

 D. L. Yuan, Y. Xu

Abstract—Vehicle detection is the first step and an important

part of automatic traffic incident detection systems. It
guarantees subsequent vehicle identification and vehicle
counting accuracy and has crucial theoretical significance and
practical value for traffic safety and control. The model
obtained by the original YOLOv4 algorithm is too large to be
used in embedded terminals in real time. To overcome this
problem, this study replaces the original backbone network of
YOLOv4, which is CSPDarknet53, with MobileNetv3 for the
feature extraction. To further reduce the number of parameters,
deep separable convolution is used to replace the common 3×3
convolution in the original model of the enhanced feature
extraction networks SPP and PANet. Because of the imbalance
in the object detection data, the loss function is redesigned using
a weighting method. The research results show that in
comparison to the original YOLO series algorithm, the
optimized YOLOv4 algorithm improves the accuracy by 0.53%
and reduces the number of model parameters by 78%. In
comparison to the other algorithms, the improved YOLOv4
model is smaller and more accurate, which is the basis for
realizing intelligent transportation systems.

Index Terms—KITTI, MobileNetv3, Object detection,
YOLOv4.

I. INTRODUCTION

BJECT detection refers to the identification of all the
regions of interest in an image and determining their

positions and categories [1]. Recently, deep learning
technology in combination with big data and efficient
graphics processing unit (GPU) computing has surpassed and
replaced traditional algorithms in the field of artificial
intelligence [2]. Presently, the object detection methods that
are based on deep learning algorithms can be divided into two
categories according to whether the region proposal network
is adopted. The first is the two-stage object detection
algorithm: in the first stage, candidate regions are generated
through the candidate region network, and in the second stage,
candidate regions are classified and regressed.
Representative algorithms include the region-based
convolutional neural network (RCNN) [3], fast RCNN [4],
faster RCNN [5], and feature pyramid network (FPN) [6].
The second category is the one-stage object detection
algorithm, which classifies and regresses the target directly

Manuscript received May 29, 2021; revised October 18, 2021.This work

was supported by the National Natural Science Foundation of China under
Grants 61575090 and 61775169, and the Scientific Study Project for
Education Department of Liaoning Province, China under Grant LJKZ0310.

D. L. Yuan is a Master’s Student of School of Computer Science and
Software Engineering, University of Science and Technology LiaoNing,
Anshan 114051, China (e-mail: ydl608@163.com).

Y. Xu is a Professor of School of Computer Science and Software
Engineering, University of Science and Technology LiaoNing, Anshan
114051, China (corresponding author, phone: 86-13889785726; e-mail:
xuyang_1981@aliyun.com).

through a neural network. Representative algorithms include
the You Only Look Once (YOLO) [7] series, single-shot
detector (SSD) [8], and RetinaNet [9]. Real-time detection of
vehicles on the road using object-detection techniques can be
useful for criminal investigations and provide a reliable basis
for traffic regulation and traffic light scheduling.

Among the many detection algorithms, the YOLO series
may be the most popular object detection algorithm for
practical applications. It is easy to improve a YOLO-based
network to achieve the desired results. For example, Yang et
al. studied traffic sign detection based on the YOLO
lightweight network [10] using deep separable convolution in
the backbone network to better extract small- and
medium-sized targets. Hui et al. used the image pyramid
structure to construct a helmet dataset to obtain a model with
more industrial applications for detecting the wearing of
safety helmets based on the YOLO lightweight network [11].
These improved algorithms are significant in the field of
object detection, but they still do not explain the problem of
feature extraction and utilization. YOLOv4 [12] is an
open-source object detection network that has obvious
advantages over other object detection networks that
emerged during the same period in terms of speed and
accuracy. YOLOv4 uses CSPDarknet53 as the backbone
network and PANet instead of FPN for the feature
aggregation. The detection accuracy is high, but it requires a
high-performance hardware configuration; the detection
speed is slow on small hardware platforms.

