
 

  

Abstract—In order to ensure the efficiency and rationality of 

Emergency Materials Allocation (EMA) and make the 

allocation scheme more realistic, the impact of secondary 

disasters on material demand and transportation time as well as 

the disaster victims' competitive psychology of materials under 

bounded rationality are comprehensively considered. Prospect 

Theory (PT) was introduced to construct the payment function 

of material allocation scheme in disaster locations, and 

Evolutionary Game (EG) model under bounded rationality was 

established. The evolutionary equilibrium scheme was obtained 

through the model, and the effects of risk attitude coefficient, 

perceived probability coefficient and attribute decision 

preference coefficient on the prospect value of the scheme and 

the evolutionary equilibrium scheme were analyzed. The results 

show that the EG model of EMA under bounded rationality can 

give consideration to the dynamics of disaster situation and the 

bounded rationality game psychology of disaster location, 

which makes the decision result more in line with the reality. 

The risk attitude, probability perception ability and the degree 

of preference for the allocation and delivery time of emergency 

materials of disaster locations will have an impact on the game 

results within a certain range. 

 
Index Terms—Dynamic material demand, Evolutionary 

Game (EG), Emergency Materials Allocation (EMA), Prospect 

Theory (PT), Secondary disasters 

 

I. INTRODUCTION 

udden disasters are affected by many uncertain factors 

such as secondary disasters. The occurrence of disaster 

events seriously damages the stability of the society and 

threatens the safety of people's lives and property. As an 

important part of emergency resource management, 

emergency materials allocation (EMA) has a significant 

impact on the effectiveness of emergency rescue. The supply 

of emergency materials after a disaster is often limited and 

generally in a state of short supply. There is an obvious 
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competitive in the allocation of materials among disaster 

locations. Meanwhile, due to the occurrence of secondary 

disasters, the demand and transportation time of emergency 

materials are dynamic. How to allocate emergency materials 

reasonably and efficiently to minimize the possible losses 

caused by disasters is an urgent problem to be solved at 

present, which has important practical significance. 

At present, many scholars have studied the EMA problems 

from different perspectives and have achieved fruitful results. 

[1][2][3][4][5][6][7][8][9][10] considered factors such as 

utility and allocation costs of EMA, and took timeliness, 

economy, fairness and satisfaction as the goals to established 

an optimal dispatch model for emergency materials. Among 

them, a utility maximization model for resource allocation 

have been established, and a resource allocation algorithm 

based on particle swarm optimization algorithm (PSO) have 

been proposed in [5][6]; single (deployment center) to 

several (disaster location) and several to several EMA 

problems have been studied respectively in [7][8]. [9][10] 

was no longer limited to the single-cycle emergency resource 

allocation, and considered the non-utility loss caused by 

material shortage and the coverage rate of resource allocation 

respectively, and a multi-cycle EMA model established in it. 

However, the actual disaster development is affected by 

many uncertain factors and is highly dynamic. The above 

researches did not consider dynamic disaster situation and 

material demand. [11][12][13][14][15] established a dynamic 

allocation model of EMA considering the dynamic demand, 

aiming at the dynamic change of casualties, time-varying 

supply and demand, initial rescue and remediation and so on. 

Among them, a dual-objective robust optimization model 

aiming at the minimum number of casualties and rescue 

centers has been established in [12]. [13] constructed the 

material dynamic demand function in the initial rescue and 

recovery stages, and assumed that the material demand 

showed a linear downward trend in the initial rescue stage, 

but this was not consistent with the non-uniform decrease of 

the actual material demand over time. The above researches 

all considered the dynamic demand, but do not consider the 

dynamic transport time and the impact of secondary disasters 

on the material demand. 

In addition, all of the above researches assumed that the 

decision maker is completely rational, ignoring the bounded 

rationality of them in the actual decision. In response to the 

above deficiencies, an optimal scheduling model for 

emergency supplies with the goal of minimizing the public's 

psychological risk perception degree and material 

unsatisfaction degree has been established in [16] by 

introducing PT to quantify the risk perception of the public. 

Path attributes and risk attitudes of decision makers have 
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been considered comprehensively and an emergency logistics 

selection model based on cumulative prospect theory (CPT) 

has been established in [17]. The risk perception of disaster 

victims on the delivery time of materials has been analyzed in 

[18], and PT and unfair theory have been introduced to it to 

establish an EMA model with maximum satisfaction. 

Considering the high risk and uncertainty of emergency 

situations, PT was introduced to study the problem of 

emergency decision-making in emergency situations in 

[19][20]. 

In fact, there are a great deal of game phenomena in 

emergency, and introducing the game theory to study it is in 

line with the actual background of the problem. In order to 

deepen people's understanding of game phenomenon in 

emergency management, [21] on emergency game was 

reviewed and analyzed. The game phenomenon among the 

government, enterprises and residents in emergency 

management were analyzed in [22]. A game model of 

public-private emergency cooperation in emergency logistics 

has been established in [23] by analyzing the major 

participating forces in emergency logistics. [24] introduced 

PT to depict the psychology of victims in non-cooperative 

game environment, and an EMA game competition model 

under bounded rationality has been established. [25] 

considered the game of demand for rescue workers among 

multiple disaster locations with limited emergency rescue 

worker and the bounded rational behavior of victims in the 

game process, and a bi-level game scheduling model of 

emergency rescue workers under bounded rationality has 

been constructed. It is worth mentioning that [24][25] 

introduced PT to depict the psychology of victims in 

non-cooperative game environment, which made up the 

complete rationality defect of the model to a certain extent. 

