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 
Abstract—Vehicle detection is the first step and an important 

part of automatic traffic incident detection systems. It 
guarantees subsequent vehicle identification and vehicle 
counting accuracy and has crucial theoretical significance and 
practical value for traffic safety and control. The model 
obtained by the original YOLOv4 algorithm is too large to be 
used in embedded terminals in real time. To overcome this 
problem, this study replaces the original backbone network of 
YOLOv4, which is CSPDarknet53, with MobileNetv3 for the 
feature extraction. To further reduce the number of parameters, 
deep separable convolution is used to replace the common 3×3 
convolution in the original model of the enhanced feature 
extraction networks SPP and PANet. Because of the imbalance 
in the object detection data, the loss function is redesigned using 
a weighting method. The research results show that in 
comparison to the original YOLO series algorithm, the 
optimized YOLOv4 algorithm improves the accuracy by 0.53% 
and reduces the number of model parameters by 78%. In 
comparison to the other algorithms, the improved YOLOv4 
model is smaller and more accurate, which is the basis for 
realizing intelligent transportation systems. 
 

Index Terms—KITTI, MobileNetv3, Object detection, 
YOLOv4. 
 

I. INTRODUCTION 

BJECT detection refers to the identification of all the 
regions of interest in an image and determining their 

positions and categories [1]. Recently, deep learning 
technology in combination with big data and efficient 
graphics processing unit (GPU) computing has surpassed and 
replaced traditional algorithms in the field of artificial 
intelligence [2]. Presently, the object detection methods that 
are based on deep learning algorithms can be divided into two 
categories according to whether the region proposal network 
is adopted. The first is the two-stage object detection 
algorithm: in the first stage, candidate regions are generated 
through the candidate region network, and in the second stage, 
candidate regions are classified and regressed. 
Representative algorithms include the region-based 
convolutional neural network (RCNN) [3], fast RCNN [4], 
faster RCNN [5], and feature pyramid network (FPN) [6]. 
The second category is the one-stage object detection 
algorithm, which classifies and regresses the target directly 
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through a neural network. Representative algorithms include 
the You Only Look Once (YOLO) [7] series, single-shot 
detector (SSD) [8], and RetinaNet [9]. Real-time detection of 
vehicles on the road using object-detection techniques can be 
useful for criminal investigations and provide a reliable basis 
for traffic regulation and traffic light scheduling.  

Among the many detection algorithms, the YOLO series 
may be the most popular object detection algorithm for 
practical applications. It is easy to improve a YOLO-based 
network to achieve the desired results. For example, Yang et 
al. studied traffic sign detection based on the YOLO 
lightweight network [10] using deep separable convolution in 
the backbone network to better extract small- and 
medium-sized targets. Hui et al. used the image pyramid 
structure to construct a helmet dataset to obtain a model with 
more industrial applications for detecting the wearing of 
safety helmets based on the YOLO lightweight network [11]. 
These improved algorithms are significant in the field of 
object detection, but they still do not explain the problem of 
feature extraction and utilization. YOLOv4 [12] is an 
open-source object detection network that has obvious 
advantages over other object detection networks that 
emerged during the same period in terms of speed and 
accuracy. YOLOv4 uses CSPDarknet53 as the backbone 
network and PANet instead of FPN for the feature 
aggregation. The detection accuracy is high, but it requires a 
high-performance hardware configuration; the detection 
speed is slow on small hardware platforms.  

Therefore, YOLOv4-Tiny [12] is widely used for detection 
on embedded platforms. Although the detection speed is high, 
the detection performance is lower than that of YOLOv4 
because of the simple network hierarchy and an insufficient 
feature extraction ability. Because YOLOv4 is a large model 
and is not suitable for resource-constrained hardware 
platforms, this study proposes an improved YOLOv4 
lightweight network detection algorithm that is based on 
YOLOv4. The lightweight backbone network MobileNetv3 
[13] is used to replace the original CSPDarknet53 backbone 
network of YOLOv4 for the feature extraction. To further 
reduce the number of parameters by strengthening the SPP 
and PANet feature extraction networks of YOLOv4, deep 
separable convolution is used to replace an ordinary 3×3 
convolution in the original model. This is considered to be an 
unbalanced problem in the target detection data. Thus, the 
weighted method is used to redesign the loss function and the 
optimized lightweight vehicle detection model is employed. 
The results show that the improved YOLOv4 algorithm has 
the advantages of small models, high precision, fast speed, 
and better suitability for small hardware platforms. 

