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Abstract—Residual power series method(RPSM) is an ef-
fective method for solving approximate analytic solutions of
fractional differential equations(FDEs). However, the (n− 1)α
derivative of the residual function is required in this method.
As we all know, it is difficult to compute the fractional-order
derivative of a function by computer. This makes the application
of the classic RPSM limited to a certain extent. To overcome
the difficulty of the RPSM, we combine the Elzaki transform
method with the RPSM to propose a new method, the Elzaki
transform residual power series method(ERPSM). Firstly, the
Elzaki transform is applied to both sides of the time FDEs.
Secondly, the Elzaki inverse is taken on both sides of equation
to obtain expression of the solution of the FDEs. Thirdly, the
solution of the FDEs is expanded in fractional power series
form and substituted into the equation. The unknown coefficient
function is obtained by setting the residual function as zero
and combining the initial conditions. Finally, the coefficient
function is substituted into the power series form solution to
obtain the finite term approximate analytic solutions. The new
method is used to solve the time-fractional biological population
diffusion equation(TFBPDEs). The presented results confirm
the dependability and accuracy of the proposed method. This
method does not require calculating the (n − 1)α derivative
of the residual function and is easy to be calculated on the
computer. The ERPSM has less calculation effort than the
classic RPSM. Some examples are given in datum and images,
which are compared with the results of the RPSM and other
methods.

Index Terms—Residual power series method; Elzaki trans-
form; Time-fractional biological population diffusion equation-
s(TFBPDEs); Caputo derivative

I. INTRODUCTION

THE fractional calculation’s concept is debuted over 325
years, which was first proposed in 1695 by Leibniz and

L’Hopital. FDEs have been widely applied in many areas,
for instance, biological engineering, image processing[1],
physical model[2] and risk analysis[3] etc. Nowadays, many
researchers have proposed different methods to obtain ap-
proximate analytical solutions of FDEs, such as varia-
tional iteration method(VDM)[4], adomian decomposition

Manuscript received March 15th, 2021; revised August 28th, 2021.
This work is supported by the National Natural Science Foundation of
China (Grant No.11701446), the Natural Science Foundation of Shaanxi
Province (2020JM-577), New Star Team of Xi’an University of Posts and
Telecommunications, Construction of Special Funds for Key Disciplines in
Shaanxi Universities.

Jianke Zhang is an Associate Professor of the School of Science, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China.(e-
mail:jiankezh@163.com).

Xiaoyi Chen is a student of the School of Science, Xi’an U-
niversity of Posts and Telecommunications, Xi’an 710121, China.(e-
mail:17629292134@163.com).

Lifeng Li is an Associate Professor of the School of Science, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China.(e-
mail:lilifeng80@163.com).

Chang Zhou is an Associate Professor of the School of Science, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China.(e-
mail:maytheday@163.com).

method(ADM)[5], homotopy perturbation method(HPM)[6],
modified generalized Taylor fractional series method[7], pro-
jected differential transform method[8] and so on.

In the past few years, many scholars have been working on
new methods for solving FDEs by the fractional RPSM. They
applied these methods to solve analytical solutions of several
classes of FDEs. In [9]-[14], many researchers have solved
different types of FDEs using the RPSM. The RPSM is also
used for many other problems, for example, the initial value
problems [15], the fractional Zakharov-Kuznetsov equation
[16], the time-fractional Fisher equation [17] and the high-
order linear conformable fractional PDEs [18].

Elzaki transform modified from Laplace and Sumudu
transform. In [19]-[21], Elzaki transform and other methods
are combined to solve different differential equations.

In this paper, the Elzaki transform is combined with
the RPSM, which is called ERPSM. Compared with the
classic RPSM, fewer calculations can be obtained by the new
method. The new method not only does not need to calculate
the (n− 1)α derivative of the residual function, but also can
be easily implemented on the computer.

The general structure of this article is as follow. In section
2, the preliminaries of fractional order integrals, derivatives
and Elzaki transform are presented. In section 3, ERPSM
is proposed with the necessary fundamental procedure and
the convergence analysis. In section 4, examples are given
along with the corresponding numerical results and graphical
conclusions. In the end, conclusions are drawn in section 5.

II. PRELIMINARIES

In this section, the fundamental notion of the Caputo
fractional and Elzaki transform are introduced systematically.
Definition 1 [22]. The Riemann-Liouville fractional integral
operator of order α ≥ 0 is defined as

Jαf(t)=

{
1

Γ(α)

∫t
0

f(s)
(t−s)1−α ds= 1

Γ(α) t
α−1 ∗ f(t) α>0,t>0,

f(t) α = 0,
(1)

where tα−1 ∗ f(t) is the convolution product of tα−1 and
f(t).

For the Riemann-Liouville fractional integral, we have
1.Jαtβ = Γ(β+1)

Γ(β+α+1) t
α+β , β > −1,

2.Jα(λf(t) + µg(t)) = λJαf(t) + µJαg(t),
where λ and µ are real constants.
Definition 2 [23], [24]. Let f(t) : [0,+∞) → R be a
function, and n be the upper positive integer of α (α > 0).
The Caputo fractional derivative is defined by

Dαf(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n ds,

n− 1 < α ≤ n, n ∈ N. (2)

Engineering Letters, 29:4, EL_29_4_29

Volume 29, Issue 4: December 2021

 
______________________________________________________________________________________ 



For the Caputo derivative, we have

1.DαJαf(t) = f(t),

2.JαDαf(t) = f(t)−
n−1∑
i=0

y(i)(0)
ti

i!
,

3.Dαtβ =

{
Γ(β+1)

Γ(β+1−α) t
β−α β ≥ α

0 β < α
,

4.Dαc = 0,

5.Dα(λf(t) + µg(t)) = λDαf(t) + µDαg(t),

where λ, µ and c are real constants.
Definition 3 [25]. A power series of the form

∞∑
m=0

fm(x)(t− t0)mα = f0(x) + f1(x)(t− t0)α

+ f2(t− t0)2α + · · · , 0 < n− 1 < α ≤ n, t ≥ t0.
(3)

is called multiple fractional power series about t = t0,
where t is a variable and fm’s are functions of x called
the coefficients of the series.
Theorem 1 [25]. Suppose that u(x, t)has a multiple frac-
tional power series representation at t = t0 of the form

u(x, t)=
∞∑
m=0

um(x, t)=
∞∑
m=0

fm(x)(t− t0)mα,

0 < n− 1 < α ≤ n, x ∈ I, t0 ≤ t < t0 +R.

