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Abstract—Quantum computing has been proposed as a pos-
sible accelerator for a myriad of complex computational prob-
lems. From this, quantum-inspired methodologies have emerged
as methods that take the principles and restrictions of quantum
theory to solve classical problems on classical computers.
Quantum-inspired methodologies have proven advantageous in
solving optimization problems and in learning over traditional
nature-inspired methods. Since these algorithms operate on
classical computers, the next unanswered question is important
and valid: Can quantum-inspired evolutionary algorithms take
advantage of quantum computers? The present work attempts
to shed some light on this question, implementing quantum-
inspired evolutionary algorithms for numerical optimization
on quantum hardware. We present statistical metrics of their
performance on the IBM Q quantum computer and compared
them to their execution on a GPU-based quantum simulator,
and the IBM quantum simulator.

Index Terms—quantum computing, optimization, IBM Q,
quantum-inspired, genetic algorithm.

I. INTRODUCTION

S INCE its conception, quantum computing has been seen
as the panacea for computer science [1]. Although

this idea has prevailed since Deutsch’s proposal [2], for
almost two decades, quantum acceleration has remained a
promise with an extended compliance date [3]. At present,
many efforts to achieve useful quantum acceleration, as
well as the development of practical quantum algorithms in
different fields, have been conducted. Some scientific and
technological fields exploiting the advantages of quantum
computing are cybersecurity [4], quantum medicine [5],
drug development [6], traffic optimization [7], [8], artificial
intelligence [9], [10], and an ever-growing list of useful
applications.

Quantum-inspired metaheuristics (QIM) are optimization
methods that merge evolutionary computation and quan-
tum computing. QIMs use quantum phenomena such as
superposition, entanglement, and quantum measurements as
inspiration to solve optimization problems [11]. There are
many proposals of QIMs for numerical and combinatorial
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optimization [12], [13], [14]. A branch of QIMs is quantum-
inspired evolutionary algorithms (QIEA) that use quantum
phenomena and evolution mechanisms to solve optimization
problems. The results of QIEA show that they might out-
perform traditional evolutionary algorithms (EA) on overall
generational convergence and accuracy [15], [16], [17].

The number of proposals of QIEAs that exploit current
quantum device architectures are limited [18]. Although full-
scale quantum computers are still unattainable, small-scale
devices with few qubits and limited or no error correction are
available. Hence, the implementation of quantum algorithms
aiming for quantum speedup has to adapt to these devices in
order to prove the advantages of quantum computing.

The currently available quantum computers have been
named noisy intermediate-scale quantum (NISQ) devices;
a term coined by John Preskill. The noisy adjective in
NISQ indicates the imperfect control over the qubits, placing
limitations on what devices can achieve [19]. NISQ devices
can be used to test the advantages that quantum computing
might bring, which has given a boost to the research of
developing and implementing quantum algorithms [1], [3].

Some of the most recent applications of quantum al-
gorithms tested in real quantum devices are quantum ap-
proximate optimization algorithm for combinatorial prob-
lems [20], [21], and quantum machine learning [22], [23].
Nonetheless, they do not deal with quantum evolutionary
metaheuristics. The work that best addresses evolution was
presented in [24], where a quantum individual was modeled
in conjunction with its biological behavior, such as interac-
tion, evolution, mutation, self-replication, and death, within
a natural selection scenario.

In this work, we present the circuit model development of
two quantum evolutionary algorithms (QEA) for the IBM
quantum computers using the IBM Quantum Experience
cloud platform. We developed a methodology that properly
translates QIEAs to QEA in quantum circuit form for the
quantum computers to achieve this; specifically, we devel-
oped fully quantum versions of the most commons variants
of QIEAs. Our proposal is compatible with any quantum
computer-based on quantum circuits and reduces the depth
of quantum circuits with an average depth of three gates per
quantum individual, which is a significant contribution to the
state-of-the-art regarding quantum metaheuristics for NISQ
devices.

To evaluate the proposals, we used one-dimensional nu-
merical functions and ran several statistical tests. We also
study the limitations of further implementation of QIEAs on
quantum computers.

The paper is organized as follows: in Section II, we explain
the theoretical background of QIMs and the description of
QIEAs in detail. In Section III, we describe our proposal to
translate QIEAs to QEAs. The experiments that were carried
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out using the QEAs implemented in a quantum computer are
detailed in Section IV. The comparative and statistical results
are shown in Section V. Finally, we discuss our results in
Section VI.

II. QUANTUM-INSPIRED EVOLUTIONARY
METAHEURISTICS

The interaction between quantum computing and
evolutionary computation can be organized into three
main branches: evolutionary-designed quantum algorithms
(EDQA), quantum evolutionary algorithms, and quantum-
inspired metaheuristics, as shown in Figure 1.

The main goal of EDQAs is to create new quantum al-
gorithms using genetic programming. EDQAs run on classic
computers to find the best design of algorithms that will run
on quantum devices.

Quantum evolutionary algorithms are optimization meth-
ods designed to operate on quantum devices. As in any
optimization method, their goal is to find the optimal solution
for a given problem. At the present, there is no general
consensus on the best way of developing NISQ devices [1],
which impacts the design of QEAs that are able to run on
actual quantum computers.

Quantum-inspired metaheuristics are nature-inspired meth-
ods that use quantum phenomena to solve optimization
problems[11]. In principle, QIMs are not designed to run on
NISQ devices; at most, they run over limited quantum simu-
lators. Many of the existing methods are quantum versions of
traditional methods that translate some of their components
using quantum mechanics analogies. Based on their classical
counterparts, most of QIMs can be classified in one of the
following:
• Quantum swarm algorithms.
• Quantum-inspired social algorithms.
• Quantum versions of physics-based methods.
• Quantum-inspired evolutionary algorithms.
Different natural behaviors inspire quantum swarm al-

gorithms (QSAs). For example, the quantum variant of
particle swarm optimization (QPSO) uses quantum wells as
a substitution of the traditional PSO operators[25], while the
quantum firefly algorithm (QFA) is inspired by the movement
of charged particles [26], [27], [28], [29].

