
 

 
Abstract— Logical Analysis of Data (LAD) is a well-known 

classification technique that generates interpretable patterns 

with competitive accuracy. The challenge encountered in 

applying LAD comes from its long computational time, which 

makes it unsuitable for handling a large volume of data. In this 

paper, we propose a novel mechanism for developing an 

ensemble system for LAD (LAD-ENS) to improve its 

computational efficiency, while preserving its interpretability 

and promising accuracy. This new mechanism aims to maintain 

the explanatory power of classical LAD by combining the 

individual classifiers at the level of patterns. The developed 

ensemble system enables LAD to be run in parallel computing 

environments. Using datasets obtained from the UCI Machine 

Learning Repository, computational experiments are conducted 

to demonstrate the performance of LAD-ENS in terms of 

computational time, classification accuracy, and 

interpretability. Furthermore, we introduce the concept of the 

comprehensibility index in order to study the change in the 

explanatory power of LAD. In addition to achieving a 

statistically significant reduction in computational time, the 

developed LAD-ENS achieves competitive classification 

accuracies compared to two classical LAD approaches and five 

common machine learning algorithms. 

 
Index Terms— Computational efficiency, ensemble system, 

parallel computation, Logical Analysis of Data 

 

I. INTRODUCTION 

S an Artificial Intelligence (AI) application, a machine 
learning (ML) algorithm enhances the decision-making 

capabilities of various manufacturing and business systems. 
Therefore, achieving good performance of a ML algorithm is 
essential in ensuring efficient operation throughout these 
systems. Nevertheless, this goal becomes difficult to attain 
when dealing with a large volume of data, especially with the 
emergence of the Internet of Things (IoT) and Industry 4.0. 
IoT is the network of devices, buildings, machines, products, 
and other objects that are connected with sensors, software, 
and network connectivity, allowing these things to gather and 
interchange data [1]. Industry 4.0 aims to utilize advanced 
technologies in connectivity to gather all of the important data 
in manufacturing processes and products to develop 

analytical models through the means of ML techniques. One 
of the most important objectives of these models is predicting 
manufacturing performance and providing feedback so that 
corrective decisions can be made during the manufacturing 
processes. Therefore, the ML techniques that will be used in 
this context should have good explanatory power and 
interpretable results in order to provide root-cause analysis of 
certain phenomena to facilitate the decision-making process. 
However, well-known ML techniques, such as ensemble 
decision trees, support vector machines and neural network 
[2]-[4], show high accuracy in the literature, but do not have 
enough explanatory power and interpretable results. On the 
other hand, Logical Analysis of Data (LAD) is a classification 
approach that generates patterns containing structural 
knowledge that explain the hidden phenomena under study. 
As such, the patterns generated are the most useful results that 
indicate the candidate root causes behind the observed 
physical phenomena, and consequently, the best way to 
respond to them [5]-[7]. Additionally, LAD is used to develop 
regression models [8]. Because of these abilities, LAD is used 
in various fields such as medical, services, business, and 
manufacturing [7], [9]-[17]. However, a relatively long 
computational time makes LAD unsuitable for manipulating 
data with large volumes.  

Some techniques have been presented in the literature to 
implement LAD with the aim of enhancing computational 
efficiency. A polynomial algorithm was used in [18] to 
enumerate all LAD patterns with a selected degree to limit the 
number of features in the generated patterns. The degree of a 
pattern is the number of features it is constructed with. 
However, this technique still generates a high number of 
patterns, which is computationally expensive to handle when 
there are datasets with large amounts of features. In [19], 
instead of generating all possible patterns with specific 
characteristics, the column generation technique is used. In 
this framework, the master problem has the objective of 
building a LAD model with a maximum separation margin 
between the classes by generating patterns to enlarge this 
margin in subproblems. This column generation framework 
generates only one pattern in each iteration, which affects its 
computational efficiency. Therefore, a multi-pattern 
generation framework is developed to improve the efficiency 
of LAD column generation models by generating more than 
one pattern in each iteration [20]. However, none of these 
techniques is aimed at achieving a scalable LAD that handles 
a large volume of data.  