Therefore, YOLOv4-Tiny [12] is widely used for detection
on embedded platforms. Although the detection speed is high,
the detection performance is lower than that of YOLOv4
because of the simple network hierarchy and an insufficient
feature extraction ability. Because YOLOv4 is a large model
and is not suitable for resource-constrained hardware
platforms, this study proposes an improved YOLOv4
lightweight network detection algorithm that is based on
YOLOv4. The lightweight backbone network MobileNetv3
[13] is used to replace the original CSPDarknet53 backbone
network of YOLOv4 for the feature extraction. To further
reduce the number of parameters by strengthening the SPP
and PANet feature extraction networks of YOLOv4, deep
separable convolution is used to replace an ordinary 3×3
convolution in the original model. This is considered to be an
unbalanced problem in the target detection data. Thus, the
weighted method is used to redesign the loss function and the
optimized lightweight vehicle detection model is employed.
The results show that the improved YOLOv4 algorithm has
the advantages of small models, high precision, fast speed,
and better suitability for small hardware platforms.

II. YOLOV4 ALGORITHM PRINCIPLE

The YOLOv4 algorithm is based on the original YOLO
object detection framework. This was adopted in recent years
as the best optimization strategy for CNNs. All these aspects
have different degrees of optimization, but even though there

Lightweight Vehicle Detection Algorithm Based
on Improved YOLOv4

O

Engineering Letters, 29:4, EL_29_4_27

Volume 29, Issue 4: December 2021

__

was no theoretical innovation, it was still adopted by many
engineers. In particular, a variety of optimization algorithms
have been attempted [14]. The algorithm adopted by
YOLOv4 retains the head part of YOLOv3 and modifies the
backbone network to CSPDarkNet53, as shown in Fig. 1. At
the same time, YOLOv4 adopts the idea of spatial pyramid
pooling (SPP) to expand the field of experience, and PANet is
used as the neck.

 Type Filters Size Output

 Convolutional 32 3 3 256 256
 Convolutional 64 3 3/2 128 128

 Convolutional 32 1 1
1 Convolutional 64 3 3
 Residual 128 128

 Convolutional 128 3 3/2 64 64

 Convolutional 64 1 1
2 Convolutional 128 3 3
 Residual 64 64

 Convolutional 256 3 3/2 32 32

 Convolutional 128 1 1
8 Convolutional 256 3 3
 Residual 32 32

 Convolutional 512 3 3/2 16 16

 Convolutional 256 1 1
8 Convolutional 512 3 3

 Residual 16 16

 Convolutional 1024 3 3/2 8 8

 Convolutional 512 1 1

4 Convolutional 1024 3 3
 Residual 8 8

 Avgpool Global

 Connected 1000

Although the YOLOv4 and YOLOv4-tiny algorithms have

advantages in terms of their accuracy and speed in
comparison to YOLOv3 and other methods, they still have
shortcomings. The trained YOLOv4 model is large and not
suitable for embedded applications, whereas the
YOLOv4-tiny model is small and fast [15]. However, it does
not satisfy the industrial requirements for detection accuracy.
Therefore, the aim of this study is to use the optimization
method to greatly reduce the number of parameters while
maintaining the original YOLOv4 accuracy and improving
the speed of the model [16].

III. IMPROVEMENT STRATEGY

Model optimization can be performed from the aspects of
backbone network, optimizer, and model pruning
optimization. In this study, by considering the
implementation steps and the difficulty of different
optimization methods, three aspects of optimization are
carried out: backbone network adjustment, enhanced feature
extraction network optimization, and loss function
adjustment.

The network structure of YOLOv4 is divided into three
main parts. In the first part, the function of the backbone
feature extraction network is to extract the preliminary
features. Using the backbone feature extraction network, we
can obtain three preliminary effective feature layers. Because
the original backbone network of YOLOv4, which is

CSPDarkNet53, has deep network layers and we need to
design a lightweight detection network, we can use the
lightweight MobileNet [14] series network as the backbone
feature extraction network. This retains the advantages of
MobileNet without losing the original precision of YOLOv4.
In the second part, the function of the enhanced feature
extraction network is to extract the enhanced features. Using
the enhanced feature extraction network, we can perform
feature fusion of the three preliminary effective feature layers,
extract better features, and obtain three more effective feature
layers.

To design a lighter network, deep separable convolution
can be used to replace the ordinary 3×3 convolution in the
enhanced feature extraction network. By doing this, the
number of network parameters is greatly reduced, and the
extracted features are not significantly affected. In the third
part, the function of the prediction network is to obtain the
prediction result using the more effective feature layer. Of
these three parts, parts 1 and 2 can be improved more easily.
Part 3 does not require major modifications because it is just
a combination of a 3×3 convolution and 1×1 convolution.