Quantum-inspired social algorithms (QISA) utilize human
interactions, beliefs in society, and opinions to direct the
evolutionary process of quantum individuals [30], [31].

Quantum versions of physics-based methods can mix
Newtonian physics with quantum physics or only use quan-
tum physics as inspiration. For example, quantum gravita-
tional search algorithms (QGSA) use the combination of
quantum phenomena and gravitational forces to search for
the optimal value [32], [33], while quantum annealing (QA)
exploits quantum tunneling to find problems where the search
space is discrete with many local minima [34].

Quantum-inspired evolutionary algorithms use the Dar-
winian interpretation of evolution: biological populations
change through time, and the fittest survive, passing their
genes to their descendants [35]. QIEAs evolve a population
of solutions composed of individuals encoded in quantum
chromosomes using quantum bits as building blocks. The
evolution of the population is done by applying quantum
operations on the quantum chromosomes [36], [37].

Implementing any quantum-inspired algorithm in a quan-
tum simulator is a difficult task, and it is more challenging
to implement them on NISQ devices. Not all quantum-
inspired algorithms are designed in the same way, and many
of them only use some quantum principles as metaphors
for classical operations, which limits the feasibility of their
implementation in quantum devices. For example, quan-
tum metaheuristics such as QPSO [38], QGSA [39], and
some variations of QFA [28] only use quantum mechanics
as metaphors to implement update mechanisms for their
populations. These quantum operations simplify quantum
phenomena, represented as addition and multiplication oper-
ations, with added randomness that simulates the probability
distribution in quantum measurements.

Of all the quantum-inspired metaheuristics, QIEAs have
the highest qualifications to be implemented in NISQ devices
based on semiconductor qubits. In their purest form, QIEAs
encode their populations using qubits and evolve them using
a set of rules and quantum gates, which are easy to represent
using quantum circuits.

Fig. 1: There are three main branches derived from the inter-
action of quantum computing and evolutionary computation.

In this paper, we present the implementation into a NISQ
device of two QIEAs: the quantum genetic algorithm and
the adaptive quantum genetic algorithm. Most of the modern
works that use the term quantum-inspired evolutionary algo-
rithm or quantum genetic algorithm (QGA) use the work of
Han and Kim [40], [36] as a reference. In our case, we used
the term QGA to reference the work of Han and Kim, with
any other derivation or improvement of their work being a
variant.

In the following subsections, we describe in detail the
quantum genetic algorithm and the adaptive quantum genetic
algorithm.

A. Quantum genetic algorithm

Genetic algorithms (GA) use a set of individuals (popula-
tion) and evolve them to solve optimization problems. Every
individual of the population has a set of traits encoded using
chromosomes. These traits represent a possible solution to
the problem. A fitness function derived from an objective
function is used to qualify how close the evaluated individual
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is from the optimal solution. Using a set of selection,
reproduction, and mutation operators, the population evolves
to select the fittest individuals that satisfy the optimization
problem.

Quantum genetic algorithms are the quantum version of
the classical genetic algorithms. The base for most QGAs is
the population encoding using quantum bits or qubits [41].
A qubit is the smallest unit of information in quantum
computing [42], composed of two states |0〉 y |1〉, which are
orthonormal vectors that represent the computational basis:

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
. (1)

A single qubit can be in the state |0〉, |1〉, or in a
superposition of both states, see equation 2. The coefficients
α and β are called probability amplitudes. Because each
qubit has a probability amplitude for the two given states
of the computational basis, it is said that the qubit is in a
superposition of states |0〉 and |1〉.

|ψj〉 = αj |0〉+βj |1〉 with αj , βj ∈ C2, |αj |2+|βj |2 = 1
(2)

Each individual is encoded using a quantum chromosome
|Ψi〉, which is a set of n qubits [36], [40]. To calculate
the fitness of the individual at any given time t, first,
the quantum chromosome has to be measured. When the
quantum chromosome is measured, every qubit collapses to
a bit, forming a classical chromosome, as shown in (3); the
symbol O represents the measurement operation.

|Ψi〉t =

[
αti,1
βti,1

∣∣∣∣ αti,2
βti,2

∣∣∣∣ · · ·
· · ·

∣∣∣∣αti,nβti,n

]
O−→ [1|0| · · · |1]ti (3)

Measurements in quantum computation are done by using
measurement operators M which are matrices designed to
get information about the probability of measuring any
given state m. The operators (also called observables) are
Hermitian operators that have spectral decomposition M =∑
λmPm; where Pm is a projector onto the eigenspace of M

with eigenvalue λm[42]. Using Born’s rule, we can calculate
the probability of measuring λm and with that calculate the
post-measurement state as:

|ψ′j〉 =
Pm|ψj〉√
〈ψj |Pm|ψj〉

(4)

After we get the classical chromosome, the fitness can be
calculated as in any GA. The probability amplitudes of qubits
in a quantum chromosome can be modified through quantum
gates. A quantum gate is a unitary operator U, which satisfies
U†U = UU†, where U† is the hermitian adjoint of U.

Most of the proposals for QGAs use the Ry(θ) gate to
update the individual. The Ry(θ) modifies the probability of
measuring a |0〉 or a |1〉 state, and is represented by:

Ry(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (5)

In (6) the rotation gate Ry(θ) acts over the qubit [αj , βj ]
T ,

generating the new quantum state [α′j , β
′
j ]
T .[

α′j
β′j

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
αj
βj

]
. (6)

Another useful quantum gate is the Hadamard gate, or
H gate, which is given by (7). This gate acts on a single
qubit changing the |0〉 state to |0〉+|1〉√

2
, and the |1〉 state to

|0〉−|1〉√
2

. The idea of using the H gate is to use it whenever a
classical random population or individual needs to be created
since this gate can put a qubit in an equal superposition state
on the computational basis.