The fly in the ointment is that the above-mentioned 

researches still failed to break out of the limitation of the 

traditional game theory itself, which is completely rational. 

EG imitates the theory of biological evolution, takes the 

population as the object, and breaks through the limitation of 

the assumption of complete rationality in traditional game 

theory. It believes that the players are bounded rational and 

can more reasonably describe the game behaviors of the 

bounded rational players [26][27]. After continuous 

development and improvement, EG has been widely used in 

research fields with interactive multi-agents, such as energy 

and electric power [28][29][30][31][32]. In recent years, 

some researches have also started to apply EG to the 

emergency field. Considering the problem of material 

demand explosion and space mismatch of material supply, a 

tripartite EG model of advanced emergency management, 

local emergency management and emergency logistics 

enterprises have been established in [33]. Factors such as 

cooperation benefit, inaction penalty and coordination cost 

were considered in [34], and the interaction mechanism of the 

relationships among government, government-owned 

nonprofit organizations and grassroots nonprofit 

organizations was researched by using EG. However, the 

current application of EG in the field of emergency response 

mainly focuses on the analysis of the interaction between 

public and private entities. Few researches have applied EG 

to EMA. In EMA, victims with bounded rationality have 

obvious competition and game psychology for materials. 

Therefore, it is necessary to introduce EG to study the 

problem of EMA. 

Based on the above researches, this paper intends to 

comprehensively consider the impact of secondary disasters 

on the emergency materials demand and transportation time 

and the competitive game psychology of the disaster victims 

with limited rationality on the basis of existing research, and 

introduce the PT to characterize the perceived payment of the 

victims with bounded rationality on the EMA scheme. Treat 

disaster locations as game populations, construct a 

multi-population EG model of EMA under bounded 

rationality, and conduct research on EMA. 

The rest of this paper is summarized as follows: Section Ⅱ 

describes the problem studied in mathematical language. 

Based on the analysis in Section Ⅱ, the EG model of EMA 

under bounded rationality is established in Section Ⅲ. 

Section Ⅳ designs a case verifies the rationality of the model 

constructed in Section Ⅲ, and analyzes the influence of some 

parameter changes on the results. Finally, the conclusion of 

this paper is in Section Ⅴ. 

 

II. PROBLEM DESCRIPTION 

Assuming that a disaster occurs in a certain place, a total of 

n disaster locations is formed. The set of disaster locations is 

P= {Pj | j=1,2,…,n}. There is a total of m emergency material 

deployment centers, and the set of deployment centers is 

R={Ri |i=1,2, … ,m}. In practice, emergency material 

allocation is a multi-stage dynamic decision-making process, 

the emergency response stage set is denoted as S, and the 

material kind set is denoted as K. In stage s, the demand for 

the material k at the disaster location Pj is d
 k 

 j (s), the storage 

capacity of the material k in the deployment center Ri is g
 k 

 i (s), 

and the material transportation time from Ri to Pj is tij(s), the 

allocation quantity of material k that Ri assigned to Pj is x
 k 

 ij(s), 

and the total quantity of material k allocated to Pj is 

0

( ) ( )
m

k k

j ij

i

X s x s
=

=  , s∈S，k∈K. 

Secondary disasters have an impact on material demand 

and transportation time. In view of the deficiencies in the 

literature [13], this paper deems that in the absence of rescue 

and secondary disasters, the material demand function 

roughly conforms to the right half of the normal distribution 

function curve, that is, roughly obeys N (0, σ2). Meanwhile, 

the demand for emergency supplies at the disaster locations 

change dynamically with the development of the disaster 

situation, as shown in Fig. 1. Then, the dynamic demand for 

emergency supplies is calculated as follows: 
2

21
( )=

2

k

t

k

j

k

d s e




−

                          (1) 

( ) ( ) ( )k k k

j j jd s p s D s = −                         (2) 

( 1) ( ) ( )k k k

j j jd s d s d s+ = −                       (3) 

Where: (1) represents the material k demand of the disaster 

location Pj when there is no rescue after the disaster; (2) 

represents the remaining quantity of the material k at the 

disaster location Pj in stage s, where p
 k 

 j (s) represents the 

quantity of the material k in stage s delivered to the disaster 

location Pj, D
 k 

 j (s) represents the additional material demand 
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caused by the secondary disaster in stage s at the disaster 

location Pj; (3) represents the material k demand of the 

disaster location Pj in stage s+1. 
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Fig.1.  Schematic diagram of dynamic change of demand for any kind of 

emergency supplies 

 

Considering that different sections of the emergency 

material transportation path are affected by the disaster to 

different extents, the transportation path between the 

deployment center Ri and the disaster location Pj is divided 

into several small sections, and the material transportation 

time is calculated using the integral idea, namely: 

( )=
(1 )

r

ijr

ij r

ij

L
t s

v −
                                  (4) 

( )= ( )r

ij ij

r

t s t s                                    (5) 

Where: (4) represents the transportation time on the r road 

section between the deployment center Ri and the disaster 

location Pj in stage s, where L
r 

ij is the distance of the r section, 

v is the average traveling speed of the vehicle, and φ
r 

ij is the 

influence coefficient of the secondary disaster on the 

transportation time in the r road section, φ
r 

ij ∈ [0,1]; (5) 

represents the transportation time of emergency materials 

from the deployment center Ri to the disaster location Pj in 

stage s. 