(4)

If Dmα
t u(x, t) are continuous on I × (t0, t0 + R), m =

0, 1, 2, · · · , then coefficients fm(x) of Eq. (4) are given as

fm(x) =
Dmα
t u(x, t0)

Γ(mα+ 1)
,m = 0, 1, 2, · · · , (5)

Where Dmα
t = ∂mα

∂tmα = ∂α

∂tα ·
∂α

∂tα · · ·
∂α

∂tα (m − times), and
R = minc∈IRc, in which Rc is the radius of convergence
of the fractional power series Σ∞m=0fm(c)(t− t0)mα.

According to the convergence of the classic residual power
series method, there is a real number λ ∈ (0, 1), such that
||um(x, t)|| ≤ λ||um−1(x, t)||, t ∈ (t0, t0 +R).
Definition 4 [26], [27]. A new transform called the ELzaki
transform defined for function of exponential order, we
consider functions in the set A defined by:

A=f(t) :∃M,k1, k2> 0,|f(t)|< Me
|t|
kj , ift ∈ (−1)j×[0,∞).

(6)
For a given function in the set, the constant M must be

finite number, k1, k2 may be finite or infinite. The Elzaki
transform which is defined by the integral equation

E[f(t)]=T (v)= v

∫ ∞
0

f(t)e
−t
v dt, t ≥ 0, k1 ≤ v ≤ k2. (7)

The following results can be obtained from the definition
and simple calculations

1.E[tn] = n!vn+2,

2.E[f ′(t)] = T (v)
v − vf(0),

3.E[f ′′(t)] = T (v)
v2 − f(0)− vf ′(0),

4.E[f (n)(t)] = T (v)
vn −

∑n−1
k=0 v

2−n+kf (k)(0),

5.E[tα] =
∫∞

0
e−vttαdt = vα+1Γ(α+ 1),R(α) > 0.

Theorem 2 [19]. If T (v) is Elzaki transform of (t), one
can consider the following Elzaki transform of the Riemann-
Liouville derivative

E[Dαf(t)] = v−α[T (v)−
n∑
k=1

vα−k+2[Dα−kf(0)]];

−1 < n− 1 ≤ α < n. (8)

Definition 5 [19]. The Elzaki transform of the Caputo
fractional derivative by using Theorem 2 is defined as follows

E[Dαf(t)] = v−αE[f(t)]− Σm−1
k=0 v

2−α+kf (k)(0), (9)

where m− 1 < α < m.

III. DIRECT METHOD OF ERPSM

In this chapter, steps of the ERPSM are presented. The
new method combines the Elzaki transform with the RPSM
to solve the TFBPDEs, which is based on the classic RPSM.
In this segment, we consider the TFBPDEs is

Dα
t u(x, y, t)=(u2(x, y, t))xx+(u2(x, y, t))yy+σ(u(x, y, t)),

t > 0, x, y ∈ R

u(x, y, 0) = f(x, y), (10)

where u indicates the population density, σ(u) indicates the
births and deaths of the population. Also, σ(u) = hua(1 −
rub) with h, a, r, b are real numbers[28].

In this section, steps and the necessary definitions are
given, and we set up a general form of a nonlinear inho-
mogeneous partial differential equation. The form is

Dα
t u(x, y, t)=L(u(x, y, t))+N (u(x, y, t))+σ(u(x, y, t)), (11)

with

ui(x, y, t)|t=0 = gk, k = 0, . . . , n− 1, (12)

where σ is a known function,N is the general nonlinear frac-
tion differential operator and L represents a linear fraction
differential operator.

We propose some steps for the ERPSM as follows
Step 1. Using Elzaki transform on both sides of the equation,
the form is

E[Dα
t u(x, y, t)]=E[L(u(x, y, t))+N (u(x, y, t))+σ(u(x, y, t))],

(13)
Applying the differentiation property of Elzaki transform

and the initial conditions above, we can obtain

E[u(x, y, t)]=g(x, y, t)+vαE[L(u(x, y, t))+N (u(x, y, t))

+σ(u(x, y, t))].
(14)

Step 2. Taking Elzaki inverse on both sides of the equation

u(x, y, t)=G(x, y, t)+E−1[vαE[L(u(x, y, t))+N(u(x, y, t))

+σ(u(x, y, t))]],
(15)

where G(x, y, t) represents the initial condition.
Step 3. We use the classic RPSM, the algorithm can be
proposed by

u(x, y, t) =
∞∑
n=0

fn(x, y)
tnα

Γ(1 + nα)
, (16)
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To obtain the approximate value of (16), the form of
ui(x, y, t) can be written as

Si =
i∑

n=0

un(x, y, t) =
i∑

n=0

fn(x, y)
tnα

Γ(1 + nα)
. (17)

Step 4. We combine Step 2 with Step 3, we can attain

Resi(x, y, t) = ui(x, y, t)− {G(x, y, t) + E−1[vαE[

L(ui−1(x, y, t)) +N (ui−1(x, y, t)) + σ(ui−1(x, y, t))]]},
(18)

Then,
Resn(x, y, t)|t=0 = 0, n ∈ N∗, (19)

to find the result of fn(x, y)(n ∈ N∗), where Resn(x, y, t)
is the residual function of equation (11).