H =
1√
2

[
1 1
1 −1

]
(7)

The steps to implement the QGA are given in Algorithm
1. As previously mentioned, in a QGA, the quantum chro-
mosome |Ψi〉 represents a quantum individual formed by n
qubits. When |Ψi〉 is measured, it generates a binary string
of n bits. The first step in the QGA is to generate the
initial quantum population and the initial set of solutions, see
lines 3–5. To achieve this, an array of N quantum registers
Qt = {|Ψ1〉t, |Ψ2〉t, . . . , |ΨN 〉t} with n qubits is set to the
|0〉 state, i.e. Qt ← {|0〉⊗n, ..., |0〉⊗n}, where t = 0. Every
quantum chromosome in the quantum population is then put
into superposition using the Hadamard transform H⊗n, line
3. The initial solutions Bti are generated using a quantum
measurement operator, line 4.

The initial solutions are then evaluated using a fitness
function and ordered based on their fitness. The binary
strings and the quantum individuals are also ranked based
on the fitness of their corresponding solutions, and the best
individual is stored, see lines 6–8.

The next step is to evolve the population to find the optimal
solution, see lines 9–18. The evolution of the quantum
population is done by changing the probability amplitude
of all the n-qubits in the basis states {|0〉, |1〉} using the Ry
rotation gate. This rotation operation is illustrated using the
2-D qubit representation shown in Figure 2, where the x-axis
represents the probability amplitude of |0〉 state, the y-axis
the probability amplitude of |1〉 state, and the positive or
negative signs of the axis indicate the phase value which
does not affect the outcome. The idea behind quantum
rotation is to change the probability amplitude of every qubit
in each quantum chromosome in the direction of the best
individual. In other words, the evolution of the quantum
population increments the probability that the outcome of the
measurements of every quantum chromosome is close to the
best individual but with a low probability of measuring any
other value on the search space. This inherently can resolve
issues that local optimal values might generate.

Fig. 2: The quantum qubit |ψ〉 rotates θ degrees in the
direction of state |1〉.

The direction ω of the rotation angle is calculated by
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Algorithm 1: Quantum genetic algorithm
Data: Quantum population Qt ← {|0〉⊗n, ..., |0〉⊗n}
Result: Best solution b

1 begin
2 t← 0;
3 Put in superposition every quantum individual,

Qt ← H⊗n ⊗ |Ψi〉t;
4 Measure each quantum individual,

Bt ← Pm|Ψi〉t√
〈Ψi|Pm|Ψi〉t

;

5 Evaluate the population and store the solutions,
St ← f(Bti );

6 Order the solutions based on the fitness,
St ← St↓, where ↓ indicates descending order;

7 Order the binary strings based on the solution
index, Bt ← Bt↓;

8 Store the best individual, b← Bt1;
9 repeat

10 Calculate the angle direction for every qubit,
ω ← QRS(|Ψi〉t+1, Sti , B

t
i , b);

11 Update every quantum individual,
|Ψi〉t+1 ← Ryji (ω ∗ θ))⊗ |Ψi〉t;

12 Measure each quantum individual,
Bt+1 ← Pm|Ψi〉t+1√

〈Ψi|Pm|Ψi〉t+1
;

13 Evaluate the population, St+1 ← f(Bt+1
i );

14 Order the solutions based on the fitness,
St+1 ← St+1

↓ ;
15 Order the binary strings based on the solution

index, Bt+1 ← Bt+1
↓ ;

16 Store the best individual, b← Bt+1
1 ;

17 t← t+ 1 ;
18 until stop criteria;
19 end

using a quantum rotation scheme (QRS), see line 10. The
QRS is a lookup table in which the best individual b is
compared against any other individual xt in the population.
The direction value ω ∈ {0,+1,−1} is calculated by
comparing both individuals quantum state at xt.

There are several proposals of rotation schemes that have
been published, as described in [43]. One of the most popular
QRS was proposed by Han [36], which is described in Table
I. In this Table, the first two columns show each bit in the
binary strings of xt and b. The third column compares the
individual’s aptitude; here, we compare whether the current
individual xt is better (f(xti) < f(b)) or worse (f(xti) >
f(b)) than the present best individual b. In the last columns
are the four possible combinations of the phases in each qubit
of xt. Therefore, we selected the rotation direction ω based
on which case our current qubit xtj is (columns 1 to 4).

As an example, we compare an arbitrary individual xt and
the best individual b of a given population. Here, the value
of the j-th bit of xt is 0, the phases α and β of the j-th qubit
of xt are both positive, the j-th bit of b is 1, and the current
individual x is worse than the best individual (f(xti) > f(b)).
Analyzing Table I, we can see that this case falls under row
four and column four, which indicates that ω = 1.

After we have calculated the direction ω, the quantum

individual is updated using equation 5 with a fix value
of θ, see line 11. Once the population is updated, it is
measured and stored in binary strings, see lines 12–13. Next,
the population is evaluated using the fitness function f(·).
Finally, the solutions are sorted based on their fitness, and
the best individual is selected, see lines 14–16. This process
is repeated until the stop criterion is met, e.g., a specific
number of generations.

B. Adaptive quantum genetic algorithm

Wang, Liu, Zhi, and Fu proposed the adaptive quan-
tum genetic algorithm (AQGA) as an improvement of the
QGA [37]. The AQGA eliminates the need for a quantum
rotating scheme; it uses an adaptive angle instead of a fixed
angle and adds two new quantum operations to increase
population diversity.

The AQGA is described in Algorithm 2. The initial
quantum population is generated using the same steps of the
QGA, lines 3-8 in Algorithm 1. In the evolution step, the
rotation scheme is substituted by a mathematical formulation,
see line 16. The direction of the rotation is calculated using
a determinant of the qubit amplitudes as follows:

D =

∣∣∣∣αb,j αi,j
βb,j βi,j

∣∣∣∣ (8)

where, [αb,j , βb,j ]
T
t are the probability amplitudes of a qubit

of the best individual at the generation t, and [αi,j , βi,j ]
T
t

are the probability amplitudes associated to an element of
the quantum population. So, each qubit in the quantum
chromosomes of every individual is compared to the qubits
of the best individual. When D 6= 0, the direction of the
rotation angle is −sgn(D); otherwise, the rotating angle can
be {1,−1}.