A. Backbone Network Adjustment

The MobileNet series network can be used for
classification, and the network backbone extracts features.
The aim of MobileNet is to create high-performance,
low-resource networks that can be used on mobile phones. In
addition, MobileNetv3 is an advanced version of MobileNet
that mainly uses the neural architecture search (NAS) to
design an algorithm. It improves the accuracy of the
ImageNet classification by 6% over the MobileNetv2 [18]
version, which is exactly what our lightweight detection
network needs for a backbone extraction network. At the
same time, MobileNetv3 mostly uses 1×1 and 3×3
convolution instead of 5×5 convolution. As a result, this
greatly reduces the number of parameters.

In MobileNetv2, the 3×3 convolution is used first, and then
the 1×1 convolution is used. In contrast, in MobileNetv3, the
1×1 convolution is used first, and then the 3×3 convolution is
used. This not only preserves the high-dimensional feature
space, it also reduces the delay in the backpropagation. In
MobileNetv3, which includes a residual block and a
lightweight attention mechanism, a lightweight attention
module is introduced and integrated into the bottleneck
structure to better extract the features [19]. Using H-Swish,
the calculation speed is increased in mobile devices to
improve the accuracy of the network.

For YOLOv4, we use the three effective features obtained
from the backbone feature extraction network to build the
enhanced feature pyramid. Specifically, the MobileNetv3
network is used to replace the CSPDarkNet53 in YOLOv4
for the feature extraction. Using a custom MobileNetv3
function, we obtain the effective feature layer corresponding
to the MobileNet network. We use this effective feature layer
to replace the effective feature layer of the original YOLOv4
backbone network, CSPDarkNet53, and strengthen the
feature extraction with the three initial effective feature
layers of the same shape. Subsequently, we integrate the
MobileNet series network into YOLOv4. A schematic of the
basic structure of MobileNetv3 is shown in Fig. 2 [13], and
the detailed specifications of the entire MobileNetv3 network
are given in Fig. 3.

Fig. 1. CSPDarkNet53 network structure.

Engineering Letters, 29:4, EL_29_4_27

Volume 29, Issue 4: December 2021

__

 Fig. 2. Schematic diagram of the basic structure of MobileNetv3.

Input Operator exp size #out SE NL s

2242×3 conv2d - 16 - HS 2
1122×16 bneck,3×3 16 16 - RE 1
1122×16 bneck,3×3 64 24 - RE 2
562×24 bneck,3×3 72 24 - RE 1
562×24 bneck,5×5 72 40 √ RE 2
282×40 bneck,5×5 120 40 √ RE 1

282×40 bneck,5×5 120 40 √ RE 1
282×40 bneck,5×5 240 80 - HS 2
142×80 bneck,3×3 200 80 - HS 1
142×80 bneck,3×3 184 80 - HS 1
142×80 bneck,3×3 184 80 - HS 1
142×80 bneck,3×3 480 112 √ HS 1

142×112 bneck,3×3 672 112 √ HS 1
142×112 bneck,5×5 672 160 √ HS 2
72×160 bneck,5×5 960 160 √ HS 1
72×160 bneck,5×5 960 160 √ HS 1
72×160 Conv2d,1×1 - 960 - HS 1
72×960 Pool,7×7 - - - - 1
12×960 Conv2d1×1,NBN - 1280 - HS 1

12×1280 Conv2d1×1,NBN - k - - 1

In Fig. 3, the input column lists the size changes in each

feature layer of MobileNetv3. The operator column lists the
block structure that each feature layer will go through.
Feature extraction in MobileNetv3 goes through many
bottlenecks. The third and fourth columns respectively
specify the number of channels after the inverse residual
structure rises in the bottleneck and the number of channels
of the character layer when it is input into the bottleneck. The
SE column indicates whether or not attention mechanisms are
introduced at the various levels. The NL column indicates the
type of activation function and the seventh column, s,
indicates the step size of each block.

B. Strengthening the Feature Extraction Network
Optimization

To further reduce the number of parameters, after using
MobileNetv3 as the backbone extraction network, we use
depth separable convolution to replace the conventional 3×3
convolution in the enhanced feature extraction networks SPP
and PANet.

In conventional convolution, the upper layer of the
connection generally has multiple channels; hence, in the
convolution, a filter must have N kernels to correspond to the
channels. A filter completes a convolution; in fact, multiple
convolution kernels are convolved with the feature graph of

the corresponding channel in the upper layer and then
combined to output a feature graph of the channel in the next
layer. In the next layer, if the characteristic graph of multiple
channels is needed (m channels are assumed here), then the
corresponding filter needs M.