Here, ERPSM will give the ith-order approximate solu-
tions with

Si = u0 + u1 + u2 + . . .+ ui, (20)

where

u0 = f0(x, y),

u1 = f1(x, y)
tα

Γ(1 + α)
,

u2 = f2(x, y)
t2α

Γ(1 + 2α)
,

...

ui = fi(x, y)
tiα

Γ(1 + iα)
. (21)

Remark Generally, for any α ∈ (0, 1], |R̃es(x, y, t)|exact
equals zero. We can use the value of |R̃esi(x, y, t)| to
indicate the deviation between the approximate solution and
the exact solution. The form of |R̃esi(x, y, t)| can be defined
as

|R̃esi(x, y, t)| = |Dα
t ui(x, y, t)− (u2

i (x, y, t))xx

− (u2
i (x, y, t))yy − σui(x, y, t)|

(22)

IV. ILLUSTRATIVE EXAMPLES

In this subsection, examples are settled by ERPSM. We
usually compute the initial iteration in the new way and
ignore the rest. Then the Elzaki transform method is ap-
plied, we obtain the unknown coefficients. We analyze the
approximate solutions by charts and graphics.
Example 1 With a = 1, r = 0, considering the following
TFBPDEs
Dα
t u(x, y, t)=(u2(x, y, t))xx+(u2(x,y, t))yy+hu(x, y, t),

t > 0, 0 < α ≤ 1,
(23)

with

u(x, y, t)|t=0 =
√
xy, (24)

Using Elzaki transform

E[Dα
t u(x, y, t)] = E[(u2(x, y, t))xx + (u2(x, y, t))yy

+ hu(x, y, t)],
(25)

Applying the differentiation property of Elzaki transform and
the initial conditions above, we can obtain

E[u(x, y, t)] = g(x, y, t) + vαE[(u2(x, y, t))xx

+ (u2(x, y, t))yy + h(x, y, t)].
(26)

Taking Elzaki inverse

u(x, y, t) = G(x, y, t) + E−1[vαE[(u2(x, y, t))xx

+ (u2(x, y, t))yy + hu(x, y, t)]],
(27)

We use the classic RPSM. The form of ui(x, y, t) can be
written as

Si =
i∑

n=0

un(x, y, t) =
i∑

n=0

fn(x, y)
tnα

Γ(1 + nα)
. (28)

Then, we find the solution of fn(x, y) by

Resi(x, y, t)=ui(x, y, t)−{G(x, y, t)+E−1[vαE[

(u2
i−1(x, y, t))xx+(u2

i−1(x, y, t))yy+hui−1(x, y, t)]]}.
(29)

When i = 0

Res0(x, y, t) = u0(x, y, t)−G(x, y, t),

and from the equation (17), we have

u0(x, y, t) = f0(x, y),

from formula (19), we have Res0(x, y, t)|t=0 = 0, thus

f0(x, y) =
√
xy. (30)

When i = 1

Res1(x, y, t) = u1(x, y, t)− {G(x, y, t) + E−1[vαE[

(u2
0(x, y, t))xx + (u2

0(x, y, t))yy + hu0(x, y, t)]]},

with the condition

u1(x, y, t) = f0(x, y) + f1(x, y)
tα

Γ(1 + α)
,

Then, we can attain

Res1(x, y, t)

= f0(x, y) + f1(x, y)
tα

Γ(1 + α)
− {G(x, y, t)

+ E−1[vαE[(f2
0 (x, y))xx+(f2

0 (x, y))yy+hf0(x, y)]]}

= f1(x, y)
tα

Γ(1 + α)
− E−1[vαE[h

√
xy]]

= f1(x, y)
tα

Γ(1 + α)
− E−1[h

√
xyvα+2]

= f1(x, y)
tα

Γ(1 + α)
−
h
√
xytα

Γ(1 + α)
,

Then, we solve t−αRes1(x, y, t)|t=0 = 0 to obtain

f1(x, y) = h
√
xy. (31)

When i = 2

Res2(x, y, t) = u2(x, y, t)− {G(x, y, t) + E−1[vαE[

(u2
1(x, y, t))xx + (u2

1(x, y, t))yy + hu1(x, y, t)]]},

with the condition

u2(x, y, t)=f0(x, y)+f1(x, y)
tα

Γ(1 + α)
+f2(x, y)

t2α

Γ(1 + 2α)
,
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(a) u(x, y, t)exact (b) u(x, y, t)ERPSM

Fig. 1: 3D graphics of exact and approximate solutions(Ex. 1.)

TABLE I: The absolute errors of ERPSM, RPSM, HPM for α = 1 and t = 1(Ex. 1.)

x y u(x, y, t)exact ui(x, y, t)
ERPSM
i=2 Error(x, y, t)RPSMi=2 [30] Error(x, y, t)ERPSMi=2 Error(x, y, t)HPMi=2 [30]

0.1

0.1 0.1648721271 0.1625000000 2.37× 10−3 2.37× 10−3 2.37× 10−3

0.2 0.2331643981 0.2298097038 3.35× 10−3 3.35× 10−3 3.35× 10−3

0.3 0.2855669010 0.2814582563 4.11× 10−3 4.11× 10−3 4.11× 10−3

0.4 0.3297442542 0.3250000000 4.74× 10−3 4.74× 10−3 4.74× 10−3

0.5 0.3686652837 0.3633610463 5.30× 10−3 5.30× 10−3 5.30× 10−3

0.3

0.1 0.2855669010 0.2814582563 4.11× 10−3 4.11× 10−3 4.11× 10−3

0.2 0.4038525842 0.3980420832 5.81× 10−3 5.81× 10−3 5.81× 10−3

0.3 0.4946163813 0.4875000000 7.12× 10−3 7.12× 10−3 7.12× 10−3

0.4 0.5711338018 0.5629165124 8.22× 10−3 8.22× 10−3 8.22× 10−3

0.5 0.6385470025 0.6293597937 9.19× 10−3 9.19× 10−3 9.19× 10−3

0.5

0.1 0.3686652837 0.3633610463 5.30× 10−3 5.30× 10−3 5.30× 10−3

0.2 0.5213714443 0.5138701198 7.50× 10−3 7.50× 10−3 7.50× 10−3

0.3 0.6385470025 0.6293597937 9.19× 10−3 9.19× 10−3 9.19× 10−3

0.4 0.7373305676 0.7267220927 1.06× 10−2 1.06× 10−2 1.06× 10−2

0.5 0.8243606355 0.8125000000 1.19× 10−2 1.19× 10−2 1.19× 10−2

1

0.1 0.5213714443 0.5138701198 7.50× 10−3 7.50× 10−3 7.50× 10−3

0.2 0.7373305676 0.7267220927 1.06× 10−2 1.06× 10−2 1.06× 10−2

0.3 0.9030418312 0.8900491559 1.30× 10−2 1.30× 10−2 1.30× 10−2

0.4 1.0427428890 1.0277402400 1.50× 10−2 1.50× 10−2 1.50× 10−2

0.5 1.1658219910 1.1490485190 1.68× 10−2 1.68× 10−2 1.68× 10−2

TABLE II: The values of | R̃es(x, y, t) | by ERPSM,RPSM,HPM for α=0.3, 0.6andt=0.1(Ex.1.)