For the rotation angle magnitude θ, the AQGA uses a
dynamic angle instead of a fixed angle, see line 17. The
rotation angle magnitude begins at a maximum value at t = 0
and diminishes its value through every generation. The idea
is to use big rotation angles at the beginning to get a diverse
population and small rotation angles in the last generations to
increase the chances of getting optimal solutions. The update
of the population is done using the same process as in QGA,
see line 18.

Once updated, the AQG adds a quantum mutation operator,
see line 19. The objective of the quantum mutation operator
is to enable randomly selected individuals to deviate from the
current evolutionary path preventing local optimal stagnation.
The quantum mutation operator swaps the probability ampli-
tudes {αj , βj} of randomly selected qubits in the quantum
population. To swap the values of the probability amplitudes,
the Pauli-X gate X =

[
0 1
1 0

]
is used.

The second operator added is the quantum disaster op-
eration, see lines 21 to 23. The disaster conditions engage
when the best solution does not change over a certain amount
of generations. The objective of this operator is to prevent
convergence to locally optimal solutions by applying a sig-
nificant disturbance to some individuals in the population
and generating some random individuals. The disturbance is
generated by putting some qubits of the individuals into su-
perposition, removing some individuals from the population
and generating new individuals, or by a combination of both.
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TABLE I: Quantum rotation scheme proposed by Han [36].

xtij bj f(xti) > f(b) αt
ijβ

t
ij > 0 αt

ijβ
t
ij < 0 αt

ij = 0 βt
ij = 0

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 -1 +1 ± 1 0
1 0 0 -1 +1 ± 1 0
1 0 1 +1 -1 0 ± 1
1 1 0 +1 -1 0 ± 1
1 1 1 +1 -1 0 ± 1

Algorithm 2: The Adaptive quantum genetic algo-
rithm

Data: Quantum population Qt ← {|0〉⊗n, ..., |0〉⊗n}
Result: Best solution b

1 begin
2 t← 0;
3 Put in superposition every quantum individual,

Qt ← H⊗n ⊗ |Ψi〉t;
4 Measure each quantum individual,

Bt ← Pm|Ψi〉t√
〈Ψi|Pm|Ψi〉t

;

5 Evaluate the population and store the solutions,
St ← f(Bti );

6 Order the solutions based on the fitness,
St ← St↓, where ↓ indicates descending order;

7 Order the binary strings based on the solution
index, Bt ← Bt↓;

8 Store the best individual, b← Bt1;
9 repeat

10 Calculate the angle direction for every qubit,

11 D←
∣∣∣∣αb,j αi,j
βb,j βi,j

∣∣∣∣,
12 if D == 0 then
13 ω ← {−1, 1};
14 else
15 ω ← −sgn(D);
16 end
17 Calculate the rotation angle,

θt ← θmax − θmax−θmin

tmax
∗ t ;

18 Update every quantum individual,
|Ψi〉t+1 ← Ryji (ω ∗ θt))⊗ |Ψi〉t;

19 Apply mutation operation at random,
|ψi,j〉t+1 ← Xi,j ⊗ |ψi,j〉t;

20 Check disaster condition, and apply it
21 |Ψi〉t+1 ← |0〉⊗n,
22 |Ψi〉t+1 ← H⊗n ⊗ |Ψi〉t
23 where i = {N − r,N − r + 1, ..., N};
24 Measure each quantum individual,

Bt+1 ← Pm|Ψi〉t+1√
〈Ψi|Pm|Ψi〉t+1

;

25 Evaluate the population, St+1 ← f(Bt+1
i );

26 Order the solutions based on the fitness,
St+1 ← St+1

↓ ;
27 Order the binary strings based on the solution

index, Bt+1 ← Bt+1
↓ ;

28 Store the best individual, b← Bt+1
1 ;

29 t← t+ 1 ;
30 until stop criteria;
31 end

In our implementation, we replace the r worst individuals
with new individuals. After the disaster operator, the new
population is measured, new binary strings are generated,
evaluated, and sorted. Then, the process is repeated for a
certain amount of generations.

III. IMPLEMENTING A QIEA IN A QUANTUM CIRCUIT

To implement a QIEA on a NISQ device, the architecture
of the quantum device must be considered The IBM quantum
device encodes quantum algorithms with quantum circuit
representation [44]. Quantum circuits use quantum qubits,
quantum gates, and measurements to implement quantum
algorithms.

The first step to create a quantum circuit for the QIEA is to
encode the information using qubits. Most QIEAs represent
qubits using a two-axis circle, where the x-axis indicates
the probability amplitude of |0〉 state, and the y-axis the
probability amplitude of |1〉 state. In quantum circuits, qubits
can be represented by their geometrical form:

|ψj〉 = exp (iφ)(cos (θ/2)|0〉+ exp (iγ) sin (θ/2)|1〉), (9)

where θ, γ and φ are real numbers, 0 ≤ θ ≤ π and 0 ≤ γ ≤
2π, and i is the imaginary portion of the complex number.
The sphere that represents the equation above is called the
Bloch sphere, which is illustrated in Figure 3a. Since the
value of φ does not hinder any information, only the polar
and azimuth angles are considered.

Quantum individuals can be encoded in the circuit rep-
resentation using the concepts mentioned above as quantum
registers with n qubits. Individuals and their evolution are
kept in the quantum computer and handled as a quantum
circuit. At t = 0, for every individual, each qubit is set
to |0〉, then a Hadamard gate is applied to each qubit.
Then, the individuals are measured, generating the initial
population. Because measuring quantum registers destroys
quantum information, it is necessary to generate a new
quantum circuit at every generation t.

The next step is to update the quantum population in
the quantum circuits. As previously stated, in the QIEA,
a quantum individual is updated using a quantum rotation
scheme to change the probability amplitudes of its qubits.