With a continuous increase in the volume of data, the need 
to develop scalable ML algorithms that can handle large 
datasets has attracted researchers [21]. A taxonomy was 
proposed in [22] for ML techniques that can handle a large 
volume of data by improving the computational efficiency 
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through either designing more efficient algorithms or relying 
on parallelism. The parallelism-based category reflects most 
of the state of the art in scalable ML algorithms [23]. 
Specifically,  parallelized methods that make ML algorithms 
more scalable are classified into two sub-categories: (i) 
parallelized model/parameters: developing parallelized 
versions of learning algorithms by first dividing the learning 
model/parameters and then performing computations on each 
division concurrently, and (ii) parallelized data: partitioning 
input data vertically, horizontally, or even arbitrarily into 
manageable pieces, and then computing all data subsets 
simultaneously [22], [24]. The parallelized-data techniques 
are mainly ensemble based, such as random forests [25] and 
XGBoost [26]. In this paper, we introduce a novel technique 
that belongs to this sub-category: an ensemble LAD (LAD-
ENS). 

While building an ensemble LAD may seem like an 
intuitive way to improve both accuracy and computational 
time, the challenge is actually to build an ensemble system 
that preserves the explanatory power of LAD. Such 
explanatory power can guide the decision maker on keeping 
a current process under control, or directing that process to 
reach its maximum yield. For example, specifying the cutting 
conditions at which a machining process provides the desired 
surface roughness and the required output. The objective of 
the proposed technique is establishing a mechanism to 
combine the knowledge of individual LAD classifiers while 
preserving such explanatory power. In order to achieve this, 
LAD-ENS deals with the individual classifiers at the level of 
patterns, and the explanatory power is based on these 
patterns. Different ensemble systems in other ML techniques 
use voting mechanisms that significantly decrease the 
interpretability of the results, such as Random Forest and 
XGboost. Since the explanatory power of LAD is affected by 
the total number of generated patterns and their average 
degree [18], an index is introduced in this paper as a measure 
of interpretability.  

The remainder of this paper is organized as follows: 
Section II provides essential background on the LAD 
classification technique. Section III introduces the LAD 
ensemble system (LAD-ENS). Computational experiments 
and a comparison with classical LAD and other machine 
learning algorithms are conducted in Section IV. Section V 
concludes the work and discusses the future directions. 

II. LOGICAL ANALYSIS OF DATA 

LAD, originated in [27], is a classification technique that 
is characterized by extracting interpretable patterns from 
two–class or multi-class datasets [28]. The generated patterns 
are utilized as decision rules, used to classify unlabeled data 

into distinct classes [29]. LAD can also be used to develop 
regression models [8]. However, in this paper we only 
address the classification models. The LAD classification 
technique consists of three main steps: data binarization, 
pattern generation, and theory formation, as shown in Fig. 1. 

The data binarization step converts numerical and nominal 
data to binary data. Pattern generation is an essential step that 
extracts structural information in the form of patterns that 
characterize each different class in the binarized dataset. 
Many approaches are used for pattern generation, mostly 
based on enumeration, heuristics, or mixed integer linear 
programming (MILP) algorithms. In this research, we use 
cbmLAD software [30], in which patterns are generated by 
using the ant colony optimization technique. Theory 
formation is the final step that uses the generated patterns to 
create a discriminant function that is used as a classifier for 
new data [6]. 

In the case of a two-class dataset, the training set is Ω �
Ω� � Ω� , which is formed from positive and negative 
subsets with � features. After the binarization and pattern 
generation steps, LAD forms the pattern set Π � �	
 , … , 	
�, 
where � is the number of generated patterns from the training 
set Ω. The pattern set has positive and negative patterns. Each 
	�  is a conjunction of � features, where � �  �  is the pattern 
degree. Each 	�  covers at least one observation from one of 
the subsets Ω� (or Ω�� and no observations from the other set 
Ω� (or Ω��. Each 	�  has characteristics that have been formed 
by the observations it covers. These characteristics are 
illustrated as follows: 
1) ��  is the class (the sign positive or negative) which is 

assigned to pattern 	� ,  
2) ��  is the number of observations covered by pattern 	� ,  
3) δ� is the degree which is the number of features 

constructing the pattern 	� ,  
4) π� is the prevalence, i.e., π�   �  ��/|Ω�| in case of 

positive  ��, or π�   �  ��/|Ω�| in case of negative ��, 
5) ��  is the weight of the pattern 	� , i.e.,

1:/
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In the theory formation step, LAD uses the weights of 
patterns to formulate the discriminant function as follows: 
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Fig. 1. Framework of LAD.  
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It is obvious that �� �  � !"1,1$. The new observation   
is classified as a positive observation if �� � % 0, negative 
observation if   �� � ' 0, and unclassified if �� � � 0. 