In the case of depthwise convolution, the convolution of
different input channels is performed using depthwise
convolution, and then the outputs are combined using
pointwise convolution. In fact, the overall effect is similar to
that of a standard convolution, but it significantly reduces the
computation and number of model parameters. Fig. 4
compares standard convolution and depth separable
convolution kernels.

In fact, depth separable convolution only makes a small

change to the conventional convolution, but brings about a
decrease in the number of true parameters, which invariably
redounds to the network being lightweight. For the
multi-channel feature maps from the upper layer, we first

Fig. 3. MobileNetv3 detailed specifications.

(a) Standard convolution filter

(b) Depthwise convolution filter

(c) Pointwise convolution filter

Fig. 4. Comparison of standard convolution and depth separable
convolution.

Engineering Letters, 29:4, EL_29_4_27

Volume 29, Issue 4: December 2021

__

split them into single-channel feature maps, respectively
convolve them with a single channel, and then stack them
together again. This is called depthwise convolution. This
splitting action is very important; in this step, only the feature
map from the previous layer is resized, and the number of
channels does not change. Therefore, the second convolution
of the previously obtained feature graph is performed, which
takes the convolution kernels of size 1×1, and the filter
contains the same number of convolution kernels as the
number of channels in the previous layer. A filter outputs a
feature graph, thus multiple channels require multiple
filters.This is also called pointwise convolution. Fig. 5 shows
a depth separable convolution structure.

Fig. 5 Depth separable convolution structure.

In standard convolution, it is assumed that the image size is
5×5 and, as the number of color image channels is three, it
can be seen as a 5×5×3 matrix. Assuming that there is no
padding operation and the size of the convolution kernel is
3×3, because the number of output feature maps is four, the
configuration of the convolution kernel is 3×3×3×4. Thus,
we know that the number of parameters in this convolution is
3×3×3×4 = 108.
 In depth separable convolution, a 3×3 convolution kernel
is first used for the convolution operation for each channel,
hence, the number of parameters should be 3×3×1×3 =
27. However, this processing method does not effectively
utilize the feature information of different channels in the
same space. Therefore, the second step is needed to integrate
the three feature maps generated in this step
 A 1×1 convolution is used to verify the three feature
graphs obtained in the first step for the convolution operation.
To achieve consistency of the output feature matrix shape
with ordinary convolution, we need four convolution kernels.
Thus, the number of parameters required in the second part is
1×1×3×4 = 12. With the same input, four feature graphs are
finally obtained. The number of parameters for ordinary
convolution is 108, whereas that for depth separable
convolution is only 12+27 = 39, which is approximately
two-thirds less than ordinary convolution.
 It can be seen that the depth separable convolution
significantly reduces the number of parameters and the
computation required in the network, and the application of a
neural network can effectively improve the running speed of
the network.

C. Optimization of the Loss Function

Consider the problem of the loss being inaccurate because
of the large number of negative samples when the positive
and negative samples of the KITTI vehicle dataset after
classification are imbalanced. The focal loss proposed in the
RetinaNet [20] model was introduced to detect single-class
vehicles. This is achieved by multiplying the original loss by
the index of the weakened contribution of easily detected
vehicle targets in network training. In comparison to
YOLOv3, the original YOLOv4 only innovates the bounding
box regression by replacing the MSE with CIOU, whereas
the other two parts are not substantially changed. In the
object-detection task, negative sample mining and sampling
ratio control methods are often used to solve the imbalance in
positive and negative samples. From this, a one-stage object
detection network can also achieve two-stage accuracy and
have a good detection speed. The focal loss is introduced
mainly to solve the imbalance problem in terms of the
number of difficult and easy samples.

The one-stage object detector usually produces candidate
targets up to 100K. Only a small number of these are positive
samples, and the number of positive and negative samples is
very imbalanced. The formula for the cross-entropy, which is
commonly used for classification, is shown in (1).

 (), =1

=
(1), =0

log p if y
CE

log p if y

 (1)

To solve the imbalance problem between the positive and
negative samples, we usually add the parameter α in front of
the cross-entropy loss, which is expressed as follows.

 (), =1

=
() (1), =0

log p if y
CE

log p if y

 1

 (2)

However, this does not solve the whole problem. The
samples can be divided into the four categories shown in
Table I.