Taking into account the Bloch sphere, see Figure 3a, for
the QIEAs, the polar angle gives the most helpful information
since it provides the probability of measuring the quantum
states |0〉 and |1〉. Any rotation in the azimuth angle does
not change the probability of measuring the basis states. The
aforementioned is represented in Figure 3b, where the value
of the qubit is updated only using the polar angle. Since the
polar angle is the only angle to be rotated, the update is done
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TABLE II: Qubit rotation scheme proposed by Nicolao, Schirru, and Monteiro [45].

xgji bi f(xgj ) < f(b) 〈σx〉 > 0 〈σx〉 < 0 〈σx〉 = 0 〈σz〉 = 0

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 +1 -1 0 ±1
0 1 1 -1 +1 ±1 0
1 0 0 -1 +1 ±1 0
1 0 1 +1 -1 0 ±1
1 1 0 0 0 0 0
1 1 1 0 0 0 0

(a) Bloch sphere

(b) Qubit update using the rotation angle θ over
the polar axis.

Fig. 3: Rotation of the qubit in the Bloch sphere.

by using the Ry(θ) gate over the qubits, which is analogous
to the update operation of QIEA in classical devices.

The next step is to calculate the rotation direction to
perform the update. For the rotation scheme, we decided to
adopt the proposal of Nicolao, Schirru, and Monteiro [45].
The qubit rotation scheme is described in Table II.

Additionally to selecting a rotation scheme, given the na-
ture of the Bloch sphere representation, we need to calculate
the position of the qubit to determine in what direction
to move to any desired state. To do this, we calculate the
expectation values of the Pauli spin operators [42] for the
x-axis and z-axis, see equation (10). With the expectation
values, we calculate the position of the qubit in the sphere,
and with that decision, if the direction needs to be positive
or negative to be closer to the desired state.

〈σx〉 = 〈ψ|σx|ψ〉,
〈σz〉 = 〈ψ|σz|ψ〉

(10)

Once the magnitude θ and direction ω of the rotation angle
are calculated for each qubit in |Ψi〉, the qubits are rotated
using the Ry(θ) gate.

The mutation operation is implemented using the Pauli-X
gate, applied randomly in some qubits of the quantum circuit.
After that, each quantum circuit representing a quantum indi-
vidual is measured and evaluated using the fitness function.

The population is ranked and the process is repeated until
the stop criteria is met.

The IBM Quantum Experience provides cloud access to
several quantum devices, and a quantum simulator also ac-
cessed through the cloud. The proposed methodology creates
a quantum circuit of n qubits, applying equal superposition,
updates the quantum circuit, uploads the circuit to the cloud
service, measures the quantum circuit in the quantum device,
and retrieves the classical data.

A notable limitation of implementing QIEAs with tens
of generations in current quantum devices is the depth of
the circuit. If at every generation we applied Ry(θ) gate in
each qubit in the quantum circuit, the minimum depth of the
circuit for each quantum individual would be g+1, where g is
the number of generations. Since the mutation operator only
acts on rare occasions, the average depth will not change.
To reduce the depth of the quantum circuits, we store the
cumulative rotation angle in a matrix and apply the Ry(θ)
gate with this cumulative angle.

An example of the evolution of a 4-qubit quantum indi-
vidual is shown in Figure 4. In t = 0, all of the qubits are in
an equal superposition state, which means that any {0, 1}4
state can be measured, see Figure 4a. At every generation,
each individual in the population modifies the probability
amplitudes of their qubits, evolving to the optimal value.
Figure 4b shows how the 4-qubit quantum individual has
changed the probability amplitudes of its qubits, intending
to get near the optimal value.

The quantum circuit after several generations can be seen
in Figure 5. At this point, the amplitude of each qubit has
changed, moving closer to the optimal value, and a mutation
has occurred in q3. Even though several generations have
passed, the depth of the circuit is three, which significantly
reduces the time to execute the algorithm in the quantum
computer. Reducing the depth of the circuit to an average of
three gates enables evolving the quantum population for tens
or hundreds of generations, which significantly benefits the
results of QIEAs.

All the modifications mentioned above allow the imple-
mentation of QIEAs in a circuit based quantum devices like
the one provided by IBM.

IV. EXPERIMENTS

At present, hardware limitations can reduce the desired
performance of QIEAs on quantum devices considerably.
The main factors are cloud connectivity, the low number of
qubits, and the noisy nature of the NISQ configuration. Cloud
connectivity affects the retrieval time of results; this means
that small quantum populations with a limited number of
generations are desired. Until July 7th of 2021, IBM had
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(a) The quantum individual at t = 0.

(b) Evolution of the quantum individual trough four generations (t = 4), each qubit evolves to optimal value.

Fig. 4: Evolution of a 4-qubit quantum individual.

Fig. 5: Example of update of quantum circuit of a 4-qubit
quantum individual. The presence of an X gate in q3 indicates
a quantum mutation ocurred at some point.

one machine with 15 qubits available to the public (the
ibm 16 melbourne backend) and several 5-qubit devices,
reducing the available precision for optimization problems.
Additionally, the inherently noisy nature of these devices
gives a higher error rate and a lower performance than
most simulation processes, which affects the fidelity of the
evolution of the quantum population. Currently, any possible
computational gain is lost by the cloud connection.

Considering these limitations, to test our proposal’s va-
lidity, we implemented the QGA with mutation and the
AQGA to solve 1-dimensional optimization problems on
IBM quantum devices. Although the traditional QGA does
not include the mutation operation, in our experience, the
mutation adds a better performance overall for QGA. The
probability of mutation for both algorithms is 0.05. In the
case of the AQGA, the calculus of the rotation direction that
uses the determinant D was replaced by the rotation scheme
proposed by Nicolao [45], shown in Table II. This decision
was taken because any computational speedup given by the
determinant D is lost by the cloud connection and using the

selected rotation scheme showed better results.
The magnitude of the rotation angle θ was set to 0.1π

for the QGA, whereas for the AQGA the magnitude of θt
was dynamically adjusted according to the generation using
θt = θmax − (θmax − θmin) ∗ t/tmax with θmax = 0.15π
and θmin = 0.05π.

