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Fuzzy Stress-Strength Reliability Subject to
Exponentiated Power Generalized Weibull

Neama Salah Youssef Temraz

Abstract— In this paper, a study of the stress-strength
reliability model is introduced subject to the exponentiated
power generalized Weibull distribution. The maximum
likelihood estimator for the stress-strength reliability function
is deduced. The asymptotic confidence interval for the stress-
strength reliability function is derived. The fuzzy stress-
strength reliability function is discussed using the triangular
membership function. A Bayesian estimator for the stress-
strength reliability function is deduced. A real data application
is introduced to show the results for the stress-strength model
based on real data and compare the use of exponentiated
power generalized Weibull distribution with existing
distributions.

Index Terms— Reliability, Stress-strength, exponentiated
power generalized Weibull distribution, maximum likelihood
estimation, Bayesian estimation, fuzzy number, triangular
membership function.

. INTRODUCTION

Wong (2012) presented an asymptotic interval
estimation for P(Y < X) when XandY are two
independent variables that follow the generalized Pareto
distribution based on the modified signed log-likelihood
ratio statistic. Asgharzadeh et al. (2013) deduced the
maximum likelihood estimator and of R and its asymptotic
confidence interval in case of the stress and strength
variables having a generalized logistic distribution with the
same unknown scale but different shape parameters or with
the same unknown shape but different scale parameters.
Also, the Bayesian estimator for R was deduced. Hussian
(2013) presented the estimation of R = P(Y < X) when X
and Y are two variables that follow the generalized inverted
exponential distribution with different parameters. He
discussed the maximum likelihood and the Bayes estimators
for the reliability function.

Ghitany et al. (2015) developed the study of the point
and interval estimation of the reliability of a stress-strength
system from power Lindley distribution using different
methods of the maximum likelihood, nonparametric and
parametric bootstrap. Li and Hao (2016) studied the
estimation of R=P(Y <X) when X and Y follow
generalized exponential distributions containing one outlier.
Mokhlis (2017) proposed the study of the reliability of the
stress-strength model subject to an exponential distribution
with general form. Li and Hao (2017) introduced the
estimation of R =P(Y <X) when X and Y are two
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independent variables that follow inverse Weibull
distributions with different parameters. lranmanesh et al.
(2018) presented the estimation of stress-strength reliability
parameter R = P(Y < X) when X and Y are independent
random variables that follow inverted gamma distribution.
Mohie EI-Din et al. (2018) discussed the stress-strength
reliability model R = P(Y < X) when X and Y follow an
exponentiated generalized inverse Weibull distribution with
different parameters. Juvairiyya and  Anilkumar (2018)
introduced the likelihood and Bayesian estimation methods
for the  stress-strength reliability under the Pareto
distribution with upper record values.

Muhammad et al. (2020) proposed the estimation of
stress-strength reliability parameter R = P(Y < X) based on
complete samples when the two independent variables X
and Y have Poisson half logistic distribution. Al-omari et al.
(2020) presented the estimation of the stress-strength
reliability for exponentiated Pareto distribution using
median and ranked set sampling methods.

Most papers in the literature assumed the study of the
deterministic reliability of the stress-strength models. This
paper presents the fuzzy reliability function for the stress-
strength model assuming that reliability with triangular
membership function under the exponentiated power
generalized Weibull distribution. To obtain the fuzzy
reliability function, the maximum likelihood estimator and
the asymptotic confidence interval for the stress-strength
reliability function are obtained. Bayesian estimators and the
credible interval for the stress-strength reliability function
are discussed. A real data application is introduced to show
the results for the stress-strength model and compare
different distributions.

I1.EXPONENTIATED POWER GENERALIZED WEIBULL
DISTRIBUTION
Pefia-Ramirez et al. (2018) proposed the exponentiated
power generalized Weibull distribution with four parameters
with cumulative distribution function and probability
density function which given as follows

F(x)=[1- el‘(“’“‘a)y]ﬁ, x>0, wa,y,>0
and

flx) = ﬁ[l — el—(1+ﬂx0‘)"]‘6'131—(1+ux"‘)"y(1 + ‘uxa)y—luaxa—l
where u is the scale parameter and «,y and 8 are the

shape parameters. This distribution is flexible to model the
failure rates of reliability applications.