II. YOLOV4 ALGORITHM PRINCIPLE  

The YOLOv4 algorithm is based on the original YOLO 
object detection framework. This was adopted in recent years 
as the best optimization strategy for CNNs. All these aspects 
have different degrees of optimization, but even though there 
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was no theoretical innovation, it was still adopted by many 
engineers. In particular, a variety of optimization algorithms 
have been attempted [14]. The algorithm adopted by 
YOLOv4 retains the head part of YOLOv3 and modifies the 
backbone network to CSPDarkNet53, as shown in Fig. 1. At 
the same time, YOLOv4 adopts the idea of spatial pyramid 
pooling (SPP) to expand the field of experience, and PANet is 
used as the neck.  

 Type Filters Size Output 

 Convolutional 32 3 3 256 256 
 Convolutional 64 3 3/2 128 128 

 Convolutional 32 1 1   
1 Convolutional 64 3 3   
 Residual    128 128 

 Convolutional 128 3 3/2 64 64 

 Convolutional 64 1 1   
2 Convolutional 128 3 3   
 Residual    64 64 

 Convolutional 256 3 3/2 32 32 

 Convolutional 128 1 1   
8 Convolutional 256 3 3   
 Residual    32 32 

 Convolutional 512 3 3/2 16 16 

 Convolutional 256 1 1   
8 Convolutional 512 3 3   

 Residual    16 16 

 Convolutional 1024 3 3/2 8 8 

 Convolutional 512 1 1   

4 Convolutional 1024 3 3   
 Residual    8 8 

 Avgpool Global 

 Connected 1000 
 

 
Although the YOLOv4 and YOLOv4-tiny algorithms have 

advantages in terms of their accuracy and speed in 
comparison to YOLOv3 and other methods, they still have 
shortcomings. The trained YOLOv4 model is large and not 
suitable for embedded applications, whereas the 
YOLOv4-tiny model is small and fast [15]. However, it does 
not satisfy the industrial requirements for detection accuracy. 
Therefore, the aim of this study is to use the optimization 
method to greatly reduce the number of parameters while 
maintaining the original YOLOv4 accuracy and improving 
the speed of the model [16]. 

III.  IMPROVEMENT STRATEGY 

Model optimization can be performed from the aspects of 
backbone network, optimizer, and model pruning 
optimization. In this study, by considering the 
implementation steps and the difficulty of different 
optimization methods, three aspects of optimization are 
carried out: backbone network adjustment, enhanced feature 
extraction network optimization, and loss function 
adjustment.  

The network structure of YOLOv4 is divided into three 
main parts. In the first part, the function of the backbone 
feature extraction network is to extract the preliminary 
features. Using the backbone feature extraction network, we 
can obtain three preliminary effective feature layers. Because 
the original backbone network of YOLOv4, which is 

CSPDarkNet53, has deep network layers and we need to 
design a lightweight detection network, we can use the 
lightweight MobileNet [14] series network as the backbone 
feature extraction network. This retains the advantages of 
MobileNet without losing the original precision of YOLOv4. 
In the second part, the function of the enhanced feature 
extraction network is to extract the enhanced features. Using 
the enhanced feature extraction network, we can perform 
feature fusion of the three preliminary effective feature layers, 
extract better features, and obtain three more effective feature 
layers.  