Although it balances the positive and negative samples, it

does nothing to help the difficult and easy sample imbalance.
A large number of candidate targets in the object detection
are easily divided into samples, as shown in Fig. 6.

TABLE Ⅰ
SAMPLE CLASSIFICATION TABLE.

 D (difficult) E (easy)
P (positive) PD PE
N (negative) ND NE

Fig. 6. Candidate boxes and samples.

P = positive samples, N = negative samples, D = difficult samples, E =
easy samples

Engineering Letters, 29:4, EL_29_4_27

Volume 29, Issue 4: December 2021

__

The loss of these samples is low, but the number of easily
divided samples is relatively large owing to the imbalance,
and this ultimately dominates the total loss. However, the
improvement in the model of the easily separable samples
(i.e., samples with a high confidence) is very small; thus, the
model should mainly focus on those samples that are difficult
to separate. This problem can be solved by reducing the loss
of the samples with a high confidence (P). Equation (3) is
expressed as follows:

(1) (), =1

=
(1), =0

p log p if y
FL

 p log p if y

 (3)

When γ is 2, if p=0.698, (1-0.698)2 ≈ 0.001, the loss is
attenuated 1,000 times. In addition, the final form of the focal
loss combines (2). Here, (3) solves the imbalance between the
difficult and easy samples, and (2) solves the imbalance
between the positive and negative samples. By combining (2)
with (3), the two problems are solved simultaneously. The
final focal loss is shown in (4).

(1) (), =1

=
(1) (1), =0

 p log p if y
FL

p log p if y

 (4)

The experimental results show that the effect is best when
γ is 2 and α is 0.25. By doing this, the ordering of the objects
in the training process is PD > ND > PE > NE. This is shown
in Table II.

The loss obtained in this manner induces the model to

distinguish difficult-to-separate target categories. This
effectively improves the overall object detection accuracy.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset Selection

In this study, public KITTI datasets were selected as
training and testing samples, and actual road photos and part
of the KITTI datasets were used for testing and
verification. Further, the format of the KITTI dataset was
changed to VOC format, the Labels categories were merged
into only the CAR class, and the 7830 sorted images were
divided into training set, test set, and verification set in a ratio
of 8:1:1. Sample images from a part of the experimental
dataset are shown in Fig. 7.

Fig. 7. Sample images from a part of the experimental dataset.

B. Experimental Results and Analysis

The experimental platform was composed of two parts:
hardware and software. The hardware platform comprised an
Intel Core i7-10700 CPU, an NVIDIA GeForce GTX 3070
GPU, and 8 GB RAM. The software environment comprised
the Windows 10 operating system, the PyTorch1.8-GPU
deep learning framework, and the PyCharm Community IDE.

The targets in the KITTI dataset were grouped into one
class (“car”), and the two networks before and after the
improvement, YOLOv4, and YOLOv4-MobileNetv3-best,
were tested to calculate the target recall rate and detection
accuracy. By changing the detection threshold on the test set,
the model can detect the first Q pictures. In addition, changes
in the threshold will also lead to changes in the accuracy and
recall rate.

The P–R curve was established with recall rate as the
abscissa and accuracy as the ordinate, and the area under the
curve was defined as the average precision (AP). The higher
the AP value, the better is the single-class object detection
effect. The target recall rate R and detection accuracy rate P
are respectively expressed in (5) and (6).

 TP

TP FN

=
+

X
R

X X
 (5)

 TP

TP FP

=
+

X
P

X X
 (6)

where
TPX denotes the number of correctly detected targets,

FNX denotes the number of targets that have not been

detected, and FNX denotes the number of targets that were

wrongly detected.
There were 3,331 targets in 749 test images. YOLOv4 and

our improved object detection algorithm were used to test for
the KITTI dataset, and R and P were calculated, respectively.
The P–R curves of the results are shown in Fig. 8.

(a) YOLOv4 (b) YOLOv4-Tiny (c) YOLOv4-MobileNetv3-best (Ours)

Fig. 8. Comparison of the P–R curves of three models.

TABLE Ⅱ
SAMPLE CLASSIFICATION TABLE.