α = 0.3 α = 0.6

x y ui(x, y, t)
ERPSM
i=2 |R̃es|ERPSM |R̃es|RPSM [30] |R̃es|HPM [30] ui(x, y, t)

ERPSM
i=2 |R̃es|ERPSM |R̃es|RPSM [30] |R̃es|HPM [30]

0.1
0.1 0.119 7.590× 10−4 7.590× 10−4 7.590× 10−4 0.131 1.546× 10−4 1.546× 10−4 1.546× 10−4

0.2 0.169 1.073× 10−3 1.073× 10−3 1.073× 10−3 0.185 2.187× 10−4 2.187× 10−4 2.187× 10−4

0.3 0.207 1.315× 10−3 1.315× 10−3 1.315× 10−3 0.226 2.678× 10−4 2.678× 10−4 2.678× 10−4

0.2
0.1 0.169 1.073× 10−3 1.073× 10−3 1.073× 10−3 0.185 2.187× 10−4 2.187× 10−4 2.187× 10−4

0.2 0.239 1.518× 10−3 1.518× 10−3 1.518× 10−3 0.261 3, 092× 10−4 3.092× 10−4 3.092× 10−4

0.3 0.292 1.859× 10−3 1.859× 10−3 1.859× 10−3 0.320 3.787× 10−4 3.787× 10−4 3.787× 10−4

0.3
0.1 0.207 1.315× 10−3 1.315× 10−3 1.315× 10−3 0.226 2.678× 10−4 2.678× 10−4 2.678× 10−4

0.2 0.292 1.859× 10−3 1.859× 10−3 1.859× 10−3 0.320 3.787× 10−4 3.787× 10−4 3.787× 10−4

0.3 0.358 2.277× 10−3 2.277× 10−3 2.277× 10−3 0.392 4.639× 10−4 4.639× 10−4 4.639× 10−4
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(c) |R̃es2(x, y = 0.1, t)|
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(d) |R̃es2(x, y = 0.01, t)|

Fig. 2: |R̃es2(x, y, t)| with different t and α(Ex. 1.)

Then, we can get

Res2(x, y, t)

=f0(x, y)+f1(x, y)
tα

Γ(1 + α)
+f2(x, y)

t2α

Γ(1 + 2α)

−{G(x, y, t)+E−1[vαE[((f0(x, y)+f1(x, y)
tα

Γ(1 + α)
)2)xx

+((f0(x, y)+f1(x, y)
tα

Γ(1 + α)
)2)yy+h(f0(x, y)

+f1(x, y)
tα

Γ(1 + α)
)]]}

=f1(x, y)
tα

Γ(1 + α)
+f2(x, y)

t2α

Γ(1 + 2α)

−E−1[vαE[h
√
xy]]−E−1[vαE[h2√xyvα+2]]

=f1(x, y)
tα

Γ(1 + α)
+f2(x, y)

t2α

Γ(1 + 2α)

−E−1[h
√
xyvα+2]−E−1[h2√xyv2α+2]

=f1(x, y)
tα

Γ(1 + α)
+f2(x, y)

t2α

Γ(1 + 2α)

−
h
√
xytα

Γ(1 + α)
−
h2
√
xyt2α

Γ(1 + 2α)
,

Thereby, from t−2αRes2(x, y, t)|t=0 = 0, we get

f2(x, y) = h2√xy. (32)

We can get an approximate result

u2(x, y, t)=
√
xy+h

√
xy

tα

Γ(1 + α)
+h2√xy t2α

Γ(1 + 2α)
.

(33)
Therefore, the n-th coefficient of u(x, y, t) is

fn(x, y) = hn
√
xy, (34)

the n-th ERPSM approximate solutions of u(x, y, t) is

un(x, y, t) =
√
xy

i∑
n=0

(htα)
n

Γ(1 + nα)
, (35)

and as n→∞ we have

u(x, y, t) = limn→∞un(x, y, t) =
√
xyEα(htα), (36)

where Eα(z) is the Mittag-Leffler function defined as
Eα(z) = Σin=0

zn

Γ(1+nα) [29]. Obviously, when α → 1, we
have Eα(z)=eht and hence

√
xyeht is the exact solution of

the standard partial time-derivative of (23).
In Fig. 1, we obtain the 3D graphics of the approximate

solutions and exact solutions by Matlab 2018b Windows(64
bit). The approximate solutions are the same as the exact
solutions. The parameters in Fig. 1 are α = 1, t = 1, h = 0.5,
where Fig. 1(a) represents the exact solutions and Fig. 1(b)
represents the approximate solutions.

The absolute error is
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Error(x, y, t) =| u(x, y, t)exact − ui(x, y, t)ERPSM | . (37)

For the items in the table, the front part is the required
parameters and the back part is the required result, where
the upper right corner is the method name and the lower
right corner is the number of terms expanded by the method

In Tab. 1, we show the absolute error of three methods
when h = 0.5. The three methods are the ERPSM, the classic
RPSM[30] and the HPM[6]. Besides, the ERPSM is denoted
by ui(x, y, t), the RPSM and HPM are denoted by ũi(x, y, t).
The approximate solutions of HPM and classic RPSM for
i = 2 can be written as

ũ2(x, y, t) =
√
xy +

htα

Γ(1 + α)

√
xy +

h2t2α

Γ(1 + 2α)

√
xy. (38)

In Tab. 1, under the same conditions, although the absolute
error values were obtained by the ERPSM, the classic RPSM
and the HPM are the same, the new method requires less
computation.

When α = 0.1, 0.3, 0.5, 0.7, 0.9, linear independence can
be verified by using the ERPSM. Then, we use the Elzaki
transform method to attain the unknown coefficients.

In Fig. 2, pictures show the impact of different α and x, y
when h = 0.5, t ∈ [0, 1], x ∈ (0, 10], y ∈ (0, 10] on the
|R̃es2(x, y, t)|. We list four cases of fixed x, y to observe
the variation of |R̃es2(x, y, t)| in each subplot with different
α and t. Different colors and line shapes represent different
α. Fig. 2(a)-2(d) respectively show |R̃es2(x, y, t)| of x, y are
fixed values of 10, 1, 0.1 and 0.01.