 

III. EG RESEARCH ON EMA UNDER BOUNDED RATIONALITY 

A. EG Model Construction 

A.1. Participant Population 

In the EG of this article, the disaster location Pj∈P that 

produces the material competition is regarded as n participant 

populations. Individuals in the population freely choose 

strategies during the game, and conduct random repeated 

games. 

A.2. Strategy 

The strategy of the participant population is the quantity of 

material obtained from each deployment center. The strategy 

h of population Pj is S
k 

j,h={ x
k 

1j,h , x
k 

2j,h ,… , x
k 

ij,h ,… , x
k 

mj,h}，

h=1,2,…,H, as shown in Fig. 2, where x
 k 

ij,h represents the 

material k quantity obtained by the population Pj from the 

deployment center Ri in the strategy h; the pure strategy set of 

the population Pj is S
 k 

 j ={ S
 k  

j,1, S
 k  

j,2,…, S
 k  

j,h,…, S
 k   

j,H}; the strategy 

combination w of all populations is Sw={S
 k 

1,w, S
 k 

2,w,…, S
 k  

j,w}. The 

materials allocation of the deployment center Ri in the 

strategy combination w is shown in Fig. 3. There may be 

unreasonable combinations in the above-mentioned strategy 

combinations, so the unreasonable combinations can be 

eliminated according to (6) and (7) to simplify the problem. 

,
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i

d s x
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Fig.2.  Schematic diagram of strategy h in the disaster location Pj  
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Fig.3.  Schematic diagram of material allocation in the deployment center 

 

A.3. Payment 

The payment function is used to measure the payment that 

the players can obtain when they choose the action strategy in 

the game. Although EG has broken through the limitations of 

the assumption of complete rationality of participants, its 

payment function is still completely rational [35]. In order to 

eliminate the completely rational residue in EG, PT is 

introduced in this paper to describe the payment function of 

the participants in EG. In the EMA, the disaster locations 

usually judge the benefits from the attributes of allocation 

quantity and delivery time. Therefore, this paper starts with 

the attributes of the allocation quantity and the delivery time 

to construct the payment function of the population at the 

disaster locations. 

  

a. Material Allocation Quantity 

It is reasonable to use PT to describe the psychology of 

disaster victims. The victims form a psychological reference 

point based on the material reserves of the deployment center 

and the material demand of the disaster location, and then 

judge the gains and losses according to the relative 

relationship between the plan and the reference point. 

Assuming that the reference point of the allocation quantity 

of materials is X
k 

0 , the reference point of the allocation 

quantity in stage s and the initial reference point are 

respectively as (8) and (9):  

0 0( )= max{ ( 1), ( 1)}, 2k k k

jX s X s X s s− −              (8) 

0

0

1
(1) (1)

m
k k

i

i

X g
m =

=                            (9) 

According to PT, the value function of allocation quantity 

of the disaster location Pj as (10). That is, when X
 k 

 j (s)≥X
 k 

0 (s), 

the scheme is expressed as a profit, and the value function is a 

concave function; when X
 k 

 j (s) < X
 k 

0 (s), it is expressed as a loss, 

and the value function is a convex function. It reflects that 

disaster victims are risk-averse when facing gains, but are 
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risk-appetite when facing losses, and are more sensitive to 

losses than gains. The value function curve is shown in Fig. 4. 

 
0 0

0 0

[ ( ) ( )] ,  ( ) ( )
( ( ))

[ ( ) ( )] , ( ) ( )

k k k k

j jk

j k k k k

j j

X s X s X s X s
v X s

X s X s X s X s





 − 
= 

− − 

     (10) 

Where, α and β indicate the risk attitude coefficient, 0<α, β<1; 

λ indicates the loss aversion coefficient, λ>1. 

The objective probability set of population Pj strategy set 

is Qj={ p
 k 

j,1,, p
 k 

j,2,…, p
 k  

j,h,…, p
 k 

j,H}, where p
 k  

 j,h is the probability of 

strategy h, and H is the total number of strategies. Then the 

subjective probability function of the material allocation 

quantity is shown in (11) and (12). That is, the subjective 

probability is smaller than the actual value when the actual 

probability of the plan is large; the subjective probability is 

larger than the actual value when on the contrary. This is the 

principle of PT "favorite small probability events". The 

subjective probability function curve is shown in Fig. 5. 
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+ −

       (12) 

Where, γ and δ represent the perceptual probability 

coefficient, and γ, δ>0. 
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Fig.4.  Allocation value function curve 
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Fig.5.  Subjective probability function curve 
 

In summary, the payment of the allocation quantity of 

emergency material k of the population Pj in stage s is: 

0 01 ( ) [ ( ) ( )] ( ) [ ( ) ( )] ( )k k k k k

j j jU s X s X s p X s X s p   + −= − − −   (13) 