We selected 12 test functions; all of them are minimization
problems. The test functions for the experiments can be seen
in Table III.

We used a limited population of 10 individuals for the
experiments, each one with ten qubits, and evolved through
ten generations. Every quantum circuit was measured 1024
times without error mitigation, and each optimization process
was executed 30 times.

We selected two control sets using a GPU-based quantum
simulator developed by our research lab [46] and the IBMQ
QASM cloud quantum simulator. Each optimization process
ran 50 times in each quantum simulator (IBM QASM and the
GPU-based simulator) to get a better statistical representation
of the algorithm behavior.

V. RESULTS

For each experiment, we calculated the mean, standard
deviation, and accuracy rate. Execution accuracy is calculated
as follows: every solution with a difference of 1 × 10−3 of
the optimal value was classified as accurate. The results of
the QGA with the mutation operator are described in Table
IV; the best results are highlighted in bold. On most of the
problems, the algorithm showed better performance (higher
accuracy and lower standard deviation) in both quantum
simulators than when executed on the quantum device.
For the ibm 16 melbourne implementation (IBM Q16), the
average accuracy rate on all the functions was 0.59, obtaining
a higher accuracy in just 1 of the 12 problems. On the
other hand, the IBM QASM implementation achieved an
average accuracy rate of 0.67 and the best performance in 4
of the 12 problems, while the implementation in the Quantum

Engineering Letters, 29:4, EL_29_4_30

Volume 29, Issue 4: December 2021

 
______________________________________________________________________________________ 



TABLE III: Test functions for the experiments.

Name Formula Minimum Range
TF1 f(x) = sin(x) + sin( 10

3
x) −1.8995 [2.7, 7.5]

TF2 f(x) = −
∑6

k=1 k sin[(k + 1)x+ k] −16.5310 [−10, 10]
TF3 f(x) = −(16x2 − 24x+ 5) exp(−x) −3.8504 [1.9, 3.9]
TF4 f(x) = −(1.4− 3x) sin(18x) −1.4890 [0, 1.2]

TF5 f(x) = sin(x) + sin( 10
3
x) + log(x)− 0.84x+ 3 −1.6013 [2.7, 7.5]

TF6 f(x) = 2 cos(x) + cos(2x) −1.5 [−π/2, 2π]
TF7 f(x) = sin3(x) + cos3(x) −1.0 [0, 2π]
TF8 f(x) = − exp(−x) sin(2πx) −0.7886 [0, 4]

TF9 f(x) =

{
(x− 2)2, if x ≤ 3

2 log(x− 2) + 1, otherwise
0 [0, 6]

TF10 f(x) = −(x− sin(x)) exp(−x2) −0.0634 [−10, 10]
TF11 f(x) = x sin(x) + x cos(2x) −9.5083 [0, 10]
TF12 f(x) = exp(−3x)− sin3(x) −1 [0, 20]

TABLE IV: Accuracy, mean and standard deviation of QGA with mutation in different platforms. Best results in bold.

Quantum Simulator IBM QASM IBM Q16
Function Acc Mean SD Acc Mean SD Acc Mean SD

TF1 0.74 -1.8955 0.0066 0.74 -1.8959 0.0083 0.43 -1.8958 0.0043
TF2 0.3 -16.2906 0.6906 0.24 -15.8887 1.1943 0.20 -15.6634 1.5717
TF3 0.8 -3.8501 0.0005 0.88 -3.8503 0.0003 0.60 -3.8497 0.0006
TF4 0.7 -1.4846 0.0085 0.72 -1.4843 0.0008 0.23 -1.3824 0.1424
TF5 0.92 -1.5994 0.0093 0.76 -1.5923 0.0217 0.76 -1.5869 0.0608
TF6 0.96 -1.4998 0.0004 0.94 -1.4992 0.0038 0.86 -1.4981 0.0056
TF7 0.98 -0.9998 0.0002 0.98 -0.9998 0.0002 0.96 -0.9994 0.0030
TF8 0.64 -0.7853 0.0076 0.44 -0.7825 0.0088 0.46 -0.7837 0.0053
TF9 0.92 0.0002 0.0007 0.82 0.0014 0.0044 0.70 0.0161 0.0271

TF10 0.92 -0.0632 0.0003 0.80 -0.0628 0.0012 0.90 -0.0630 0.0005
TF11 0.48 -9.4329 0.2219 0.26 -9.4608 0.1392 0.10 -9.2756 0.2593
TF12 0.68 -0.9978 0.0043 0.56 -0.9922 0.0271 0.90 -0.9997 0.0006

Average 0.75 — 0.08 0.67 — 0.12 0.59 — 0.17

Simulator obtained the best accuracy in 9 of the 12 problems
with an average rate of 0.75.

Moreover, in terms of standard deviation, the IBM Q16
had the higher mean standard deviation (SD) with 0.17; the
simulators show better performance, with 0.12 mean SD in
the IBM QASM, and 0.08 for the Quantum Simulator. These
results indicate that, albeit the execution on the quantum
computer yielded the lowest accuracy and higher SD, the
algorithm did indeed converge to the optimal region in the
majority of the runs but it was unable to reach the goal
minimum value of 1 × 10−3 in 40% of the runs (with the
most difference in TF2 and TF11).

In the second experiment, the functions that had an ac-
curacy lower than 0.5 in every platform were tested again,
incrementing the number of generations to 20. As shown
in Table V. The QGA improved its convergence in both
simulators; however, its performance on the quantum device
was rather inconsistent. In two of the five functions tested
(TF2 and TF4), the QGA running on IBM Q16 obtained
better results since the accuracy increased while the mean
and standard deviation decreased. Nevertheless, in the other
three problems, the QGA accuracy performance diminished,
which indicates that the real issue concerning the non-
optimal results of the IBM Q quantum computer does not
lie in the algorithm’s structure. Even if the number of gen-
erations increased and the population size grew, the results
may remain out of the imposed convergence region.