We can draw a conclusion from Fig. 2 that |R̃es2(x, y, t)|
decreases as the constants x, y decreases when α and t are
unchanged. Besides, |R̃es2(x, y, t)| decreases as α increases
when t and x, y are unchanged, |R̃es2(x, y, t)| increases as
t ∈ (0, 1) increases when α and x, y are unchanged. From
Fig. 2(a)-2(d), |R̃es2(x, y, t)| is a constant. Moreover, when
t → 0, |R̃es2(x, y, t)| → 0, which is because u2(x, y, t) is
a generalized Taylor expansion at t0 = 0. If t → 0, the
precision of u2(x, y, t) is higher.

Using the ERPSM, when α = 0.3, 0.6, the linearly inde-
pendence can be verified. Then, we use the Elzaki transform
method to attain the unknown coefficients. In Tab. 2, we show
the approximate solutions and the values of | R̃es(x, y, t) |
when t = 0.1, h = 0.3, i = 2.
Example 2 With a = 1, b = 1, considering the following
TFBPDEs

Dα
t u(x, y, t) = (u2(x, y, t))xx + (u2(x, y, t))yy

+ hu(x, y, t)(1−ru(x, y, t)), t > 0, 0 < α ≤ 1,
(39)

with

u(x, y, t)|t=0 = e
√

hr
8 (x+y), (40)

Using Elzaki transform

E[Dαt u(x, y, t)]=E[(u2(x, y, t))xx+(u2(x, y, t))yy

+h(x, y, t)(1−ru(x, y, t))],
(41)

Applying the differentiation property of Elzaki transform and
the initial conditions above, we can obtain

E[u(x, y, t)]= g(x, y, t) +vαE[(u2(x, y, t))xx

+(u2(x, y, t))yy+h(x, y, t)(1−ru(x, y, t))].
(42)

Taking Elzaki inverse

u(x, y, t)=G(x, y, t)+E−1[vαE[(u2(x, y, t))xx

+(u2(x, y, t))yy+hu(x, y, t)(1−ru(x, y, t))]].
(43)

We use the classic RPSM. The form of ui(x, y, t) can be
written as

Si =
i∑

n=0

un(x, y, t) =
i∑

n=0

fn(x, y)
tnα

Γ(1 + nα)
. (44)

Then, we find the solution of fn(x, y) by

Resi(x, y, t)=ui(x, y, t)−{G(x, y, t)

+E−1[vαE[(u2
i−1(x, y, t))xx+(u2

i−1(x, y, t))yy

+hui−1(x, y, t)(1−rui−1(x, y, t))]]}.
(45)

When i = 0

Res0(x, y, t) = u0(x, y, t)−G(x, y, t),

and from the equation (17), we have

u0(x, y, t) = f0(x, y),

from formula (19), we have Res0(x, y, t)|t=0 = 0, thus

f0(x, y) = e
√

hr
8 (x+y). (46)

When i = 1

Res1(x, y, t)=u1(x, y, t)−{G(x, y, t)

+E−1[vαE[(u2
0(x, y, t))xx+(u2

0(x, y, t))yy

+hu0(x, y, t)(1−ru0(x, y, t))]]}.

with the condition

u1(x, y, t) = f0(x, y) + f1(x, y)
tα

Γ(1 + α)
,

Then, we can attain

Res1(x, y, t)

=f0(x, y)+f1(x, y)
tα

Γ(1 + α)
−{G(x, y, t)

+E−1[vαE[(f2
0 (x, y))xx+(f2

0 (x, y))yy

+hf0(x, y)(1−rf0(x, y))]]}

= f1(x, y)
tα

Γ(1 + α)
− E−1[vαE[he

√
hr
8 (x+y)]]

= f1(x, y)
tα

Γ(1 + α)
− E−1[he

√
hr
8 (x+y)vα+2]

= f1(x, y)
tα

Γ(1 + α)
− he

√
hr
8 (x+y)tα

Γ(1 + α)
,

Then, we solve t−αRes1(x, y, t)|t=0 = 0 to obtain

f1(x, y) = he
√

hr
8 (x+y). (47)

When i = 2

Res2(x, y, t)=u2(x, y, t)−{G(x, y, t)

+E−1[vαE[(u21(x, y, t))xx+(u21(x, y, t))yy

+hu1(x, y, t)(1−ru1(x, y, t))]]},

with the condition

u2(x, y, t)=f0(x, y)+f1(x, y)
tα

Γ(1 + α)
+f2(x, y)

t2α

Γ(1 + 2α)
,
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(a) u(x, y, t)exact (b) u(x, y, t)ERPSM

Fig. 3: 3D graphics of exact and approximate solutions(Ex. 2.)
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(a) |R̃es2(x, y = 10, t)|
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(b) |R̃es2(x, y = 1, t)|
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(c) |R̃es2(x, y = 0.1, t)|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

2

4

6

8

10

12

14

16

18

20

22

=0.1
=0.3
=0.5
=0.7
=0.9

=0.1

=0.3

=0.5

=0.7

=0.9

(d) |R̃es2(x, y = 0.01, t)|

Fig. 4: |R̃es2(x, y, t)| with different t and α(Ex. 2.)
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TABLE III: Absolute errors by ERPSM for α = 1(Ex. 2.)