 D (difficult) E (easy)

P (positive) ① PD ③ PE, γ decline
N (negative) ② ND, α decline ④ NE, α, γ decline

Engineering Letters, 29:4, EL_29_4_27

Volume 29, Issue 4: December 2021

__

F1 refers to the harmonic average of accuracy and recall,
which are respectively calculated using (7) and (8):

 2 1 1

1F P R
 (7)

 TP

TP FP FN

2
1

2

X
F

X X X

 (8)

With the confidence degree (Score_Threshold) on the

x-axis, the F1 value on the y-axis, and the area under the
curve of the F1 index to evaluate the model, the obtained F1
curve results of a single-vehicle class are shown in Fig. 9.

On the KITTI dataset, in comparison to YOLOv4 and
YOLOv4-Tiny, the detection accuracy of the improved
YOLOv4 algorithm increased from 95.55% to 95.63%. In
comparison to YOLOv4-Tiny, its AP value increased by
12.8% and the recall rate increased from 87.84% to 91.50%.
The average accuracy (AP) of the vehicle object detection
was calculated using the two networks, respectively. The
improved YOLOv4 network improves the AP of vehicle
object detection from 95.36% to 95.89%. Table III shows the
detection results for 3,331 targets in 749 test pictures.

As demonstrated in Table III, the recall rate of our
optimized model was significantly improved. There were
3,331 targets in the test pictures. YOLOv4 correctly detected
3,190 and missed 441, whereas our optimized model
correctly detected 3,221 and missed only 299. Our model is
significantly better than the previous algorithm with respect
to AP and F1. In addition, our chosen model greatly reduces
the number of parameters. The sizes of CSPDarkNet-53 and
MobileNetv3 are shown in Table IV. We tested the YOLOv4
basic model and the optimized YOLOv4-MobileNetv3
model in this study. Table V compares the model sizes.

TABLE Ⅳ
COMPARISON OF THE NUMBER OF NETWORK PARAMETERS.
Network Parameters

CSPDarkNet 37.9M
MobileNetv3 3.4M

According to the detection results, the AP value of the

YOLOv4 detection algorithm, which adopts the improved
MobileNet series as the backbone network, is above 93% for
vehicle target detection. The model with the best
performance was used for the target occlusion test. The
detection results are shown in Fig. 10. On the right are two
partially occluded vehicles, both of which have a detection
confidence of 1.0.

(a) no shade

(b) covered

Fig. 10. YOLOv4-MobileNetv3-best detection results.

Table V shows the numbers of test parameters obtained

after replacing all the 3×3 convolutions in the enhanced
feature extraction network module of YOLOv4 with deep
separable convolutions.

(a) YOLOv4 (b) YOLOv4-Tiny (c) YOLOv4-MobileNetv3-best (Ours)

Fig. 9. Comparison of the F1 curves of three models.

TABLE Ⅲ
PERFORMANCE COMPARISON OF YOLOV4 AND THE VARIOUS VARIANTS.

Model TP FP FN Ap（%） Recall（%） Precision（%） F1

YOLOv4 3190 148 441 95.36 87.84 95.55 0.92
YOLOv4-Tiny 2905 334 973 83.09 74.90 89.68 0.82

YOLOv4-MobileNetv1 3183 187 528 93.70 85.77 94.45 0.90
YOLOv4-MobileNetv2 3185 201 551 93.19 85.23 94.07 0.89
YOLOv4-MobileNetv3 3216 194 518 93.89 86.12 94.31 0.91

YOLOv4-MobileNetv3-best
(Ours)

3221 147 299 95.89 91.50 95.63 0.93

Engineering Letters, 29:4, EL_29_4_27

Volume 29, Issue 4: December 2021

__

TABLE Ⅴ
COMPARISON OF NUMBERS OF PARAMETERS.

MODEL PARAMETERS
YOLOv4 64,040,001

YOLOv4-MobileNetv1 40,952,893
YOLOv4-MobileNetv2 39,062,013
YOLOv4-MobileNetv3 39,989,933

YOLOv4-MobileNetv3-best（Ours） 11,729,069

Compared with YOLOv4-MobileNetv3 of the enhanced

feature weight enhancement network, the number of
parameters of the proposed method is reduced by nearly 75%.

Our optimized model also greatly reduces the size of the
weight file of the model. This not only reduces the memory
consumption for some small devices, it also makes it easier to
implement for embedded platforms.

Table VI compares the size of the weight file after the
model is trained and the inference time on the CPU for
weights trained by the improved model, the original
YOLOv4 model, and the other improved models. Owing to
the different computing methods of the CPU and GPU, the
data read by the CPU comes from the memory and cache. In
addition, the read speed from the cache is much faster than
the memory, whereas the data read by the GPU differ.