The results of the AQGA implementation are displayed in
Table VI. The results of the average accuracy were very sim-
ilar to those attained by the QGA for the three platforms. For
both implementations, the Quantum Simulator and the IBM
QASM, the average accuracy rate slightly increased to 0.79

and 0.70, respectively. For the IBM Q16 implementation, the
mean accuracy decreased to 0.57, with lower performance
in half of the test functions. The mean SD measured was
0.17, 0.13, and 0.08 for the IBM Q16, IBM QASM, and
GPU Quantum Simulator, respectively. These results indicate
that the improvements of the AQGA did not enhance the
algorithm’s performance in a real quantum device. Moreover,
the SD over the three platforms did not increment, which
indicates that the overall precision remained the same.

Tables IV and VI indicate that TF2 and TF11 are big
outliers in the performance metrics. Both test functions have
the lowest accuracy and highest SD for both QIEAs in all
the test platforms.

If we remove the outliers (TF2 and TF11), the IBM Q16
average accuracy is 0.68 for the QGA, and 0.66 for the
AQGA, with an average SD the outliers of 0.025 and 0.005
for the QGA and AQGA, respectively. For the IBM QASM,
the QGA reported an average accuracy of 0.76 with a average
SD of 0.008, while in the AQGA the average accuracy value
is 0.77 with an average SD of 0.005. The average accuracy
of the Quantum Simulator is 0.826 for the QGA and 0.862
for the AQGA, with a SD of 0.004 and 0.015, respectively.

Figure 6 shows the average SD for every platform without
TF2 and TF11. The lowest precision was for the AQGA using
the Quantum Simulator and the QGA using the IBM Q16;
the QASM simulator obtained the highest precision for the
QGA, followed by the Quantum Simulator for the QGA.

The mean values of Tables IV and VI indicate that for
many of the functions, the results on the three platforms are
very close to the desired precision. QIEAs such as QGA and
AQGA, are susceptible to having issues with fine tuning with
lower epoch count due to randomness in the measurement.
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TABLE V: Accuracy, mean and standard deviation of QGA for the lowest performing functions using 20 generations.

Quantum Simulator IBM QASM IBM Q16
Function Acc Mean SD Acc Mean SD Acc Mean SD

TF1 - - - - - - 0.16 -1.8180 0.1270
TF2 0.44 -16.4640 0.2612 0.42 -16.5109 0.0399 0.43 -16.4950 0.0857
TF4 - - - - - - 0.8 -1.4856 0.0073
TF8 - - - - - - 0.40 -0.7834 0.0049

TF11 0.80 -9.4311 0.1900 0.42 -9.5048 0.0084 0.06 -9.2354 0.2608

TABLE VI: Accuracy, mean and standard deviation of AQGA in different platforms. Best results in bold.

Quantum Simulator IBM QASM IBM Q16
Function Acc Mean SD Acc Mean SD Acc Mean SD

TF1 0.74 -1.8962 0.0062 0.90 -1.8990 0.0014 0.93 -1.8992 0.0009
TF2 0.13 -16.3041 0.6641 0.3 -15.7705 1.3122 0.13 -15.6616 1.7464
TF3 0.84 -3.8502 0.0004 0.93 -3.8502 0.0005 0.43 -3.8498 0.0005
TF4 0.84 -1.4644 0.0812 0.70 -1.4846 0.0007 0.43 -1.4702 0.0106
TF5 0.72 -1.5937 0.0318 0.73 -1.5939 0.0255 0.83 -1.6005 0.0013
TF6 0.94 -1.4992 0.0042 0.90 -1.4996 0.0006 0.56 -1.4891 0.0134
TF7 0.98 -0.9999 0.0002 0.93 -0.9994 0.0013 1.0 -0.9999 0.0001
TF8 0.74 -0.7866 0.0040 0.63 -0.7856 0.0054 0.30 -0.7829 0.0056
TF9 0.96 0.0002 0.0004 0.66 0.0033 0.0071 0.76 0.0029 0.0113

TF10 1.0 -0.0633 0.0002 0.76 -0.0628 0.0012 0.90 -0.0628 0.0001
TF11 0.54 -9.4360 0.1805 0.26 -9.5083 0.1849 0.06 -9.5083 0.2592
TF12 0.82 -0.9949 0.0263 0.63 -0.9973 0.0269 0.46 -0.9960 0.0004

average 0.79 — 0.08 0.70 — 0.13 0.57 — 0.17

Fig. 6: Precision of the QGA and AGA implementations measured by the standard deviation. GPU refers to the GPU-based
Quantum Simulator.

In this regard, local search algorithms might increment the
accuracy if the best solution is not trapped in local optima.
To test this, we implemented gradient descent in the QGA
that runs in the IBM QASM; the results can be found in
Table VII. The idea of implementing the QGA on the IBM
QASM instead of IBM Q16 to reduce the influence of the
classic algorithm on the quantum algorithm, i.e., that most
of the optimization is done by the classical segment of the
algorithm instead of the quantum elements of it.

As Table VII indicates, the average accuracy incremented
from 0.73 to 0.87, and the standard deviation was reduced
considerably from 0.0845 to 0.0037. The reduction of the
standard deviation means that most of the solutions were
in the same neighborhood which indicates that the best
individuals are not stuck in local optima and can be fine-
tuned with a local search algorithm.

We performed Welch’s t-test to determine if the distri-
bution of the results between the different platforms differs

significantly. Therefore, we compared the IBM Q16 perfor-
mance when running the QGA and AQGA against the IBM
QASM and the GPU-based quantum simulator. Table VIII
shows the hypothesis test result of the QGA running on
the three different platforms. Similarly, Table IX show the
hypothesis test result of the AQGA. The hypothesis H0
results on both algorithms indicate that there is no significant
statistical difference between data sets. These results suggest
that the difference in accuracy might be reduced with future
hardware improvement, lowering the impact of noise in
quantum circuits.