Error(x, y, t)EPRSMi=2
t/x,y 0.1 0.3 0.5 0.7 0.9
0.1 0.000188894 0.000230715 0.000281796 0.000344187 0.000420390
0.3 0.005369813 0.006558703 0.008010819 0.009784437 0.011950739
0.5 0.026216058 0.032020365 0.039109763 0.047768774 0.058344912
0.7 0.075983492 0.092806446 0.113354051 0.138450952 0.169104373
0.9 0.170862862 0.208692371 0.254897437 0.311332434 0.380262293

Then, we can get

Res2(x, y, t)

=f0(x, y)+f1(x, y)
tα

Γ(1 + α)
+f2(x, y)

t2α

Γ(1 + 2α)

−{G(x, y, t)+E−1[vαE[((f0(x, y)+f1(x, y)
tα

Γ(1 + α)
)2)xx

+((f0(x, y)+f1(x, y)
tα

Γ(1 + α)
)2)yy +h(f0(x, y)

+f1(x, y)
tα

Γ(1 + α)
)(1−r(f0(x, y)+f1(x, y)

tα

Γ(1 + α)
))]]}

=f1(x, y)
tα

Γ(1 + α)
+f2(x, y)

t2α

Γ(1 + 2α)

−E−1[vαE[he
√

hr
8 (x+y)]]−E−1[vαE[h2e

√
hr
8 (x+y)vα+2]]

=f1(x, y)
tα

Γ(1 + α)
+f2(x, y)

t2α

Γ(1 + 2α)

−E−1[he
√

hr
8 (x+y)vα+2]−E−1[h2e

√
hr
8 (x+y)v2α+2]

=f1(x, y)
tα

Γ(1 + α)
+f2(x, y)

t2α

Γ(1 + 2α)

− he
√

hr
8 (x+y)tα

Γ(1 + α)
− h

2e
√

hr
8 (x+y)t2α

Γ(1 + 2α)
,

Thereby, from t−2αRes2(x, y, t)|t=0 = 0, we get

f2(x, y) = h2e
√

hr
8 (x+y). (48)

We can get an approximate result

u2(x, y, t) = e
√

hr
8 (x+y) + he

√
hr
8 (x+y) tα

Γ(1 + α)

+ h2e
√

hr
8 (x+y) t2α

Γ(1 + 2α)
.

(49)

Therefore, the n-th coefficient of u(x, y, t) is

fn(x, y) = hne
√

hr
8 (x+y), (50)

the n-th ERPSM approximate solutions of u(x, y, t) is

un(x, y, t) = e
√

hr
8 (x+y)

i∑
n=0

(htα)
n

Γ(1 + nα)
, (51)

and as n→∞ we have

u(x, y, t) = limn→∞un(x, y, t) = e
√

hr
8 (x+y)Eα(htα), (52)

For α → 1, we have Eα(z) = eht and hence e
√

hr
8 (x+y)+ht

is the exact solution of the standard partial time-derivative
of (39).

In Fig. 3, we obtain the 3D graphics of the approximate
solutions and exact solutions by Matlab 2018b Windows(64

bit). The approximate solutions are the same as the exact
solutions. The parameters in Fig. 3 are α = 1, t = 1, h =
1, r = 2, where Fig. 3(a) represents the exact solutions and
Fig. 3(b) represents the approximate solutions.

In Tab. 3, we present the comparison of the absolute errors
for the obtained results and the exact solution by the ERPSM
when h = 1, r = 2.

In Tab. 3, absolute errors increases as t increases when
x, y are unchanged, absolute errors increases as x, y increases
when t is unchanged.

When α = 0.1, 0.3, 0.5, 0.7, 0.9, linear independence can
be verified by using the ERPSM. Then, we use the Elzaki
transform method to attain the unknown coefficients.

In Fig. 4, pictures show the impact of different α and x, y
when h = 1, r = 2, t ∈ [0, 1], x ∈ (0, 10], y ∈ (0, 10] on the
|R̃es2(x, y, t)|. We list four cases of fixed x, y to observe the
variation of |R̃es2(x, y, t)| in each subplot with different α
and t. Different colors and line shapes represent different α.
Fig. 4(a)-4(d) respectively show |R̃es2(x, y, t)| of x, y are
fixed values of 10, 1, 0.1 and 0.01.

We can draw a conclusion from Fig. 4 that |R̃es2(x, y, t)|
decreases as the constants x, y decreases when α and t are
unchanged. Besides, |R̃es2(x, y, t)| decreases as α increases
when t and x, y are unchanged, |R̃es2(x, y, t)| increases as
t ∈ (0, 1) increases when α and x, y are unchanged.

Remark 1. In Example 2, when t = 0, the values of the
y-axis in Figure 4 do not start at zero. The approximate
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solutions only have three items, which results in some errors.

|Res2(x, y, t)|
= |Dα

t u2(x, y, t)−(u22(x, y, t))xx−(u22(x, y, t))yy

−hu2(x, y, t)(1−ru2(x, y, t))|

= |f1(x, y)+f2(x, y)
tα

Γ(1 + α)
−((f0(x, y)

+f1(x, y)
tα

Γ(1 + α)
+f2(x, y)

t2α

Γ(1 + 2α)
)2)xx

−((f0(x, y)+f1(x, y)
tα

Γ(1 + α)
+f2(x, y)

t2α

Γ(1 + 2α)
)2)yy

−h(f0(x, y)+f1(x, y)
tα

Γ(1 + α)
+f2(x, y)

t2α

Γ(1 + 2α)
)(1

−r(f0(x, y)+f1(x, y)
tα

Γ(1 + α)
+f2(x, y)

t2α

Γ(1 + 2α)
))|

= |he
√
hr
8 (x+y)+

h2e
√
hr
8 (x+y)tα

Γ(1 + α)
−((e

√
hr
8 (x+y)

+
he
√
hr
8 (x+y)tα

Γ(1+α)
+
h2e
√

hr
8 (x+y)t2α

Γ(1+2α)
)2)xx−((e

√
hr
8 (x+y)

+
he
√
hr
8 (x+y)tα

Γ(1+α)
+
h2e
√
hr
8 (x+y)t2α

Γ(1+2α)
)2)yy

−h(e
√
hr
8 (x+y)+

he
√
hr
8 (x+y)tα

Γ(1+α)
+
h2e
√
hr
8 (x+y)t2α

Γ(1+2α)
)(1−

r(e
√
hr
8 (x+y)+

he
√
hr
8 (x+y)tα

Γ(1+α)
+
h2e
√
hr
8 (x+y)t2α

Γ(1+2α)
)|

(53)
When t = 0,

|Res2(x, y, t)|

= |he
√

hr
8 (x+y) − (e2

√
hr
8 (x+y))xx − (e2

√
hr
8 (x+y))yy

− he
√

hr
8 (x+y) + hre

√
hr
8 (x+y)|

= |hre
√

hr
8 (x+y)| 6= 0.

