + F (al+1, wl+1). (6)

When the network depth reaches the last layer L, aL can be
expressed as follows:

aL = al +
L−1∑
i=l

F (ai,W i). (7)

where the error is represented by J . In the network back-
propagation, the gradient can be expressed as follows:

αJ

αal
=

αJ

αaL
αaL

αal
=

αJ

αaL
(1 +

α

αal

L−1∑
i=l

F (ai, wi)). (8)

The formula shows that in the process of the network’s
backpropagation to find the gradient, the weight and bias
gradient of a certain layer need to be multiplied by partial
derivatives. However, due to the existence of the residual
parameter network, ”+1” appears on the right side of the
equation. In general, the latter term cannot always be ”-1” for
all al; Therefore, even if the weight is arbitrarily small, the
gradient will not disappear. The characteristics of our dataset
is that the background is complex and the target is single,
and the size of the target is similar, and the differences are

small. The experiments show that iterative transfer learning
of the structure of resnet improves the accuracy of the model.

V. CONCLUSION

Based on the analysis of the motion characteristics of
the industrial production line, we found a method suitable
for video sequence analysis with temporal characteristics
and normative definitions. We propose an ITL framework,
which greatly improves the training performance of deep
learning models. During the experiment, we mixed the newly
generated extended dataset with the original small sample
data to form the training dataset. The experimental results
show that the ITL framework has a good effect on the recog-
nition of motion sequences. With ITL, deep learning enters
into the field of industrial production with less benchmark
data. Furthermore, ITL has a wide range of applications in
sequence recognition with data having timing and action
specifications.
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