In order to use LAD in multi-class classification problems, 
a decomposition approach is used to divide the multi-class 
problem into many two-class problems. This approach is 
applied in two different methods: One-Versus-All (OvA) and 
One-Versus-One (OvO) [31]. The OvA method divides the 
multi-class problem into ( different two–class classification 
problems, where ( is the number of classes. Each problem 
considers one class ) ∈ !1: ($ as the positive class and all the 
remaining �( " 1� classes as the negative class. The OvO 
method divides the multi-class problem into ,-

./ two-class 
problems by considering each possible class pair as an 
individual two-class classification problem. Each problem 
considers class ) ∈ !1: ($ as a positive class and 0 ∈ !1: ($ as 
a negative class, where ) 1 0. In this research, we use the 
multi-class OvO method for handling multi-class datasets in 
our computational experiments. 

III. ENSEMBLE LOGICAL ANALYSIS OF DATA 

Building an ensemble system is based on three pillars: (i) 
sampling the training data for individual basic classifiers, (ii) 
the training procedures of individual classifiers, (iii) the 
combination mechanism for merging individual classifiers 
and obtaining an ensemble model [32].  

In this work, we use stratified sampling without a 
replacement to generate 2 different data subsets for training 
individual LAD classifiers, as shown in Fig. 2. In the case of 
a two-class dataset, the training set  3 � 3� � 3� , with � 
features, is partitioned into 2 subsets, indexed by ). Each 
subset Ω� � Ω�

� � Ω�
� , has the same � features of 3.  LAD is 

applied on each data subset in a parallel manner to generate 
2 individual LAD classifiers. Each classifier ) has an 
independent pattern set, Π� � �	�
, … , 	�
4�, where �� is the 

number of patterns generated from applying LAD on Ω� . Each 
	�5 , where 0 � 1, … , ��, is a positive (or negative) pattern that 
covers at least one observation from the set Ω�

� (or Ω�
�� and 

does not cover any observation from the other set Ω�
� (or Ω�

��. 
The characteristics of any pattern 	6-  , 7 є !1: 2$ and 

( є !1: �6$, are based on the data subset Ω6, and are as follows: 

1) �6-  is the class positive (or negative) of pattern ( 
generated from data subset 7. 

2) �6-  is the number of observations from Ω6  covered by 
pattern 	6- ,  

3) �6-  is the weight of the pattern 	6- , i.e., 

1:/
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In order to build a combination mechanism that merges the 
knowledge of individual classifiers and preserves the 
explanatory power of LAD, we introduced a mechanism at 
the level of patterns before formulating the discriminant 
function of LAD. This mechanism updates the weight of each 
pattern to take into consideration the other patterns from other 
individual classifiers. The weight ω6-  of pattern 	6-  is 
adjusted to a combined weight ω6-

; , which is the ratio of the 
coverage of 	6-  to the total coverage of all classifiers’ patterns 
with the same class as 	6- . 
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After updating the weights of the patterns, the mechanism 
formulates the LAD-ENS discriminant function using all 
patterns from all individual classifiers in a single function as 
follows: 
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   (5) 

Even though the voting mechanism provides good 
accuracy and results in the literature with other ML 
techniques, such as Random Forest and XGboost, this 
proposed mechanism preserves the explanatory power of 
LAD by using the patterns to directly predict the class instead 
of getting a vote from each individual classifier, which 

 
 

Fig. 2. Framework of LAD-ENS. 
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significantly reduces the interpretability. 
To illustrate how a LAD-ENS model is developed 

compared to classical LAD, we consider, for example, a two–
class dataset 3 � 3� � 3� with two features (X and Y). The 
data is partitioned by using a stratified sampling approach 
without replacement into two data subsets 3
 � 3


� � 3

� 

and 3. � 3.
� � 3.

�. The dataset 3, and the two data subsets  
3
  and 3. are illustrated in Fig. 3. Running classical LAD 
on 3 generates a pattern set Π, as shown in Fig. 4.c. Each data 
subset 3
 and 3.  was processed by LAD separately, 
providing two basic pattern sets Π
 � �	

, 	
.�, and Π. �
�	.
, 	..�, from 3
 and 3., respectively, as shown in Fig. 4.a 
and Fig. 4.b. The characteristics of the patterns are 
determined and illustrated in Table 1. 

In order to prepare these two sets of patterns Π
 and Π. for 
a LAD-ENS discriminant function, the weights of the patterns 
are adjusted according to (3). For example, ω

=1 is adjusted 
to ω



? =0.3. Other patterns’ weights are illustrated in Table 1. 
In this table, the patterns of Π. have relatively higher 
combined weights than Π
 because they are generated using 
a relatively larger sized data subset. 
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Afterwards, (4) and (5) will be used to formulate the 
ensemble discriminant functions �@AB@CD6@  to classify new 
unlabeled observations. 