To design a lighter network, deep separable convolution 
can be used to replace the ordinary 3×3 convolution in the 
enhanced feature extraction network. By doing this, the 
number of network parameters is greatly reduced, and the 
extracted features are not significantly affected. In the third 
part, the function of the prediction network is to obtain the 
prediction result using the more effective feature layer. Of 
these three parts, parts 1 and 2 can be improved more easily. 
Part 3 does not require major modifications because it is just 
a combination of a 3×3 convolution and 1×1 convolution. 

A. Backbone Network Adjustment 

The MobileNet series network can be used for 
classification, and the network backbone extracts features. 
The aim of MobileNet is to create high-performance, 
low-resource networks that can be used on mobile phones. In 
addition, MobileNetv3 is an advanced version of MobileNet 
that mainly uses the neural architecture search (NAS) to 
design an algorithm. It improves the accuracy of the 
ImageNet classification by 6% over the MobileNetv2 [18] 
version, which is exactly what our lightweight detection 
network needs for a backbone extraction network. At the 
same time, MobileNetv3 mostly uses 1×1 and 3×3 
convolution instead of 5×5 convolution. As a result, this 
greatly reduces the number of parameters.  

In MobileNetv2, the 3×3 convolution is used first, and then 
the 1×1 convolution is used. In contrast, in MobileNetv3, the 
1×1 convolution is used first, and then the 3×3 convolution is 
used. This not only preserves the high-dimensional feature 
space, it also reduces the delay in the backpropagation. In 
MobileNetv3, which includes a residual block and a 
lightweight attention mechanism, a lightweight attention 
module is introduced and integrated into the bottleneck 
structure to better extract the features [19]. Using H-Swish, 
the calculation speed is increased in mobile devices to 
improve the accuracy of the network.  

For YOLOv4, we use the three effective features obtained 
from the backbone feature extraction network to build the 
enhanced feature pyramid. Specifically, the MobileNetv3 
network is used to replace the CSPDarkNet53 in YOLOv4 
for the feature extraction. Using a custom MobileNetv3 
function, we obtain the effective feature layer corresponding 
to the MobileNet network. We use this effective feature layer 
to replace the effective feature layer of the original YOLOv4 
backbone network, CSPDarkNet53, and strengthen the 
feature extraction with the three initial effective feature 
layers of the same shape. Subsequently, we integrate the 
MobileNet series network into YOLOv4. A schematic of the 
basic structure of MobileNetv3 is shown in Fig. 2 [13], and 
the detailed specifications of the entire MobileNetv3 network 
are given in Fig. 3. 
 

Fig. 1.  CSPDarkNet53 network structure. 
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 Fig. 2.  Schematic diagram of the basic structure of MobileNetv3. 

 
 

Input Operator exp size #out SE NL s 

2242×3 conv2d - 16 - HS 2 
1122×16 bneck,3×3 16 16 - RE 1 
1122×16 bneck,3×3 64 24 - RE 2 
562×24 bneck,3×3 72 24 - RE 1 
562×24 bneck,5×5 72 40 √ RE 2 
282×40 bneck,5×5 120 40 √ RE 1 

282×40 bneck,5×5 120 40 √ RE 1 
282×40 bneck,5×5 240 80 - HS 2 
142×80 bneck,3×3 200 80 - HS 1 
142×80 bneck,3×3 184 80 - HS 1 
142×80 bneck,3×3 184 80 - HS 1 
142×80 bneck,3×3 480 112 √ HS 1 

142×112 bneck,3×3 672 112 √ HS 1 
142×112 bneck,5×5 672 160 √ HS 2 
72×160 bneck,5×5 960 160 √ HS 1 
72×160 bneck,5×5 960 160 √ HS 1 
72×160 Conv2d,1×1 - 960 - HS 1 
72×960 Pool,7×7 - - - - 1 
12×960 Conv2d1×1,NBN - 1280 - HS 1 

12×1280 Conv2d1×1,NBN - k - - 1 

 

 
 
In Fig. 3, the input column lists the size changes in each 

feature layer of MobileNetv3. The operator column lists the 
block structure that each feature layer will go through. 
Feature extraction in MobileNetv3 goes through many 
bottlenecks. The third and fourth columns respectively 
specify the number of channels after the inverse residual 
structure rises in the bottleneck and the number of channels 
of the character layer when it is input into the bottleneck. The 
SE column indicates whether or not attention mechanisms are 
introduced at the various levels. The NL column indicates the 
type of activation function and the seventh column, s, 
indicates the step size of each block. 