Compared with the CPU, the GPU is hardly affected by the

cache in operations such as convolution. MobileNetv3
utilizes the standard convolution decomposition operation to
obtain a cache hit ratio at more levels. Therefore,
MobileNetv3 is more friendly with respect to CPU
computing. In this regard, this study takes the inference time
on the CPU as the comparison index. Our optimized model

not only reduces the memory usage for some small devices, it
also makes it easier to implement for embedded platforms.

Considering the data in Table VI, the optimized
YOLOv4-MobileNetv3-best model in this study reduced the
number of weight parameters by 78% compared with the
basic YOLOv4 model. The inference time on the CPU is
reduced by 104 ms, which meets the real-time detection
requirements. The visual detection results of the model on the
KITTI dataset are shown in Fig. 11.

As illustrated in Fig. 11(b), the YOLOv4 detection results

show six vehicles with a confidence level higher than 0.5,
whereas Fig. 11(c) displays the optimized model detection
results, which show a total of seven vehicles with a
confidence level higher than 0.5. Our algorithm performs
better in the case of vehicles with occlusion and a small target
in the middle of the graph. When detecting vehicles in the

TABLE Ⅵ
COMPARISON OF THE NUMBER OF PARAMETERS AND INFERENCE TIME.

Model Parameters INFERENCE TIME
YOLOv4 250.6M 166 ms

YOLOv4-Tiny 23.0M 49 ms

YOLOv4-MobileNetv1 72.3M 72 ms

YOLOv4-MobileNetv2 77.0M 65 ms

YOLOv4-MobileNetv3 75.0M 71 ms

YOLOv4-MobileNetv3-best
(Ours)

52.0M 62 ms

(b) YOLOv4

(c) YOLOv4-MobileNetv3-best (Ours)
Fig. 11. Visualization results of the KITTI dataset.

(a) Original image

(a) Original image (b) YOLOv4 (c) YOLOv4-MobileNetv3-best (Ours)

(a) Original image (b) YOLOv4 (c) YOLOv4-MobileNetv3-best (Ours)

Fig. 12. Visualization result of actual scene

Engineering Letters, 29:4, EL_29_4_27

Volume 29, Issue 4: December 2021

__

KITTI dataset, the improved algorithm has a significantly
better performance than the original YOLOv4 algorithm, and
the rate of the missed detection is also greatly reduced. The
visualization results obtained using our trained KITTI data to
detect the actual road vehicles on the campus are shown in
Fig. 12.

Fig. 12(a) presents the original image, Fig. 12(b) displays
the test result of YOLOv4, and Fig. 12(c) shows the test
result of our improved model. The detection confidence of
our algorithm is 0.54 for the occluded vehicles at the entrance
to the building in the scene on the left. However, YOLOv4
may miss some detections in this case. Similarly, on the right,
the vehicle with a confidence of 0.57 indicates a missed
detection vehicle for YOLOv4; thus, our model is more
sensitive to occlusion. The improved model can still maintain
a high recall rate and accuracy under the conditions of small
targets and occlusion. Through a series of experimental
comparisons, it can be observed that the improved model not
only greatly reduces the number of model parameters, it also
maintains, or even improves, the original detection accuracy.
At the same time, it maintains a good performance in
different environments, improves the application range of the
algorithm, and has more practical value.

V. CONCLUSION

In this study, an improved YOLOv4-based vehicle
target detection algorithm was proposed and applied to
lightweight detection. Experimental results showed that,
compared with the original YOLO series algorithm, the
accuracy of our model improved by 0.53%, and the number
of model parameters was reduced by 78%. In comparison to
the other algorithms, the improved YOLOv4 model is smaller
and more accurate, thus it can be used in lightweight vehicle
detection networks. It provides a theoretical basis for vehicle
detection on a smaller hardware platform. From the
perspective of the current research in the field of intelligent
connected vehicle environment perception, the research at
the image level only considers the camera as a sensor, which
includes target detection, target tracking, and semantic or
instance segmentation. Owing to the fine precision degree
and speed, there is room for improvement. The industry
commonly uses sensor fusion that integrates a radar point
cloud with camera information. This is done to obtain a
higher degree of scene understanding. The novelty of this
study is that it significantly optimizes the speed of
resource-constrained systems when performing target
detection. Meanwhile, the calculation time and space are
minimized for the subsequent fusion. However, the problem
of vehicle occlusion and target deformation without reducing
the detection accuracy of the algorithm has not been
completely solved; follow-up research will focus on this
aspect.