 

b. Delivery Time of Materials 

The judgment of the disaster locations on the materials 

delivery time is a behavior based on a priori information, that 

is, the disaster location will generate the perceived material 

delivery time of current stage based on the delivery time of 

the previous stage [36]. Assume that the perceptual delivery 

time of the disaster locations in stage s obeys the normal 

distribution: Tj (s) ~ N (τj,s,σ
2 

j,s ). Where, τj,s and σ
2 

j,s  are 

calculated as follows: 
1

,s

1
( ( ))

1

s

j j

i

T i
s


−

=
−

            (14) 

1
2 2

,s ,

1
[( ( )) ]

2

s

j j j i

i

T i
s

 
−

= −
−

         (15) 

When s =1 (the first allocation), disaster location can only 

estimate the possible delivery time based on the physical 

characteristics of the path. Here, the free flow time Tj,free of 

the path is used to represent the physical characteristics of the 

path: τj,1 = Tj,free and σ
2 

j,1 =0, where， , ,max{ }j free ij free
i

T t= . 

Assume that the delivery time reference point determined by 

the disaster location Pj in stage s according to the prior 

information is: 

0

1

1
( )= ( 1)

m

j ij

i

T s t s
m =

−           (16) 

The value function of the disaster location Pj to the 

delivery time of the materials is shown in (17). In other words, 

when Tj,free ≤ Tj (s) ≤ T 
0 

j (s), the materials can be delivered to 

the disaster location in time, and the scheme is shown as a 

gain; when Tj (s) > T 
0 

j (s), the delivery is overdue, and the 

scheme is shown as a loss. The value function curve is shown 

in Fig. 6. 
0 0

,

0 0

[ ( ) ( )] ,  ( ) ( )
( ( ))

[ ( ) ( )] , ( ) ( )

j j j free j j

j

j j j j
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T s T s T s T s





 −  
= 

− − 

   (17) 

Assuming that the possible result of the material delivery 

time is Al, its subjective probability is shown in (19) and (20): 
0

,

0

Timely delivery , ( ) (

Delay in delivery

)

, ( ) ( )

j free j j

l

j j

T T s T s
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2
,

0
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,

1
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,
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,

( )= ( Timely delivery )
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j j s

j
j
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j l

j free j j

T s

T s

T
j s

p s P A

P T T s T s

e dT







−
−

=

=  

= 

“ ”

    (19) 

2 1( ) 1 ( )j jp s p s= −                                         (20) 

Therefore, the subjective probability function of the 

material delivery time is as shown in (21) and (22), and the 

function curve is the same as that in Fig. 5. 
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1
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Fig.6.  Delivery time value function curve  
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In summary, the payment of materials’ delivery time of 

population Pj in stage s is: 
0 02 ( ) [ ( ) ( )] ( ) [ ( ) ( )] ( )j j j j jU s T s T s p T s T s p   + −= − − −   (23) 

 

c. Population Payment Function 

Since the allocation quantity attribute U1 and delivery time 

attribute U2 are different in dimension, each attribute 

payment needs to be dimensionless. Suppose U1
k 

j,h and U2
 

j,s 

respectively denotes the allocation quantity payment and 

delivery time payment of strategy h, and the payments of two 

attributes are processed dimensionless as follows: 

* ,

,

,h

1 ( )
( )1

max{| 1 ( ) |}

k

j hk

j h k

j
h

U t
tU

U t
=          (24) 

* ,

,

,

2 ( )
2 ( )

max{| 2 ( ) |}

j h

j h

j h

U t
U t

U t
=         (25) 

Suppose ε1 and ε2 are the decision preference coefficients 

of attributes U1 and U2 respectively, and ε1+ε2=1, then the 

payment function of the strategy h of population Pj in stage s 

is: 
* *

,, 1 2,
2( ) ( ) ( )1k k

j hj h j h
UU s s sU = +       (26) 

A.4. The Replicator Dynamics Equation 

EG uses evolutionary dynamics to characterize the 

adaptive learning behaviors of game players. The most 

common evolutionary dynamic is the replicator dynamics. 

The evolutionary state is analyzed by establishing the 

dynamic equation of replicator. Let y
 k  

 j,h be the proportion of 

individuals in the selection strategy S 
k 

j,h in the total population, 

and
, 1k

j h

h

y = . Let f   
h 

j  be the fitness function of population Pj 

when the strategy S
  k 

 j,h is adopted, namely: 

, , ,

1 1

, ,
H H

h k k k

j b q a p j h j

q p

f y y U a b j R
= =

=        (27) 

The average fitness of the population Pj is: 

,

1

,
H

k h

j j h j j

h

f y f j R k K
=

=           (28) 

Then the replicator dynamics equation of population Pj can 

be expressed as: 

, ,

k k h

j h j h j jy y f f=  −（ ）                     (29)  

B. Evolutionary Equilibrium Solution 

In evolutionary equilibrium, the strategies of each 

population are the optimal response to the other groups’ 

strategies, so the individual representing the evolutionary 

equilibrium has the optimal fitness. The strategy chosen by 

this individual is the evolutionarily stable strategy (ESS). 