IV. COMPUTATIONAL EXPERIMENTS 

In this section, the computational performance and the 
classification accuracy of the developed LAD-ENS are 
demonstrated using twenty datasets obtained from the UCI 
machine learning repository. Table 2 shows the descriptions 
of these datasets. The k–fold cross validation approach is 
used with ( �  5 to average the results obtained from five 
different training data subsets and five corresponding testing 

 
1 https://docs.computecanada.ca/wiki/Cedar 

data subsets. As our main objective is to reduce the 
computational time of LAD and solve classification problems 
with huge datasets, we compare between our proposed LAD-
ENS and the classical LAD models in terms of computational 
time and classification accuracy. Additionally, the qualities 
of the patterns are compared in terms of the total number of 
patterns and their degree and prevalence. Moreover, a 
comprehensibility index (�F) is introduced in order to study 
the effect of LAD-ENS on the explanatory power of the 
generated patterns. Additionally, to evaluate the 
competitivity of LAD-ENS compared to other classifiers, 
LAD-ENS is compared to five ML techniques in terms of the 
classification accuracy.  

The mechanism of the developed LAD-ENS allows the 
pattern generation step to be performed in a parallel manner. 
In these computational experiments, we run LAD-ENS in 
parallel on Cedar cloud computing clusters provided by 
Compute Canada1 using 20 cores. Each core has a 2.1 GHz 
CPU. Utilizing cloud-computing systems allows LAD to 
handle large volumes of data. The number of subsets in LAD-
ENS is different for each dataset, as shown in the last column 
of Table 2. This number is chosen empirically based on the 
size and the separability of the classes of the datasets to 
generate patterns from each subset in a reasonable 
computational time. We increase the number of individual 
classifiers if the data size is big, or if the separability is low. 

Table 3 provides a comparison between LAD-ENS and 
two classical LAD models: cbmLAD [30] and the multi-
pattern generation framework of LAD (MPG-LAD)  [20]. 
The results of MPG-LAD are gathered from [20]. The 
reduction in processing time by using LAD-ENS is more than 
75% in most of the datasets compared to the cbmLAD model, 

                

 
Fig. 3. The generated dataset Ω, and two data subsets Ω
 and Ω.. 
 

TABLE 1 
CHARACTERISTICS OF THE PATTERNS IN Π1 AND Π2 SETS. 

Pattern Class � � ω; 
	

 Positive 30 1 0.3 
	
. Negative 30 1 0.3 
	.
 Positive 70 1 0.7 
	.. Negative 70 1 0.7 
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and more than 99% in all datasets compared to the MPG-
LAD model. The n/a means that the classical LAD models 
were not able to solve the problems within 24 hours of 
running time. However, LAD-ENS was able to solve these 
problems in fewer than 10 minutes. Sampling datasets that 
have complex boundaries and low separability between the 
classes into different subsets enables LAD-ENS to handle 
them with fewer binary attributes and in less computational 
time. In terms of classification accuracy, LAD-ENS performs 
competitively for almost all datasets except wpbc, hrt-h, hrt-
s, hrt-lb, and prks.  

In order to statistically evaluate the computational time and 
accuracy of LAD-ENS, the Friedman test is used to compare 
the results of the three LAD models. The Friedman test is a 
non-parametric statistical test used to detect differences 
between the values of various populations’ means [33]. The 
test is applied to the computational time and the accuracy for 
the three LAD models, cbmLAD, MPG-LAD and LAD-ENS, 

in two phases. We do not include the last 7 datasets in the test, 
since cbmLAD and MPG-LAD failed to handle them. The 
null hypothesis of phase 1 states that all of those models have 
the same means of computational time (or accuracy), as 
follows: 

GH:   I;DCJKL � IMNO�JKL � IJKL�PQR  
The alternative hypothesis is formulated as follows: 

GS:  TUV W77 2XW�Y W�X XZ[W7  
To reject or accept GH, the test statistic \
 and the 

calculated significance level ] are calculated as given in [33] 
and compared to the significant values; \;
�^�;S6 � 6.0 and 
];
�^�;S6 � 0.05. Tables 4 and 5 show phase 1 of the Friedman 
tests on computational time and accuracy, respectively. For 
computational time, GH is rejected with a high value of \
 �
26.0 which means that there are very significant differences 
in terms of the computational time between the three LAD 
models. Meanwhile, GH is accepted in the test for accuracy, 
which indicates that the three LAD models are similar in 