 

B. Strengthening the  Feature Extraction Network 
Optimization 

To further reduce the number of parameters, after using 
MobileNetv3 as the backbone extraction network, we use 
depth separable convolution to replace the conventional 3×3 
convolution in the enhanced feature extraction networks SPP 
and PANet.  

In conventional convolution, the upper layer of the 
connection generally has multiple channels; hence, in the 
convolution, a filter must have N kernels to correspond to the 
channels. A filter completes a convolution; in fact, multiple 
convolution kernels are convolved with the feature graph of 

the corresponding channel in the upper layer and then 
combined to output a feature graph of the channel in the next 
layer. In the next layer, if the characteristic graph of multiple 
channels is needed (m channels are assumed here), then the 
corresponding filter needs M. 

In the case of depthwise convolution, the convolution of 
different input channels is performed using depthwise 
convolution, and then the outputs are combined using 
pointwise convolution. In fact, the overall effect is similar to 
that of a standard convolution, but it significantly reduces the 
computation and number of model parameters. Fig. 4 
compares standard convolution and depth separable 
convolution kernels. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In fact, depth separable convolution only makes a small 

change to the conventional convolution, but brings about a 
decrease in the number of true parameters, which invariably 
redounds to the network being lightweight. For the 
multi-channel feature maps from the upper layer, we first 

Fig. 3. MobileNetv3 detailed specifications. 

(a)  Standard convolution filter 
 

 
 

 

 

(b) Depthwise convolution filter 

(c) Pointwise convolution filter 

Fig. 4. Comparison of standard convolution and depth separable 
convolution. 
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split them into single-channel feature maps, respectively 
convolve them with a single channel, and then stack them 
together again. This is called depthwise convolution. This 
splitting action is very important; in this step, only the feature 
map from the previous layer is resized, and the number of 
channels does not change. Therefore, the second convolution 
of the previously obtained feature graph is performed, which 
takes the convolution kernels of size 1×1, and the filter 
contains the same number of convolution kernels as the 
number of channels in the previous layer. A filter outputs a 
feature graph, thus multiple channels require multiple 
filters.This is also called pointwise convolution. Fig. 5 shows 
a depth separable convolution structure. 

 

 
 
Fig. 5 Depth separable convolution structure. 
 

In standard convolution, it is assumed that the image size is 
5×5 and, as the number of color image channels is three, it 
can be seen as a 5×5×3 matrix. Assuming that there is no 
padding operation and the size of the convolution kernel is 
3×3, because the number of output feature maps is four, the 
configuration of the convolution kernel is 3×3×3×4. Thus, 
we know that the number of parameters in this convolution is 
3×3×3×4 = 108. 
 In depth separable convolution, a 3×3 convolution kernel 
is first used for the convolution operation for each channel, 
hence, the number of parameters should be 3×3×1×3 = 
27. However, this processing method does not effectively 
utilize the feature information of different channels in the 
same space. Therefore, the second step is needed to integrate 
the three feature maps generated in this step 
 A 1×1 convolution is used to verify the three feature 
graphs obtained in the first step for the convolution operation. 
To achieve consistency of the output feature matrix shape 
with ordinary convolution, we need four convolution kernels. 
Thus, the number of parameters required in the second part is 
1×1×3×4 = 12. With the same input, four feature graphs are 
finally obtained. The number of parameters for ordinary 
convolution is 108, whereas that for depth separable 
convolution is only 12+27 = 39, which is approximately 
two-thirds less than ordinary convolution. 
 It can be seen that the depth separable convolution 
significantly reduces the number of parameters and the 
computation required in the network, and the application of a 
neural network can effectively improve the running speed of 
the network. 