Regarding ESS, there is the following theorem [37]: For 

p S  , and p ≠ q, if (0,1)p  , the fitness function of the 

population when the strategy is q satisfies: 

[ , (1 ) ] [ , (1 ) ], (0, )pf q p q f p p q     + −  + −   , then p∈S 

is called ESS. 

The ESS of various groups together constitute the 

evolutionary equilibrium of the game, and solving the 

evolutionary equilibrium is to solve the ESS of various 

populations. Therefore, the solution process of evolutionary 

equilibrium in this paper is shown in Fig. 7. 
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Fig.7. Evolutionary equilibrium solution process 

 

IV. CASE STUDY 

A. Case Background 

When a natural disaster occurred in an area, there were a 

total of 3 material deployment centers, and 3 disaster 

locations were formed. Assuming that the demand for a 

certain kind of emergency materials at the disaster locations 

P1, P2, and P3 is 1,700, 1,500, and 1,900 respectively during a 

certain stage of emergency response. At this stage, 1,200, 

1,100, and 1,300 materials have been delivered to the three 

disaster locations, The new material demand caused by the 

secondary disaster in the current stage is 1000, 600, and 900 

pieces respectively. According to (2) and (3), the material 

demand of each disaster location in the next stage is 

calculated, as shown in Table Ⅰ. The emergency material 

reserves of each deployment center in the current stage are 

shown in Table Ⅱ. 
 

TABLE I 

EMERGENCY MATERIALS DEMAND AT THE DISATER LOCATION 

Disaster locations P1 P2 P3 

Demand (100 units) 15 10 15 

 

TABLE Ⅱ 
EMERGENCY MATERIAL RESERVES OF THE DEPLOYMENT CENTER 

Deployment centers R1 R2 R3 

Reserves (100 units) 10 15 10 

 

The distance L of each road section between the 

deployment center and the disaster location and the influence 

coefficient φ of secondary disasters on the road section are all 

known, as shown in Table Ⅲ. 
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TABLE Ⅲ 

ROAD SECTION DISTANCE AND SECONDARY DISASTER IMPACT COEFFICIENT 

Disaster locations P1 P2 P3 

Deployment 

centers 

R1 
L (km) 55 69 50 46 54 49 58 

φ 0.45  0.45  0.33  0.63  0.57  0.00  0.24  

R2 
L (km) 63 38 65 65 76 45 42 63 38 

φ 0.32  0.24  0.40  0.42  0.45  0.00  0.44  0.32  0.24  

R3 
L (km) 35 47 57 49 42 43 40 35 47 

φ 0.00  0.37  0.37  0.51  0.30  0.45  0.33  0.00  0.37  

 

Assuming that the average travel speed of the vehicle 

v=50km/h, the emergency material transportation time 

between the disaster location and the deployment center is 

calculated according to (4) and (5), and the results are shown 

in Table Ⅳ. 
 

TABLE Ⅳ 

MATERIAL TRANSPORTATION TIME 

Time (h) 
Disaster locations 

P1 P2 P3 

Deployment 

centers 

R1 4.5 6.5 2.5 

R2 5 5 6.75 

R3 6 2.75 4 

 

Fig. 8 can be obtained by integrating the comprehensive 

disaster information of the disaster area in the current stage. 
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Fig.8. Comprehensive disaster information in the disaster area 

 

B. Case Solving 

Let the PT risk attitude coefficient α and β be 0.88, the loss 

aversion coefficient λ be 2.25, the perceived probability 

coefficient γ and δ be 0.61 and 0.69. The preference 

coefficients of attribute decision making ε1 and ε2 are both 0.5. 

In order to reduce the difficulty of the solution without loss of 

generality, the calculation example uses 5 units as the step 

size to generate a population strategy set, and eliminates the 

strategies that do not meet the demand constraints of the 

disaster locations. The final number of strategies for the three 

populations is 17, 9, and 17, respectively. The objective 

probability of each strategy in the population strategy set is 

determined by the fuzzy comprehensive evaluation method 

proposed in [38]. 

The EG model is solved by Matlab2016b in this paper. The 

maximum evolution time is set to 100s, and the evolutionary 

state of each population is shown in Fig. 9, Fig. 10, and Fig.  

 

 

11. The proportion of each strategy in the game environment 

is constantly changing with the continuous evolution of the 

population, and the final evolutionary stable state has nothing 

to do with the initial state of the population, but is only 

related to the game environment. Fig. 9 shows the evolution 

state curve of population P1 at the disaster location. 

 

 
Fig.9. Evolution state of population P1 

 

As can be seen from Fig. 9, the proportion of each strategy 

changes constantly as the evolution progresses, and the 

population evolves most violently in the first 25s. When it 

evolves to about 10s, the growth rate of Strategy 14 

accelerates and its proportion in the population increases 

sharply. When it evolves to about 30s, the proportion of 

Strategy 14 approaches 1, and the proportion of other 

strategies gradually tend to 0. This indicates that in the 

long-term evolution process, strategy 14 becomes the 

dominant strategy of population P1 and is gradually retained 

in the "survival of the fittest", whereas the other strategies are 

all inferior strategies and gradually eliminated. Obviously, 

strategy 14 is the ESS of population P1. Fig. 10 shows the 

evolution state curve of population P2 at the disaster location. 