TABLE 2 
DATASETS DESCRIPTION 

ID Name # of 
Classes 

# of 
observations 

# of positive 
observations 

# of negative 
observations 

# of 
features 

# of subsets 

wbc Wisconsin Breast Cancer 2 699 458 241 9 10 
wpbc Wisconsin Prognostic Breast Cancer 2 198 47 151 33 2 
wdbc Wisconsin Diagnostic Breast Cancer 2 569 212 357 30 4 
hrt-c Heart disease diagnosis - Cleveland 2 303 139 164 13 4 
hrt-h Heart disease diagnosis - Hungarian 2 294 106 188 10 4 
hrt-s Heart disease diagnosis – Switzerland 2 122 114 8 10 2 
hrt-lb Heart disease diagnosis - Long Beach VA 2 200 149 51 8 2 
hpts Hepatitis Domain 2 142 28 114 18 2 
bld BUPA liver disorders 2 325 200 125 6 2 
pid Pima Indians Diabetes 2 768 500 268 8 10 

SPECTF SPECTF Heart Data 2 267 212 55 44 2 
SPECT SPECT Heart Data 2 267 212 55 22 2 

prks Parkinsons Disease 2 195 147 48 22 2 
SB Spambase 2 4,601 2788 1813 56 10 

WFR Wall-Following Robot Navigation 4 5,456 -- -- 24 10 
LR Letter Recognition 26 20,000 -- -- 16 10 
MG MAGIC Gamma Telescope 2 19,020 12332 6688 10 65 

MBP MiniBooNE particle identification 2 130,065 93565 36499 50 500 
SS Skin Segmentation 2 245,057 194198 50859 3 90 
CTa Covertype 7 581,012 -- -- 7 50 

All datasets are available on the UCI machine learning repository: https://archive.ics.uci.edu/ml/index.php 
a A sample of only 50,000 observations from Covertype dataset was used in the experiments to fit the available memory in compute Canada clusters. 

 

 

 
Fig. 4. a: pattern set Π
, b: pattern set Π., and c: the patterns generated by classical LAD. 
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terms of accuracy. 
Phase 2 of the Friedman test is aimed to distinguish the best 

model that will lead to a significantly lower computational 
time or significantly higher accuracy. Accordingly, pairwise 
comparisons were performed between LAD-ENS and each 
model 0 of the two other LAD models. The null and the 
alternative hypothesis are formulated as follows: 

GH:   IJKL�PQR � I5 
GS:   IJKL�PQR 1 I5 

The absolute difference (ab) between the rank sums, 
cdJKL�PQR " d5c, is computed, where d5 is the rank 
summation for the model 0. If the ab exceeds the post-hoc 

value �efgT(�( � 1�/6, the null hypothesis is rejected. �ef 

is the 100,1 " hi/
^j

 of the standard normal distribution, hi 
is the family-wise significant level, T is the number of 
datasets, and ( is the number of models [33]. As shown in 
Table 4, the results of phase 2 declared that the LAD-ENS 
model significantly outperforms both cbmLAD and MPG-
LAD models in terms of computational time. However, phase 
2 declared that the accuracies are not significantly different 
between LAD-ENS and the other models, as shown in Table 

5. Moreover, LAD-ENS was able to handle the last seven 
datasets, while cbmLAD only handled two and MPG-LAD 
was not able to handle any. 

In order to study how LAD-ENS affects the interpretability 
power of LAD, we introduce the complexity measure shown 
in equation (4). This measure is computed for LAD-ENS and 
cbmLAD models for each dataset to give a quantitative 
measure of the model’s complexity. Furthermore, a 
comprehensibility index (CI) is introduced in equation (5). 
Values of CI near 0 indicate a low explanatory power, 
whereas values near 1 indicate a high explanatory power.  

. .

.

No of Patterns Avg degree of Patterns
Complexity

No of Classes


  (4) 

1
CI

Complexity
         (5) 

Table 6 shows a comparison between LAD-ENS and the 
cbmLAD model in terms of the number of patterns, average 
degree of the patterns, and the CI over the datasets that 
cbmLAD was able to solve. 