C. Optimization of the Loss Function 

Consider the problem of the loss being inaccurate because 
of the large number of negative samples when the positive 
and negative samples of the KITTI vehicle dataset after 
classification are imbalanced. The focal loss proposed in the 
RetinaNet [20] model was introduced to detect single-class 
vehicles. This is achieved by multiplying the original loss by 
the index of the weakened contribution of easily detected 
vehicle targets in network training. In comparison to 
YOLOv3, the original YOLOv4 only innovates the bounding 
box regression by replacing the MSE with CIOU, whereas 
the other two parts are not substantially changed. In the 
object-detection task, negative sample mining and sampling 
ratio control methods are often used to solve the imbalance in 
positive and negative samples. From this, a one-stage object 
detection network can also achieve two-stage accuracy and 
have a good detection speed. The focal loss is introduced 
mainly to solve the imbalance problem in terms of the 
number of difficult and easy samples. 

The one-stage object detector usually produces candidate 
targets up to 100K. Only a small number of these are positive 
samples, and the number of positive and negative samples is 
very imbalanced. The formula for the cross-entropy, which is 
commonly used for classification, is shown in (1). 

 
     ( ),  =1

=
(1 ),  =0

log p if    y
CE

log p if    y


 

 (1) 

To solve the imbalance problem between the positive and 
negative samples, we usually add the parameter α in front of 
the cross-entropy loss, which is expressed as follows. 

 
            ( ),  =1

=
( ) (1 ),  =0

log p if    y
CE

log p if    y





   1

 (2) 

However, this does not solve the whole problem. The 
samples can be divided into the four categories shown in 
Table I. 

 
 
 
 
 

 
 
 
Although it balances the positive and negative samples, it 

does nothing to help the difficult and easy sample imbalance. 
A large number of candidate targets in the object detection 
are easily divided into samples, as shown in Fig. 6. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

TABLE Ⅰ 
SAMPLE CLASSIFICATION TABLE. 

 D (difficult) E (easy) 
P (positive) PD PE 
N (negative) ND NE 

 

Fig. 6. Candidate boxes and samples. 
 

 

P = positive samples, N = negative samples, D = difficult samples, E = 
easy samples 
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The loss of these samples is low, but the number of easily 
divided samples is relatively large owing to the imbalance, 
and this ultimately dominates the total loss. However, the 
improvement in the model of the easily separable samples 
(i.e., samples with a high confidence) is very small; thus, the 
model should mainly focus on those samples that are difficult 
to separate. This problem can be solved by reducing the loss 
of the samples with a high confidence (P). Equation (3) is 
expressed as follows: 

 
(1 ) ( ),  =1

=
(1 ),  =0

p log p if    y
FL

  p log p if    y





 

 

 (3) 

When γ is 2, if p=0.698, (1-0.698)2 ≈ 0.001, the loss is 
attenuated 1,000 times. In addition, the final form of the focal 
loss combines (2). Here, (3) solves the imbalance between the 
difficult and easy samples, and (2) solves the imbalance 
between the positive and negative samples. By combining (2) 
with (3), the two problems are solved simultaneously. The 
final focal loss is shown in (4). 

 
(1 ) ( ),  =1

=
(1 ) (1 ),  =0

     p log p if    y
FL

p log p if    y









  

  

 (4) 

The experimental results show that the effect is best when 
γ is 2 and α is 0.25. By doing this, the ordering of the objects 
in the training process is PD > ND > PE > NE. This is shown 
in Table II. 

 
 
 
 
 
 
The loss obtained in this manner induces the model to 

distinguish difficult-to-separate target categories. This 
effectively improves the overall object detection accuracy. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS  

A. Dataset Selection 

In this study, public KITTI datasets were selected as 
training and testing samples, and actual road photos and part 
of the KITTI datasets were used for testing and 
verification. Further, the format of the KITTI dataset was 
changed to VOC format, the Labels categories were merged 
into only the CAR class, and the 7830 sorted images were 
divided into training set, test set, and verification set in a ratio 
of 8:1:1. Sample images from a part of the experimental 
dataset are shown in Fig. 7. 