(54)
Example 3 With a = 1, b = 1, h = 1

96 , and r = 48,
considering the following TFBPDEs

Dα
t u(x, y, t)=(u2(x, y, t))xx+(u2(x, y, t))yy

+
1

96
u−1(x, y, t)− 1

2
, t > 0, 0 < α ≤ 1,

(55)

with

u(x, y, t)|t=0 =
1

4

√
2(x2 + y2) + y + 5, (56)

and the exact solution when α = 1 is[3]

u(x, y, t) =
1

4

√
2(x2 + y2) + y +

t

3
+ 5. (57)

Using Elzaki transform

E[Dα
t u(x, y, t)]=E[(u2(x, y, t))xx+(u2(x, y, t))yy

+
1

96
u−1(x, y, t)− 1

2
],

(58)

Applying the differentiation property of Elzaki transform and
the initial conditions above, we can obtain

E[u(x, y, t)]= g(x, y, t) +vαE[(u2(x, y, t))xx

+(u2(x, y, t))yy+
1

96
u−1(x, y, t)− 1

2
].

(59)

Taking Elzaki inverse

u(x, y, t)=G(x, y, t)+E−1[vαE[(u2(x, y, t))xx

+(u2(x, y, t))yy+
1

96
u−1(x, y, t)− 1

2
]].

(60)

We use the classic RPSM. The form of ui(x, y, t) can be
written as

Si =
i∑

n=0

un(x, y, t) =
i∑

n=0

fn(x, y)
tnα

Γ(1 + nα)
. (61)

Then, we find the solution of fn(x, y) by

Resi(x, y, t)=ui(x, y, t)−{G(x, y, t)

+E−1[vαE[(u2
i−1(x, y, t))xx+(u2

i−1(x, y, t))yy

+
1

96
u−1
i−1(x, y, t)− 1

2
]]}.

(62)

When i = 0

Res0(x, y, t) = u0(x, y, t)−G(x, y, t),

and from the equation (17), we have

u0(x, y, t) = f0(x, y),

from formula (19), we have Res0(x, y, t)|t=0 = 0, thus

f0(x, y) =
1

4

√
2(x2 + y2) + y + 5. (63)

When i = 1

Res1(x, y, t)=u1(x, y, t)−{G(x, y, t)+E−1[vαE[

(u2
0(x, y, t))xx+(u2

0(x, y, t))yy+
1

96
u−1

0 (x, y, t)− 1

2
]]},

with the condition

u1(x, y, t) = f0(x, y) + f1(x, y)
tα

Γ(1 + α)
,

Then, we can attain

Res1(x, y, t)

=f0(x, y)+f1(x, y)
tα

Γ(1 + α)
−{G(x, y, t)+E−1[vαE[

(f2
0 (x, y))xx+(f2

0 (x, y))yy+
1

96
f−1

0 (x, y)− 1

2
]]}

=f1(x, y)
tα

Γ(1 + α)
−E−1[vαE[

1

24
√

2(x2 + y2) + y + 5
]]

=f1(x, y)
tα

Γ(1 + α)
−E−1[

1

24
√

2(x2 + y2) + y + 5
vα+2]

=f1(x, y)
tα

Γ(1 + α)
−

1

24
√

2(x2+y2)+y+5
tα

Γ(1 + α)
,

Then, we solve t−αRes1(x, y, t)|t=0 = 0 to obtain

f1(x, y) =
1

24
√

2(x2 + y2) + y + 5
. (64)

When i = 2

Res2(x, y, t)=u2(x, y, t)−{G(x, y, t)+E−1[vαE[

(u2
1(x, y, t))xx+(u2

1(x, y, t))yy+
1

96
u−1

1 (x, y, t)− 1

2
]]},

with the condition

u2(x, y, t)=f0(x, y)+f1(x, y)
tα

Γ(1 + α)
+f2(x, y)

t2α

Γ(1 + 2α)
,
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(a) u(x, y, t)exact (b) u(x, y, t)ERPSM

Fig. 5: 3D graphics of exact and approximate solutions(Ex. 3.)

Then, we can get

Res2(x, y, t)

=f0(x, y)+f1(x, y)
tα

Γ(1 + α)
+f2(x, y)

t2α

Γ(1 + 2α)
−{G(x, y, t)

+E−1[vαE[((f0(x, y)+f1(x, y)
tα

Γ(1 + α)
)2)xx+((f0(x, y)

+f1(x, y)
tα

Γ(1 + α)
)2)yy +

1

96
(f0(x, y)+f1(x, y)

tα

Γ(1 + α)
)−1−

1

2
]]}

=f1(x, y)
tα

Γ(1+α)
+f2(x, y)

t2α

Γ(1+2α)
−

E−1[vαE[
1

24
√

2(x2+y2) +y+5
]]

−E−1[vαE[−
1

144(
√

2(x2+ y2)+y+5)3
]]−E−1[vαE[

2(5308416x2+2(2304y+576)2−5308416y2−2654208y−13271040)

α!(1152x2+1152y2+576y+2880)3
]]

=f1(x, y)
tα

Γ(1+α)
+f2(x, y)

t2α

Γ(1+2α)

−E−1[
1

24
√

2(x2+ y2)+y+5
vα+2]

−E−1[−
1

144(
√

2(x2+y2)+y+5)3
v2α+2]−E−1

[
2(5308416x2+2(2304y+576)2−5308416y2−2654208y−13271040)

α!(1152x2+1152y2+576y+2880)3

v3α+2]

=f1(x, y)
tα

Γ(1+α)
+f2(x, y)

t2α

Γ(1+2α)
−

1

24
√

2(x2+y2)+y+5
tα

Γ(1+ α)

−
1

−144(
√

2(x2+y2)+y+5)3
t2α

Γ(1+2α)

−
2(5308416x2+2(2304y+576)2−5308416y2−2654208y−13271040)

α!(1152x2+1152y2+576y+2880)3
t3α

Γ(1 + 3α)
,

Then, divide by t2α on both sides of Res2(x, y, t) and make
t as zero, we can obtain

f2(x, y) = − 1

144(
√

2(x2 + y2) + y + 5)3
. (65)

We can get an approximate result

u2(x, y, t)=
1

4

√
2(x2 + y2) + y + 5

+
1

24
√

2(x2 + y2) + y + 5

tα

Γ(1 + α)

− 1

144(
√

2(x2 + y2) + y + 5)3

t2α

Γ(1 + 2α)
.