TABLE 3 
COMPARING THE PERFORMANCE OF LAD-ENS WITH CLASSICAL LAD MODELS 

Dataset cbmLAD  MPG-LAD  LAD-ENS 
Accur (%) Time (sec.)  Accur (%) Time (sec.)  Accur (%) Time (sec.) Time reduction % wrt: 

cbmLAD MPG-LAD 
wbc 95.13 6.07  95 2283  94.44 0.98 83.86 99.96 

wpbc 68.86 21.42  98 534  60.56 4.36 79.65 99.18 

wdbc 95.81 41.90  99 1798  94.96 1.97 95.30 99.89 

hrt-c 82.11 8.28  81 1438  83.11 1.54 81.40 99.89 

hrt-h 68.61 5.08  78 2816  61.56 1.14 77.56 99.96 

hrt-s 47.88 0.70  78 106  50.0 0.60 14.29 99.43 

hrt-lb 56.68 1.71  68 3505  55.85 1.41 17.54 99.96 

hpts 77.80 0.81  71 794  79.86 0.74 8.64 99.91 

bld 70.52 11.24  63 3843  66.90 2.08 81.49 99.95 

pid 75.88 140.21  70 16354  72.87 4.74 96.62 99.97 

SPECTF 72.81 29.55  73 1595  64.81 2.12 92.83 99.87 

SPECT 67.92 1.21  70 1809  74.81 0.93 23.14 99.95 

prks 70.45 4.61  100 205  68.07 1.38 70.07 ~100 

SB 91.99 16191  n/a n/a  93.73 61.06 99.62 ~100 

WFR 99.74 1582  n/a n/a  98.83 16.01 98.99 ~100 

LR n/a n/a  n/a n/a  83.17 181.49 ~100 ~100 

MG n/a n/a  n/a n/a  84.42 35.37 ~100 ~100 

MBP n/a n/a  n/a n/a  88.88 276.83 ~100 ~100 

SS n/a n/a  n/a n/a  84.52 145.33 ~100 ~100 

CT n/a n/a  n/a n/a  71.52 612.64 ~100 ~100 

 

TABLE 5 
FREIDMAN TEST ON ACCURACY PERFORMANCE 

Model Phase 1  Phase 2 
 Sum of ranks �d� Mean of ranks  ab ab %  ]UYV " ℎUm? Significant? 
cbmLAD 25 1.92  5.0 TU TU 
MPG-LAD 23 1.77  7.0 TU TU 
LAD-ENS 30 2.30     

�\
 � 2.0  '  6.0,  ] � 0.368 %  0.05� → fail to reject GH  hi � 0.025,   �ef
� 1.96,   ]UYV-ℎUm sW7[X � 9.994  

 
TABLE 4 

FREIDMAN TEST ON COMPUTATIONAL TIME PERFORMANCE 

Model Phase 1  Phase 2 
 Sum of ranks �d� Mean of ranks  ab ab %  ]UYV-ℎUm? Significant? 
cbmLAD 26 2  13 uXY uXY 
MPG-LAD 39 3  26 uXY uXY 
LAD-ENS 13 1     

�\
 � 26.0 %  6.0,  ] � 0.0 ' 0.05� → Rejecting GH  hi � 0.025,   �ef � 1.96,   ]UYV-ℎUm sW7[X � 9.994  
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LAD-ENS generated a number of patterns, up to 25% more 
in some datasets, compared to the number of patterns in 
cbmLAD. In other datasets, LAD-ENS produced a number of 
patterns that was less than that of cbmLAD by 6.6% to 37%. 
On the other hand, the average degree of patterns was reduced 
in most datasets, which led to an increase in the CI of LAD-
ENS over classical LAD. The sampling process that is used 
to extract the data subsets with better separability between the 
classes explains this decrease in the average degree of the 
patterns. Therefore, a small number of patterns are generated 
from each data subset with low degrees. This resulted in 
developing a LAD-ENS model with a reasonable number of 
patterns and with low degrees compared to the classical LAD 
model. For a WFR dataset, this reduction in the average 
degree of patterns did not prevent an increase in the 

complexity of the LAD-ENS model. This is due the number 
of patterns that increases significantly, 3.8 times, compared 
to the number of patterns generated by the classical cbmLAD 
model. Nevertheless, LAD-ENS has an efficient 
computational time of 16 seconds compared to 1582 seconds 
of cbmLAD. However, by eliminating LAD-ENS patterns 
that have homogeneity less than the 75th percentile, the 
number of patterns is considered only 5% more than the 
number of patterns in cbmLAD. Moreover, the average 
degree is reduced to 2.72, resulting in a CI of 40.84 v 10�w 
which is better than the CI of cbmLAD. Removing these low 
homogeneity patterns does not affect the accuracy of LAD-
ENS on a WFR dataset, as will be discussed further in the 
paper. 