 

 
 

Fig. 7. Sample images from a part of the experimental dataset. 

B. Experimental Results and Analysis 

The experimental platform was composed of two parts: 
hardware and software. The hardware platform comprised an 
Intel Core i7-10700 CPU, an NVIDIA GeForce GTX 3070 
GPU, and 8 GB RAM. The software environment comprised 
the Windows 10 operating system, the PyTorch1.8-GPU 
deep learning framework, and the PyCharm Community IDE. 

The targets in the KITTI dataset were grouped into one 
class (“car”), and the two networks before and after the 
improvement, YOLOv4, and YOLOv4-MobileNetv3-best, 
were tested to calculate the target recall rate and detection 
accuracy. By changing the detection threshold on the test set, 
the model can detect the first Q pictures. In addition, changes 
in the threshold will also lead to changes in the accuracy and 
recall rate. 

The P–R curve was established with recall rate as the 
abscissa and accuracy as the ordinate, and the area under the 
curve was defined as the average precision (AP). The higher 
the AP value, the better is the single-class object detection 
effect. The target recall rate R and detection accuracy rate P 
are respectively expressed in (5) and (6). 

 TP

TP FN

=
+

X
R

X X
 (5) 

 TP

TP FP

=
+

X
P

X X
 (6) 

where 
TPX  denotes the number of correctly detected targets,

 
FNX  denotes the number of targets that have not been 

detected, and FNX  denotes the number of targets that were 

wrongly detected. 
There were 3,331 targets in 749 test images. YOLOv4 and 

our improved object detection algorithm were used to test for 
the KITTI dataset, and R and P were calculated, respectively. 
The P–R curves of the results are shown in Fig. 8. 

 
 

   
(a) YOLOv4                                                   (b) YOLOv4-Tiny                                    (c) YOLOv4-MobileNetv3-best (Ours) 

 
Fig. 8. Comparison of the P–R curves of three models. 

 

TABLE Ⅱ 
SAMPLE CLASSIFICATION TABLE. 

 D (difficult) E (easy) 

P (positive) ① PD ③ PE, γ decline 
N (negative) ② ND, α decline ④ NE, α, γ decline 
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F1 refers to the harmonic average of accuracy and recall, 
which are respectively calculated using (7) and (8):  
 

 2 1 1

1F P R
   (7) 

 TP

TP FP FN

2
1

2

X
F

X X X


 
 (8) 

 
With the confidence degree (Score_Threshold) on the 

x-axis, the F1 value on the y-axis, and the area under the 
curve of the F1 index to evaluate the model, the obtained F1 
curve results of a single-vehicle class are shown in Fig. 9. 

On the KITTI dataset, in comparison to YOLOv4 and 
YOLOv4-Tiny, the detection accuracy of the improved 
YOLOv4 algorithm increased from 95.55% to 95.63%. In 
comparison to YOLOv4-Tiny, its AP value increased by 
12.8% and the recall rate increased from 87.84% to 91.50%. 
The average accuracy (AP) of the vehicle object detection 
was calculated using the two networks, respectively. The 
improved YOLOv4 network improves the AP of vehicle 
object detection from 95.36% to 95.89%. Table III shows the 
detection results for 3,331 targets in 749 test pictures. 

As demonstrated in Table III, the recall rate of our 
optimized model was significantly improved. There were 
3,331 targets in the test pictures. YOLOv4 correctly detected 
3,190 and missed 441, whereas our optimized model 
correctly detected 3,221 and missed only 299. Our model is 
significantly better than the previous algorithm with respect 
to AP and F1. In addition, our chosen model greatly reduces 
the number of parameters. The sizes of CSPDarkNet-53 and 
MobileNetv3 are shown in Table IV. We tested the YOLOv4 
basic model and the optimized YOLOv4-MobileNetv3 
model in this study. Table V compares the model sizes. 