REFERENCES
[1] J. Li, X. Liang, Y. Wei et al., “Perceptual Generative Adversarial

Networks for Small Object Detection,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 1222-1230.

[2] Y. Zhang, S. Song, E. Yumer et al., “Physically-Based Rendering for
Indoor Scene Understanding Using Convolutional Neural Networks,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2017, pp. 5287-5295.

[3] R. Girshick, J. Donahue, T. Darrell et al., “Rich Feature Hierarchies
for Accurate Object Detection and Semantic Segmentation,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR),

2014, pp. 580-587.
[4] X. Wang, A. Shrivastava, A. Gupta, “A-Fast-RCNN: Hard Positive

Generation via Adversary for Object Detection,” in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, pp.
2606-2615.

[5] S. Ren，K. He, R. Girshick et al., “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks,” IEEE Trans.
Pattern Anal. Mach. Intell., 2017, vol. 39, no. 6, pp. 1-9.

[6] T. Y. Lin, P. Dollár, R. Girshick et al., “Feature Pyramid Networks for
Object Detection,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2017, pp. 2117-2125.

[7] J. Redmon, S. Divvala, R. Girshick, “You Only Look Once: Unified,
Real-Time Object Detection,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 779-788.

[8] W. Liu，D. Anguelov，D. Erhan et al．, “SSD: single shot multibox
detector,” Eur. Conf. Comput. Vis.，2016, pp. 21-37.

[9] T. Y. Lin，P. Goyal，R. Girshick et al., “Focal Loss for Dense Object
Detection,” in Proc. IEEE Intl. Conf. Comput. Vis. (ICCV), 2017，pp.
2980-2988.

[10] X. Zhu, J. Pang, C. Yang, J. Shi, D. Lin, “Adapting Object Detectors
via Selective Cross-Domain Alignment,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2019, pp. 687-696.

[11] P. A. Viola, M. J. Jones, “Rapid Object Detection using a Boosted
Cascade of Simple Features,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2001, pp. 1-9.

[12] B. Alexey, W. Chien-Yao, M. L. Hong-Yuan, “YOLOv4:Optimal
Speed and Accuracy of Object Detection,” arXiv：2004.10934, 2020.

[13] H. Andrew, S. Mark, C. Grace et al., “Searching for MobileNetV3,” in
Proc. IEEE/CVF Intl. Conf. Comput. Vis. (ICCV), 2019, pp.
1314-1324.

[14] H. Andrew, Z. Menglong, C. Bo et al., “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications,”
arXiv:1704.04861, 2017.

[15] P. A. S. Mendes, M. Mendes, A. P. Coimbra, M. M. Crisostomo,
"Movement Detection and Moving Object Distinction Based on
Optical Flow," Lecture Notes in Engineering and Computer Science:
Proceedings of The World Congress on Engineering 2019, 3-5 July
2019, London, U.K., pp. 48-53.

[16] G. Kosala, A. Harjoko, S. Hartati, "Robust License Plate Detection in
Complex Scene using MSER-Dominant Vertical Sobel," IAENG Intl.
J. Comput. Sci., vol. 47, no. 2, 2020, pp. 214-222.

[17] T. T. Yang, S. Y. Zhou, and A. J. Xu, "Rapid Image Detection of Tree
Trunks Using a Convolutional Neural Network and Transfer
Learning," IAENG Intl. J. Comput. Sci., vol. 48, no. 2, 2021, pp.
257-265.

[18] S. Mark, H. Andrew, Z. Menglong, et al., “MobileNetV2：Inverted
Residuals and Linear Bottlenecks,”in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 4510-4520.

[19] H. Kaiming, G. Georgia, D. Piotr, et al., “Mask R-CNN,” in Proc.
IEEE Intl. Conf. Comput. Vis. (ICCV), 2017, pp. 2961-2969.

[20] Y. Zhang, S. Song, E. Yumer et al., “Physically-Based Rendering for
Indoor Scene Understanding Using Convolutional Neural Networks,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2017, pp. 5287-5295.

Engineering Letters, 29:4, EL_29_4_27

Volume 29, Issue 4: December 2021

__