TABLE 6 
COMPARING THE PATTERNS GENERATED BY LAD-ENS AND CBMLAD 

Dataset LAD-ENS  cbmLAD 

# of patterns Avg. Degree CI (E-3)  # of patterns Avg. Degree CI (E-3) 

wbc 35 2.24 25.52  28 4.95 14.44 

wpbc 24 7.50 11.12  23 10.41 8.36 

wdbc 25 5.16 15.5  22 9.25 9.82 

hrt-c 46 4.13 10.52  54 5.36 6.9 

hrt-h 40 3.83 13.06  49 4.72 8.64 

hrt-s 10 3.96 50.5  11 4.75 38.28 

hrt-lb 44 3.29 13.82  44 3.41 13.32 

hpts 10 3.96 50.5  16 4.99 25.06 

bld 70 4.46 6.4  75 4.36 6.12 

pid 127 4.38 3.6  158 5.71 2.22 

SPECTF 19 12.1 8.7  28 15.86 4.5 

SPECT 35 4.80 11.9  33 5.42 11.18 

prks 13 3.16 48.68  17 6.48 18.16 

SB 307 12.63 0.52  283 15.26 0.46 

WFR 129 4.89 6.36  34 3.26 36.08 

WFRa 36 2.72 40.84  34 3.26 36.08 
a Patterns with homogeneity less than the 75th percentile are eliminated from the LAD-ENS model. 

 
Fig. 5. Empirical cumulative distribution functions for the homogeneity of LAD-ENS patterns 
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The main limitation of LAD-ENS is that the homogeneity 
of some patterns can change when scanning the entire dataset. 
As each pattern was generated on one chunk of data, a pattern 
might cover observations that belong to opposite classes from 
other chunks. In the case of a positive (negative) pattern, 
homogeneity is the proportion of the covered positive 
(negative) observations over all of the covered observations 
from positive and negative classes. The homogeneity of a 
pattern is an important characteristic, since it refers to the 

confidence of a positive/negative pattern belonging to a 
positive/negative class.  

In order to analyze the quality of patterns in terms of 
homogeneity and prevalence, all observations are scanned by 
each pattern for every dataset. Homogeneity and prevalence 
are calculated for each pattern. Empirical cumulative 
distribution functions and box plots of the homogeneity are 
shown in Fig. 5 and Fig. 6, respectively. The means of 
homogeneity are illustrated with red triangles in Fig. 5. These 

 
Fig. 6. Box plots of the homogeneity of LAD-ENS patterns 
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figures illustrate that 25% or fewer patterns have 
homogeneity that is lower than 70% over most datasets. The 
figures also show that most of the generated patterns have a 
very high homogeneity/confidence of 0.8 or more. 

The results obtained with the proposed LAD-ENS 
mechanism are encouraging, since they demonstrate that the 
patterns generated by LAD-ENS could be used to guide a 
decision maker when monitoring a business or industrial 
process of interest. For example, controlling parameters of a 
manufacturing process such as the operating conditions and 
the measurements that keep the process under control, and 
predicting future events such as failure, alarm, and fraudulent 
cases. In addition, patterns with a high confidence are also 
useful in monitoring the status of a patient regarding a 
specific disease, and in detecting network intruders and spam 
emails. 

In order to investigate whether patterns with low 
homogeneity negatively affect classification accuracy, the 
patterns with homogeneity lower than the 25th, 50th, 75th and 
85th percentiles were eliminated when forming the 
discriminant function. After each elimination, the testing 
accuracy is computed using a new set of patterns. The 
accuracy of the results is shown in Fig. 7. The results 
demonstrate that accuracy is not negatively affected by 
keeping low homogeneity patterns. In most of the datasets, 
testing accuracy decreases by discarding patterns that have a 
homogeneity lower than the 75th percentiles. Therefore, low 
homogeneity patterns could be eliminated to enhance the CI 
of the model, as we did earlier for the WFR dataset. 

Additionally, the prevalence of patterns is illustrated in 
Table 7 and compared with cbmLAD for the datasets that 
cbmLAD was able to solve. The patterns of LAD-ENS show 
a high average prevalence compared with the patterns of 
cbmLAD. Overall, while the purity of the patterns might be 
lost in LAD-ENS, it provides better prevalence and 
explanatory power. 