TABLE Ⅳ 
COMPARISON OF THE NUMBER OF NETWORK PARAMETERS. 
Network  Parameters 

CSPDarkNet  37.9M 
MobileNetv3  3.4M 

 
According to the detection results, the AP value of the 

YOLOv4 detection algorithm, which adopts the improved 
MobileNet series as the backbone network, is above 93% for 
vehicle target detection. The model with the best 
performance was used for the target occlusion test. The 
detection results are shown in Fig. 10. On the right are two 
partially occluded vehicles, both of which have a detection 
confidence of 1.0. 
 

 
(a) no shade 

 
(b) covered 

Fig. 10.  YOLOv4-MobileNetv3-best detection results. 

 
Table V shows the numbers of test parameters obtained 

after replacing all the 3×3 convolutions in the enhanced 
feature extraction network module of YOLOv4 with deep 
separable convolutions. 

   
(a) YOLOv4                                                      (b) YOLOv4-Tiny                                 (c) YOLOv4-MobileNetv3-best (Ours) 

 
Fig. 9.  Comparison of the F1 curves of three models. 

 

TABLE Ⅲ 
PERFORMANCE COMPARISON OF YOLOV4 AND THE VARIOUS VARIANTS. 

Model TP FP FN Ap（%） Recall（%） Precision（%） F1 

YOLOv4 3190 148 441 95.36 87.84 95.55 0.92 
YOLOv4-Tiny 2905 334 973 83.09 74.90 89.68 0.82 

YOLOv4-MobileNetv1 3183 187 528 93.70 85.77 94.45 0.90 
YOLOv4-MobileNetv2 3185 201 551 93.19 85.23 94.07 0.89 
YOLOv4-MobileNetv3 3216 194 518 93.89 86.12 94.31 0.91 

YOLOv4-MobileNetv3-best 
(Ours) 

3221 147 299 95.89 91.50 95.63 0.93 
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TABLE Ⅴ 
COMPARISON OF NUMBERS OF PARAMETERS. 

MODEL PARAMETERS 
YOLOv4 64,040,001 

YOLOv4-MobileNetv1 40,952,893 
YOLOv4-MobileNetv2 39,062,013 
YOLOv4-MobileNetv3 39,989,933 

YOLOv4-MobileNetv3-best（Ours） 11,729,069 

 
Compared with YOLOv4-MobileNetv3 of the enhanced 

feature weight enhancement network, the number of 
parameters of the proposed method is reduced by nearly 75%. 

Our optimized model also greatly reduces the size of the 
weight file of the model. This not only reduces the memory 
consumption for some small devices, it also makes it easier to 
implement for embedded platforms. 

Table VI compares the size of the weight file after the 
model is trained and the inference time on the CPU for 
weights trained by the improved model, the original 
YOLOv4 model, and the other improved models. Owing to 
the different computing methods of the CPU and GPU, the 
data read by the CPU comes from the memory and cache. In 
addition, the read speed from the cache is much faster than 
the memory, whereas the data read by the GPU differ.  

 

 
Compared with the CPU, the GPU is hardly affected by the 

cache in operations such as convolution. MobileNetv3 
utilizes the standard convolution decomposition operation to 
obtain a cache hit ratio at more levels. Therefore, 
MobileNetv3 is more friendly with respect to CPU 
computing. In this regard, this study takes the inference time 
on the CPU as the comparison index. Our optimized model 

not only reduces the memory usage for some small devices, it 
also makes it easier to implement for embedded platforms. 

Considering the data in Table VI, the optimized 
YOLOv4-MobileNetv3-best model in this study reduced the 
number of weight parameters by 78% compared with the 
basic YOLOv4 model. The inference time on the CPU is 
reduced by 104 ms, which meets the real-time detection 
requirements. The visual detection results of the model on the 
KITTI dataset are shown in Fig. 11. 