(66)

In Fig. 5, we obtain the 3D graphics of the approximate
solutions and exact solutions by Matlab 2018b Windows(64
bit). The approximate solutions are the same as the exact
solutions. The parameters in Fig. 5 are α = 1, t = 1,
where Fig. 5(a) represents the exact solutions and Fig. 5(b)
represents the approximate solutions.

In Tab. 4 and Tab. 5, the absolute error of three methods
are calculated when t = 10 and t = 20. The three methods
are the ERPSM, the VIM[4] and the ADM[4]. Besides, the
ERPSM is denoted by ui(x, y, t), the VIM and ADM are
denoted by ũi(x, y, t).

In Tab. 4, we can get the absolute errors range between
10−3and 10−16. And from Tab. 5, the absolute errors range
between 10−2 and 10−15. Under the same conditions, the
results of ERPSM, VIM and ADM are the same, the new
method requires less computation, and the results are more
accurate.

When α = 0.1, 0.3, 0.5, 0.7, 0.9, linear independence can
be verified by using the ERPSM. Then, we use the Elzaki
transform method to attain the unknown coefficients.

In Fig. 6, pictures show the effect of different α and
x, y when t ∈ [0, 1], x ∈ (0, 10], y ∈ (0, 10] on the
|R̃es2(x, y, t)|. We list four cases of fixed x, y to observe
the variation of |R̃es2(x, y, t)| in each subplot with different
α and t. Different colors and line shapes represent different
α. Figures 6(a)-6(d) respectively show |R̃es2(x, y, t)| of x, y
are fixed values of 10, 1, 0.1 and 0.01.

We can draw a conclusion from Fig. 6 that |R̃es2(x, y, t)|
increases as the constants x, y decreases when α and t are
unchanged. Besides, |R̃es2(x, y, t)| decreases as α increases
when t and x, y are unchanged, |R̃es2(x, y, t)| increases as
t ∈ (0, 1) increases when α and x, y are unchanged.
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TABLE IV: Absolute errors by ERPSM, VIM, ADM for α = 1, t = 10(Ex. 3.)

(x, y) u(x, y, t)exact ui(x, y, t)
ERPSM
i=2 ũi(x, y, t)

V IM
i=2 [4] ũi(x, y, t)

ADM
i=2 [4] Error(x, y, t)ERPSMi=2 Error(x, y, t)V IMi=2 [4] Error(x, y, t)ADMi=2 [4]

(-450,-450) 224.938649 224.938649 224.938649 224.938652 9.813846× 10−16 7.272155× 10−12 2.573384× 10−6

(-400,-400) 199.938793 199.938793 199.938793 199.938796 1.768786× 10−15 1.106995× 10−12 3.257144× 10−6

(-300,-300) 149.939224 149.939224 149.939224 149.939230 7.457402× 10−15 3.578650× 10−11 5.791548× 10−6

(-250,-250) 124.939569 124.939569 124.939569 124.939577 1.856381× 10−14 7.431441× 10−12 8.341020× 10−6

(0,0) 0.721688 0.714299 0.543911 -0.087784 7.388344× 10−3 1.777776× 10−1 8.094717× 10−1

(50,50) 25.072811 25.072811 25.072811 25.073018 5.707042× 10−11 4.572776× 10−8 2.068923× 10−4

(100,100) 50.067663 50.067663 50.067663 50.067714 1.796542× 10−12 2.877083× 10−9 5.192803× 10−5

(200,200) 100.065083 100.065083 100.065083 100.065096 5.633268× 10−14 1.803953× 10−10 1.300298× 10−5

(350,350) 175.063976 175.063976 175.063976 175.063981 3.436987× 10−15 1.906919× 10−11 4.248496× 10−6

(500,500) 250.063534 250.063534 250.063534 250.063536 5.779725× 10−16 4.562573× 10−12 2.082251× 10−6

TABLE V: Absolute errors by ERPSM, VIM, ADM for α = 1, t = 20(Ex. 3.)

(x, y) u(x, y, t)exact ui(x, y, t)
ERPSM
i=2 ũi(x, y, t)

V IM
i=2 [4] ũi(x, y, t)

ADM
i=2 [4] Error(x, y, t)ERPSMi=2 Error(x, y, t)V IMi=2 [4] Error(x, y, t)ADMi=2 [4]

(-450,-450) 224.939112 224.939112 224.939112 224.939122 7.851057× 10−15 7.272155× 10−12 1.029354× 10−5

(-400,-400) 199.939314 199.939314 199.939314 199.939327 1.415024× 10−14 1.106995× 10−11 2.316619× 10−5

(-300,-300) 149.939919 149.939919 149.939916 149.939942 5.965887× 10−14 3.578650× 10−11 2.316619× 10−5

(-250,-250) 124.940402 124.940402 124.940402 124.940436 1.485093× 10−13 7.431441× 10−11 3.336408× 10−5

(0,0) 0.853913 0.807469 -0.562830 -2.400864 4.644357× 10−2 1.777776× 10−1 3.254777
(50,50) 25.076965 25.076965 25.076965 25.077792 4.564688× 10−10 3.658223× 10−7 8.275692× 10−4

(100,100) 50.069743 50.069743 50.069743 50.069951 1.437159× 10−11 2.301665× 10−8 2.077121× 10−4

(200,200) 100.066124 100.066124 100.066124 100.066176 4.506556× 10−13 1.442949× 10−9 5.201194× 10−5

(350,350) 175.064571 175.064571 175.064571 175.064588 2.749578× 10−14 1.538449× 10−10 1.699398× 10−5

(500,500) 250.063950 250.064817 250.063950 250.063958 4.623771× 10−14 3.683809× 10−11 8.329005× 10−6
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Fig. 6: |R̃es2(x, y, t)| with different t and α(Ex. 3.)
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V. CONCLUSION

In this article, we beneficially applied the ERPSM to find
the approximate solutions for TFBPDEs. This new method
combines the Elzaki transform with the RPSM, which is an
improvement on the classic RPSM. We obtain more accurate
approximate solutions with less calculation and small error.
The final results of the approximate solution we present in
tables and pictures. In conclusion, ERPSM provides a simple
and accurate algorithm for finding approximate solutions of
the TFBPDEs.
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