VI. DISCUSSION AND FUTURE WORK

This work presents a quantum circuit development to
implement a QIEA on a circuit-based quantum computer.
Due to their nature, not all QIMs are candidates for im-
plementing easily (or at all) on available quantum devices.
Because of that, we selected the QGA and the AQGA for
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TABLE VII: Accuracy, mean and standard deviation of QGA with mutation using gradient descent.

Function Acc Mean SD
TF1 0.76 -1.8985 0.0020
TF2 1.0 -16.5321 2.71 ×10−10

TF3 1.0 -3.8504 7.43 ×10−5

TF4 1.0 -1.4997 0.0005
TF5 1.0 -1.5994 0.0093
TF6 0.96 -1.4998 0.0004
TF7 0.98 -0.9998 0.0002
TF8 0.73 -0.7874 0.0022
TF9 0.92 0.0002 0.0007

TF10 0.92 -0.0632 0.0003
TF11 0.5 -9.5008 0.023
TF12 0.68 -0.9984 0.0021

TABLE VIII: Statistical hypothesis test of the QGA when tested on three different platforms.

Parameters IBM Q16 IBM QASM Quantum Simulator
Mean -3.1678 -3.2414 -3.209
Variance 19.8886 21.3602 20.5329
Stand. Dev. 4.4597 4.6216 4.5313
d.o.f. — 22 22
Critical value — 3.792 3.792
t-value — 0.0397 0.0224
Hypothesis H0 — True True
In all the cases, the significance level value is α = 0.001; d.o.f means degrees of freedom.

TABLE IX: Statistical hypothesis test of the AQGA when tested in the three different platforms.

Parameters IBM Q16 IBM QASM Quantum Simulator
Mean -3.1931 -3.204 -3.2407
Variance 20.1019 20.3307 21.4001
Stand. Dev. 4.4844 4.509 4.626
d.o.f. — 22 22
Critical value — 3.792 3.792
t-value — 0.0059 0.0256
Hypothesis H0 — True True
In all the cases, the significance level value is α = 0.001; d.o.f means degrees of freedom.

implementation. The translation from QIEA to QEA was
done by taking into account the expectation value of Pauli
spin operators instead of the probability amplitudes of the
qubits.

The experiments were executed in three quantum plat-
forms, which included a GPU-based Quantum Simula-
tor, the IBM cloud QASM simulator, and IBM Q16
(ibm 16 melbourne backend). The accuracy metric shows
that, for most of the experiments, the results of both simula-
tors were very similar to each other. This fact demonstrates
that the translation from comparing probability amplitudes
to comparing expectation values of the Pauli spin operators
for determining the orientation of the evolution was correct.

Nonetheless, according to the results, the behavior of the
algorithms on the IBM Q16 varies considerably from that
of the IBMQ QASM simulator. For example, compared to
the simulator, the quantum device obtained a global mean
13% lower for the QGA and 24% lower for the AQGA.
Furthermore, in terms of precision, the IBMQ QASM shows
a lower average SD than the results in the Quantum Simulator
and the IBM Q16. The main reason for this discrepancy
might be related to the noisy nature of the quantum device
and the lack of an error mitigation phase.

We theorize that the errors in measurements lead to a
loss in subtle evolution for later stages, which might prevent
the convergence of the population to the optimal value.
Experiments with a higher amount of individuals seem to
validate this hypothesis; see Table V. Furthermore, since the
accuracy and SD improved for the simulators but not for the

quantum device, the lower performance might point towards
a cumulative error in the rotation and measurement in the
quantum circuit.

Welch’s test indicates that there is no statistical difference
between the results of the three platforms. This is an indicator
that noise correction might improve the results in quantum
devices for QIEA optimization, and further improvements in
hardware can put up to par classical and quantum implemen-
tations.

Quantum measurement plays an essential role in QIEAs
since it is the most powerful tool for getting both diversity
and convergence to the optimal value at the same time.
Therefore, it is important to assess how much the measure-
ment error influences the performance of the algorithms, and
how much in reality is related to the structural design of the
QEAs. In earlier generations, measurement error might not
affect the algorithm’s convergence since the diversity aids
in creating several evolutionary routes. The problem arise
in later generations when a delicate tuning of the values
is needed to move the population in the right convergence
direction. The noise generated by quantum measurement
might drastically change the value of the outcome binary
strings, generating a zig-zag pattern near the optimal value.

To study if the results of QIEAs improved using a local
search technique, we ran tests using gradient descent in
the IBM QASM. The results indicate that most of the best
quantum individuals are near the optimal value and do not
get stuck in local optima. This reinforces the idea that novel
techniques for fine-tuning in later generations with noise
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corrections plays an important role in running QIEAs on
quantum devices.

From the analysis of the results, the lowest performance
was obtained in functions with several local minima (TF2 has
near 20 in the established range, TF11 and TF12 have 3).
In addition, the value of the gradients of these test functions
near the local and global minima are big. A slight variation
in the individual can easily distance it from the optimal
value, which might induce a stale evolution. As mentioned
before, the simulation platforms had better performance
when incrementing the population size and generations, but
this increment was not drastic. The lack of performance
increase might reflect an inner limitation of QA and AQGA,
which might be solved by QIEAs that implement fine tuning
in latter epochs with a quantum circuit design.

We will finish this discussion by answering the opening
question “can quantum-inspired evolutionary algorithms take
advantage of quantum computers? Throughout this paper, we
have demonstrated that it is technically viable to translate
a quantum-inspired metaheuristic —designed for a non-
quantum-computer simulator— that provides optimal solu-
tions to a quantum computer based on the circuit model.
However, at present, the rate of repeatability (number of hits)
of optimal solutions is low. We have also discussed that noise
is a problem attributed to the fact that quantum technology
is still in the early stages of development. Therefore, we
conclude that it is worth continuing with the development
of quantum evolutionary algorithms that exploit the limits of
current NISQ devices to take advantage of future quantum
technology. We expect that the noise problems responsible
for not obtaining a high repeatability rate will eventually be
reduced. Meanwhile, it is important to analyze QIEA perfor-
mance in small populations with a few amount of generations
to fully take advantage of current quantum devices despite
their resource limitations.
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