Finally, Table 8 provides a comparison between LAD-ENS 
with accuracy results of other well-known machine learning 
techniques, as summarized in [20], such as support vector 
machines (SVM) [3], decision tree (J48) [34], random forest 
(RF) [25], multilayer perceptron (NN)  [4] and logistic 
regression (LR). It can be observed that LAD-ENS provides 
competitive classification performance. This is obvious for 
the wbc, wdbc, hrt-c, bld, and pid datasets. Although SVM 
outperforms LAD-ENS in some datasets, SVM lacks the 
capability of providing interpretable results. As explained 
before, LAD-ENS provides the interpretability power that 
guides a decision maker when monitoring a business or 
industrial process of interest. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have developed an ensemble LAD system 
called LAD-ENS to enhance computation time and to train, 
test and classify large volumes of data. This ensemble system 
was built based on stratified sampling without a replacement 
technique, in addition to a proposed combining mechanism 
that integrates all patterns that are provided by the individual 
LAD classifiers. This mechanism combines the knowledge at 
the level of patterns and then formulates a new ensemble 
discriminant function. This mechanism preserves the 
explanatory power of LAD patterns and does not reduce their 

 

Fig. 7. Testing accuracy of LAD-ENS after discarding patterns with 
homogeneity lower than different percentiles.  

TABLE 7 
THE PREVALENCE OF PATTERNS GENERATED BY LAD-ENS AND CBMLAD 
Dataset Average prevalence 

LAD-ENS  cbmLAD 
wbc 0.79  0.42 
wpbc 0.44  0.33 
wdbc 0.82  0.75 
hrt-c 0.39  0.22 
hrt-h 0.29  0.15 
hrt-s 0.49  0.45 
hrt-lb 0.12  0.09 
hpts 0.58  0.477 
bld 0.13  0.08 
pid 0.29  0.07 
SPECTF 0.56  0.51 
SPECT 0.25  0.11 
prks 0.6  0.5 
SB 0.37  0.15 
WFR 0.75  0.68 

 

TABLE 8 
COMPARING THE ACCURACY OF LAD-ENS WITH OTHER MACHINE LEARNING TECHNIQUES 

Dataset LAD-ENS SVM J48 RF NN LR 
wbc 94xy 97xz 94x2 97x1 96x2 96x2 
wpbc 60x7 77x2 75x5 80x4 77x5 80x5 

wdbc 95x| 97x1 93x2 96x2 97x1 97x2 

hrt-c 83xy 84x5 78x5 83x5 79x5 83x5 
hrt-h 61x2 81x4 79x4 80x4 78x5 83x5 

hrt-s 50x4 94x2 93x2 93x3 89x6 92x4 
hrt-lb 55x5 75x1 72x5 75x4 69x7 74x4 
hpts 79x4 87x5 82x6 87x5 81x6 85x6 
bld 66x5 58x0 62x5 73x6 68x6 69x5 
pid 72x6 77x3 74x3 76x3 75x3 77x3 
SPECTF 74x5 79x0 78x5 81x3 77x5 79x4 
SPECT 64x4 83x4 80x3 82x4 80x4 82x5 
prks 68x8 87x4 83x7 91x5 92x5 85x6 
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interpretability like the voting mechanism does. By means of 
this system, we successfully ran LAD-ENS on cloud 
computing clusters. The LAD-ENS system was evaluated in 
terms of computational time, accuracy, pattern quality and 
comprehensibility. The statistical Friedman tests revealed 
that LAD-ENS significantly outperforms classical LAD 
models in terms of computational performance. Moreover, 
Friedman tests revealed that very competitive accuracy is 
obtained. Although the patterns may lose their purity, the 
patterns of LAD-ENS have lower degrees than those of 
classical LAD, which enhanced the comprehensibility index. 
The computational experiments show that if the sampling 
process is not able to relax complex boundaries of a dataset 
enough, the number of generated patterns in LAD-ENS will 
increase significantly and reduce the explanatory power of 
the patterns. However, by eliminating low homogeneity 
patterns, the explanatory power will improve significantly, 
and accuracy performance will not be affected. In general, the 
proposed LAD-ENS demonstrates better performance in 
terms of computational time and quality of patterns over 
classical LAD models. 

The novel research on ensemble LAD systems introduced 
in this paper could be extended into many different directions. 
One of these directions would be to use various sampling 
methods to enhance the quality of the data subsets provided 
to the pattern generation processes. This feature level could 
be another direction, focusing mainly on the features of 
original data in order to select appropriate subsets, or sample 
the features in subsets and provide them to the pattern 
generation processes with an aim to enhance accuracy. The 
combining mechanism level is another direction, which 
would focus mainly on enhancing the combining process and 
selecting the most appropriate patterns. This research 
direction could enhance the explanatory power by reducing 
the number of patterns. 
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