 

 

Fig.10. Evolution state of population P2 

 

It can be found from Fig. 10 that the growth rate of strategy 

4 has been rising since the beginning of evolution. The 
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population evolution was most intense in the first 25s, and 

most strategies were eliminated in the current stage. The 

evolution gradually slows down after 30s, and there is almost 

only strategy 3 and strategy 4 in the population. When it 

evolves to about 90s, the proportion of strategy 4 approaches 

1, and the proportion of strategy 3 approaches 0. That is to say, 

after a long period of "survival of the fittest", strategy 4 

becomes the ESS of population P2. Fig. 11 shows the 

evolution state curve of population P3. 

 

 

Fig.11. Evolution state of population P3 

 

From Fig. 11, we can find that the evolution process of 

population P3 is similar to that of population P1, which is 

intense in the first 25s. In the 30s, the inferior strategies are 

gradually eliminated, leaving only strategy 10 in the 

population, and the proportion of strategy 10 reaches 1. This 

indicates that all individuals in the population eventually 

choose strategy 10 with the evolution, which is the dominant 

strategy and eventually becomes the ESS of population P3. 

Comprehensive analysis Fig. 9, Fig. 10, and Fig. 11, we 

can find that the population strategy can be roughly classified 

into three kinds. Take population P1 as an example: the first 

kind is "obvious disadvantage strategy" represented by 

strategy 13. As the evolution progresses, fewer and fewer 

individuals choose this part of strategy, leading to a gradual 

decline in the proportion of this part of strategy, and the 

proportion approaching to 0 at about 25s. The second kind is 

"general disadvantage strategy" represented by strategy 12, 

In the evolutionary process, the proportion of these strategies 

increases first and then decreases to 0. In the stage of 

increasing proportion, this part of the strategy is better than 

the "obviously disadvantaged strategy" and become the local 

dominant strategy of the population. However, with the 

change of game environment, new dominant strategies 

appear and these strategies are eliminated eventually. The 

third kind is the ESS, whose proportion continues to increase 

during evolution and eventually evolves to 1, in line with the 

idea of "survival of the fittest". In addition, the most intense 

stages of evolution of the three populations are all 

concentrated in the first 25s, which indicates that the whole 

game environment is the most complex at this stage, and the 

populations influence and restrict each other, and the 

fluctuating of each strategy's proportion is related to others. 

The strategy combination jointly constituted by the ESS of 

various groups is evolutionary equilibrium. The evolutionary 

equilibrium in this paper is the 2050th strategy combination. 

The evolutionary equilibrium represents the final EMA 

scheme, and the scheme is shown in Table Ⅴ. 

 
TABLE Ⅴ 

THE 2050TH EMA SCHEME 

Allocation quantity (100 units) 
Disaster locations 

P1 P2 P3 

Deployment 

centers 

R1 5 0 5 

R2 10 5 0 

R3 0 5 5 

Total allocation (100 units) 15 10 10 

 

By integrating the distribution plan in Table 5 with the 

comprehensive disaster information in the disaster area in Fig. 

8, the final schematic diagram of material allocation can be 

visualized, as shown in Fig. 12. 
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Fig.12. Schematic diagram of final material allocation 

 

From Table Ⅴ, we can find that the materials of the 

deployment center are all allocated to the disaster location. 

The total allocation of materials at the disaster location P1 

and P2 meets the demand, whereas the total allocation of 

materials at P3 does not meet the demand, which is in line 

with the background that emergency materials are in short 

supply. In Table Ⅴ, the quantity of material allocated from 

some of the deployment centers to the disaster locations is 0. 

From Fig. 12, it is not difficult to find that the transportation 

routes between these disaster locations without material 

allocation and the corresponding deployment centers 

(indicated by the dotted line in the figure) have longer 

distance and are more severely affected by secondary 

disasters (the disaster area is in darker color in figure). As a 

result, the material transportation time is too long on these 

routes, and the disaster locations’ psychological perception of 

the material delivery time is in a serious "loss" state. 

Therefore, these "loss" allocation schemes are gradually 

eliminated in the evolution of the game. 

 

C. Sensitivity Analysis of Decision Preference Coefficient 

The decision preference coefficient of attribute represents 

the proportion of different attributes in decision-making. In 

order to analyze the influence of decision preference 

coefficients ε1 and ε2 on the evolutionary equilibrium, a 

sensitivity analysis is performed on ε1 and ε2. The results are 

shown in Table Ⅵ. 
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TABLE Ⅵ 

SENSITIVITY ANALYSIS OF DECISION PREFERENCE COEFFICIENT 

. 1 2 3 4 5 6 7 8 9 

ε1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

ε2 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

Equalization Scheme No. 1234 1234 1234 2050 2050 2050 2050 1747 1747 

 

It can be found from Table Ⅵ that when ε1 and ε2 take 

different values, the population will evolve different 

equilibrium schemes. When the delivery time preference 

coefficient ε2 exceeds 0.6, the equalization scheme is 1234th 

scheme, as shown in Table Ⅶ. 
 