 

  
 
 

   
 
 

 
 

 
 
 
As illustrated in Fig. 11(b), the YOLOv4 detection results  

show six vehicles with a confidence level higher than 0.5, 
whereas Fig. 11(c) displays the optimized model detection 
results, which show a total of seven vehicles with a 
confidence level higher than 0.5. Our algorithm performs 
better in the case of vehicles with occlusion and a small target 
in the middle of the graph. When detecting vehicles in the 

TABLE Ⅵ 
COMPARISON OF THE NUMBER OF PARAMETERS AND INFERENCE TIME. 

Model Parameters INFERENCE TIME 
YOLOv4 250.6M 166 ms 

YOLOv4-Tiny 23.0M 49 ms 

YOLOv4-MobileNetv1 72.3M 72 ms 

YOLOv4-MobileNetv2 77.0M 65 ms 

YOLOv4-MobileNetv3 75.0M 71 ms 

YOLOv4-MobileNetv3-best 
(Ours) 

52.0M 62 ms 

 

(b) YOLOv4 

(c) YOLOv4-MobileNetv3-best (Ours) 
Fig. 11. Visualization results of the KITTI dataset. 

 

(a) Original image 
 

           
 

(a) Original image                                                    (b) YOLOv4                                              (c) YOLOv4-MobileNetv3-best (Ours) 
 

           
(a) Original image                                                    (b) YOLOv4                                               (c) YOLOv4-MobileNetv3-best (Ours) 

Fig. 12.  Visualization result of actual scene 
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KITTI dataset, the improved algorithm has a significantly 
better performance than the original YOLOv4 algorithm, and 
the rate of the missed detection is also greatly reduced. The 
visualization results obtained using our trained KITTI data to 
detect the actual road vehicles on the campus are shown in 
Fig. 12. 

Fig. 12(a) presents the original image, Fig. 12(b) displays 
the test result of YOLOv4, and Fig. 12(c) shows the test 
result of our improved model. The detection confidence of 
our algorithm is 0.54 for the occluded vehicles at the entrance 
to the building in the scene on the left. However, YOLOv4 
may miss some detections in this case. Similarly, on the right, 
the vehicle with a confidence of 0.57 indicates a missed 
detection vehicle for YOLOv4; thus, our model is more 
sensitive to occlusion. The improved model can still maintain 
a high recall rate and accuracy under the conditions of small 
targets and occlusion. Through a series of experimental 
comparisons, it can be observed that the improved model not 
only greatly reduces the number of model parameters, it also 
maintains, or even improves, the original detection accuracy. 
At the same time, it maintains a good performance in 
different environments, improves the application range of the 
algorithm, and has more practical value. 
 

V. CONCLUSION 

In this study, an improved YOLOv4-based vehicle 
target detection algorithm was proposed and applied to 
lightweight detection. Experimental results showed that, 
compared with the original YOLO series algorithm, the 
accuracy of our model improved by 0.53%, and the number 
of model parameters was reduced by 78%. In comparison to 
the other algorithms, the improved YOLOv4 model is smaller 
and more accurate, thus it can be used in lightweight vehicle 
detection networks. It provides a theoretical basis for vehicle 
detection on a smaller hardware platform. From the 
perspective of the current research in the field of intelligent 
connected vehicle environment perception, the research at 
the image level only considers the camera as a sensor, which 
includes target detection, target tracking, and semantic or 
instance segmentation. Owing to the fine precision degree 
and speed, there is room for improvement. The industry 
commonly uses sensor fusion that integrates a radar point 
cloud with camera information. This is done to obtain a 
higher degree of scene understanding. The novelty of this 
study is that it significantly optimizes the speed of 
resource-constrained systems when performing target 
detection. Meanwhile, the calculation time and space are 
minimized for the subsequent fusion. However, the problem 
of vehicle occlusion and target deformation without reducing 
the detection accuracy of the algorithm has not been 
completely solved; follow-up research will focus on this 
aspect. 
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