TABLE Ⅶ 

THE 1234TH EMA SCHEME 

Allocation quantity (100 units) 
Disaster locations 

P1 P2 P3 

Deployment 

centers 

R1 5 0 5 

R2 0 0 0 

R3 0 5 5 

Total allocation (100 units) 5 5 10 

 

It can be found from Table Ⅶ that there is still a large 

quantity of surplus materials in the deployment center R2, and 

the total allocation of materials in each disaster location does 

not meet the demand. Combining Table Ⅲ and Table Ⅳ, it 

can be found that the allocation of materials only exists 

between the disaster location and the deployment center with 

a short transportation time. The reason is that when the value 

of ε2 exceeds 0.6, the disaster location pays more attention to 

the delivery time when selecting the scheme, resulting in the 

scheme with longer transportation time was eliminated in 

advance. Although this scheme fully considers the timeliness 

of the delivery of emergency materials, it sacrifices the 

allocation quantity and is only applicable to emergency 

materials (such as medical materials) that require high 

timeliness. When the value of ε2 less than 0.3, the 

equalization scheme is 1747th scheme, as shown in Table 

Ⅷ. 
 

TABLE Ⅷ 

THE 1747TH EMA SCHEME 

Allocation quantity (100 units) 
Disaster locations 

P1 P2 P3 

Deployment 

centers 

R1 5 0 5 

R2 5 5 5 

R3 0 5 5 

Total allocation (100 units) 10 10 15 

 

It can be found from Table Ⅷ that all the materials of the 

deployment center are allocated to the disaster location, and 

only the total material allocation of the disaster location P1 

does not meet the demand. Combining Table Ⅲ and Table Ⅳ 

can be found that there is still material allocation between the 

OD pairs (from deployment center to disaster location) that 

have a long transportation time. The reason is that when the 

value of ε2 is too small, the disaster location pays more 

attention to the allocation quantity in decision-making, and 

less timeliness is considered. This scheme is more suitable 

for resettlement materials (such as tents, clothing, etc.) that 

have an absolute demand for the allocation quantity. 

When the value of ε2 is between 0.3 and 0.6, the 

equalization scheme is 2050th scheme, as shown in Table Ⅴ.  

 

 

The value of scheme ε1 and ε2 of the scheme is relatively 

balanced, which not only considers the quantity of material 

allocation, but also satisfies the timeliness of delivery, which 

is a relatively balanced scheme. This scheme is suitable for 

necessities of life (such as food) that have certain 

requirements for timeliness and distribution quantity. It can 

be seen that the ε1 and ε2 are both 0.5 in this case, which is in 

line with the actual situation of the allocation of daily 

necessities in general emergency decision-making. Fig. 13 is 

an intuitive comparison diagram of different EMA schemes 

when the decision preference coefficients ε1 and ε2 take 

different values. 

 

 

Fig. 13. Intuitive comparison bar graph of EMA scheme 

 

From Fig. 13, it can be found that the total allocation of 

scheme 2050 and scheme 1747 is better than scheme 1234. 

This is because when the time decision preference coefficient 

ε2 is too large, the comprehensive prospect value of the 

scheme is mainly determined by the time prospect value, that 

is to say, the disaster location is more concerned about the 

absolute delivery time, which leads to a backlog of materials 

in the relatively far away deployment center, which also 

shows that excessive attention to time attributes will reduce 

the utilization of emergency resources to a certain extent. 

 On the contrary, when the value of the allocation decision 

preference coefficient ε1 is too large, the disaster location will 

care more about the fairness of the allocated quantity, 

resulting in the distribution of materials between the ODs 

with longer transportation distances (for example, between 

the deployment center R2 and the disaster location P3 in 

scheme 1747), which shows that excessive emphasis on the 

attributes of the allocation will have a certain impact on the 

timeliness of emergency response.  

In general, the disaster location should reasonably set the 

decision-making preference coefficient according to the 

disaster situation and the kinds of materials to ensure the 

maximum overall emergency response efficiency. 
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D. Parametric Analysis in PT 

The population evolution direction is determined by the 

prospect value of the scheme, which is closely related to the 

values of parameters α, β, γ and δ. In order to analyze the 

sensitivity of the prospect value to the parameters α, β, γ and δ, 

the evolutionary equilibrium scheme (the 2050th strategy 

combination) is taken as an example. Fig. 14 shows the 

influence of risk attitude coefficients α and β on the 

comprehensive prospect value of population P1. 

 

 
Fig. 14. The influence of parameters α and β on the prospect value of the 

scheme in P1 
 

As can be found from Fig. 14, the comprehensive prospect 

value of population P1 is inversely proportional to the income 

risk attitude coefficient α, and almost irrelevant to the value 

of the loss risk attitude coefficient β. That is to say, the 

population P1 is always in the profit area, indicating that the 

allocation quantity of materials is higher than the 

psychological expectations of the victims in the disaster 

location, and the delivery time is earlier than the 

psychological expectations of the victims. The disaster 

victims are too pessimistic about the disaster situation and are 

unwilling to take greater risks to pursue higher benefits, 

which is in line with the decision-making psychology of the 

disaster location eager to get emergency materials under 

bounded rationality. Fig. 15 shows the influence of α and β on 

the comprehensive prospect value of population P2. 

 

 

Fig. 15. The influence of parameters α and β on the prospect value of the 

scheme in P2 

 

As shown in Fig. 15, the comprehensive prospect of 

population P2 decreases with the increase of β, which is 

almost independent of the value of α. That is to say, the value 

function of population P2 is always in the loss area, indicating 

that the allocation quantity of materials is lower than the 

psychological expectations of the victims in the disaster 

location, and the delivery time is later than the psychological 

expectations of the victims. The disaster victims are too 

optimistic about the disaster situation and are willing to take 

risks to pursue benefits. It conforms to the decision-making 

psychology that the disaster location expects too much to the 

allocation scheme under bounded rationality. Fig. 16 shows 

the influence of α and β on the comprehensive prospect value 

of population P3. 

 

 

Fig. 16. The influence of parameters α and β on the prospect value of the 

scheme in P3 

 

As shown in Fig. 16, the comprehensive prospect value of 

population P3 is sensitive to β but not to α, because the value 

function of population P3 is always in the loss area, and the 

prospect value of the scheme is only affected by β, which 

indicates the victims’ estimates of the disaster situation are 

too optimistic and are willing to take risks to pursue benefits, 

which is in line with the decision-making psychology that the 

disaster point is too expected to the allocation scheme under 

bounded rationality. Fig. 17 shows the influence of 

perceptual probability coefficients γ and δ on the 

comprehensive prospect value of population P1. 

 

 
Fig.17. The influence of parameters γ and δ on the prospect value of the 

scheme in P1 

 

It can be found from Fig. 17 that the comprehensive 

prospect value of the population P1 is closely related to the 

income perception probability coefficient γ, and is almost 

irrelevant to the value of the loss perception probability 
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coefficient δ. This is because the allocation scheme for the 

population P1 is shown as a benefit. As the increase of γ, the 

comprehensive prospect value of the scheme decreases, 

which conforms to the decision-making psychology of the 

disaster location that the allocation scheme is too high under 

bounded rationality. Fig. 18 shows the influence of the 

perceived probability coefficients γ and δ on the 

comprehensive prospect value of the population P2. 

 

 

Fig.18. The influence of parameters γ and δ on the prospect value of the 

scheme in P2 

 

As can be seen from Fig. 18, the comprehensive prospect 

value of population P2 is closely related to the loss perception 

probability coefficient δ and has almost nothing to do with 

the value of the income perception probability coefficient γ. 

This is because the allocation scheme for population P2 is a 

loss. As δ increases, the comprehensive prospect value of the 

scheme decreases, which is in line with the decision-making 

psychology of excessively high expectation of disaster 

locations under bounded rationality. Fig. 19 shows the 

influence of the perceptual probability coefficients γ and δ on 

the comprehensive prospect value of population P3. 
 

 
Fig.19. The influence of parameters γ and δ on the prospect value of the 

scheme in P3 
 

It can be seen from Fig. 19 that the sensitivity of 

population P3 to the perceived probability coefficients γ and δ 

is the same as that of population P3, that is, it is more 

sensitive to the loss perception probability coefficient δ. This 

is because the allocation scheme of population P3 also in loss. 

As δ increases, the comprehensive prospect value of the 

scheme decreases, which is in line with the decision-making 

psychology of the disaster location with excessive 

expectation of the allocation scheme under bounded 

rationality. 

Based on the aforementioned analysis, it is obvious that 

disaster victims are more inclined to pursue risk when the 

expected benefits are less and the disaster forecast is 

pessimistic. On the contrary, when there are more expected 

benefits and disaster forecasts are more optimistic, disaster 

victims are more inclined to risk aversion. 

 

V. CONCLUSION 

This study focuses on the bounded rationality of disaster 

victims in the actual emergency rescue process and the 

competitive game psychology of different disaster locations 

for materials under the background of short supply. PT is 

embedded in the EG model, and the EMA multi-population 

EG model under bounded rationality is established.  

The case simulation results show that the model can 

effectively compensate for the lack of complete rationality of 

the participants in the study of EMA in non-cooperative game 

theory; further, the model also considers the impact of the 

changing game environment on the disaster location and the 

adaptive learning behavior of the disaster victims, which can 

explain the bounded rational game phenomenon more 

effectively in EMA and make the decision result more in line 

with reality, and can be applied to EMA problems in some 

scenarios. 

Sensitivity analysis of the model parameters shows that on 

the one hand different kinds of materials have different 

preferences for the allocation quantity and delivery time. 

When formulating the EMA scheme, the preference 

coefficient should be set reasonably according to the kind of 

materials, and the disaster situation to make the scheme more 

in line with reality; on the other hand, the disaster victims’ 

psychological perception of the EMA scheme is related to the 

disaster situation. When the disaster victims are too 

optimistic about the disaster situation, the EMA scheme may 

not meet the psychological expectations of disaster victims. 

On the contrary, when the estimation is too pessimistic, the 

EMA scheme may exceed their psychological expectations; 

in addition, in different income areas of PT, the risk attitude 

and probability perception ability of disaster victims have 

different influences on the EMA scheme. The disaster 

location should reasonably set a psychological reference 

point according to the disaster situation, so that the attributes 

of the distribution plan fall as far as possible in the income 

area that is beneficial to itself.  

In practice, the demand for emergency materials is often 

diversified. Considering the diversified demand of materials 

and making the EMA scheme more realistic will be the focus 

of the next step of research. 
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