IIl. STRESS-STRENGTH RELIABILITY

Let X and Y are two independent random variables, then
the stress-strength reliability function will be given by
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R=P(Y<X) = f f FOOf () dydx = fw [ f fy()’)dy]fx(x)dx
- fw Fy (O, () dx

[1 el (1+uxa)V]/32 B, [1 1—(1+uxa)1']/31’121—(1+ux“)v},(1

R=

OHS

+ ux®) pax®tdx
Solving the integral yields an expression for the stress-
strength reliability function

_ B
CBith
A. Maximum Likelihood Estimation
Assume the two independent random samples
Xy, X5, ..., X)) and (Y1,Ys,...,Y,) are observed from the

exponentiated power generalized Weibull distributions with
the parameters (i, @,y,B;) and (u, a,v,B,), respectively.
The likelihood function of u,a,y,B; and B, for the
observed samples is given as follows

n m

L= Hf(xi)l_[f(yj)
i=1 j=1

n

i=1
m

— el (rux ) | pi-1 1—[ Boyuay; < (1
L1

a ayr1Pz—1
+ Myja)y—lel—(1+uyj )y [1 _ el—(1+uyj )y] 2

The log-likelihood function of u,a,y,B; and B, is
obtained as follows

logL = nlog(8,) +mlog(;) + (n +m)log() + (n +m) log()
+(+m)log(n) + (@—1) ) log(x)
- 1)Zn: log(1 + px,%) ;n - Zn:u +ux)
+ (B, — 1)_Zn: log[1 - e1-<1+ﬂ’<i">v]_
+ (a— 1)5: log(y;) + (v — 1)i log(1+ py;%)
= =1
+m = i(l +uy; )’
=

+B. -1 i log [1 - el_(“l‘yju)y]

=
The partial derivatives of the log-likelihood function with
respectto u, a,y, [31 and f3, are obtained as follows
Qogh _n+m, Z log (1 + ) - Z(l +ux) log(1 +ux®)

dy
+ (ﬂl

(1 + px ) log (1 + pux;®)e =+
-1 Z 1 — el-A+ux @Y

n+m

=
+ Z log(1+ py;®)
=

Z(l + uyj“)y log(1+ py;®)

=t

+ (B,

-1 Z (1+ny,%)" 109(1 + py; e’
el-(1+uy;@)

6logL n+ m

-1 Z Z 1 ayy— 1 a
m ) 1+ux”‘ @+ px;®)
(1+ux u)y 1xlael (A+pux;®)Y
+a(p—1) Z e
m
-1
l)z1 aZ(1+uyJ-"‘)y y;®
j=1

1+ a\r1 ael—(1+,uyj‘1)y
+a(ﬁz—1)z( w7

1 — et-(1+uy;@)’

n
dlogL n+m x;%log(x;
g =T+Zlog(xi)+(a—1)u2‘—g(‘)
i=1 i=1

Joa 1+ ux®

—yu Z(l + ux M) xlog (x;)
i=1
+ u(By

1 O (1 + @) " Lx % log (et~
) 1 — el-tax®7

l
+Zlog<yj>+w—1> > )

—V#Z(l + 1<) y;%l0g(3)

j=1
+ #(ﬁz ,
(1 + Myla) y]alog(y )61 (1+1y;%)
1)2 1 (1+/,Ly]a)
(')logL Z lOg el- (1+”xla)y]
0B 31
dloglL ay
S Z log |1 — e~ (1+#7)
o8 B LY | ]

Equating the partial derivatives to zero and then solving
the resulting equations numerically yields the maximum
likelihood estimators for the parameters u, a, y.

dlogL

dloglL
0,209 _
ay

)

dloglL
0,229~ _

06logL_
ou ' da -

0 dlogL
0By

" 0B,

The maximum likelihood estimators for the parameters
B, and 3, can be obtained from the following relations

-n
ﬁ1 =

" log [1 — e1-(1+ax;®) ]

B2 =

ym, log [1 _ e1—(1+ﬁxi&)y]
The maximum likelihood estimators for the stress-
strength reliability function can be obtained as

[

R=—"-—
B + B2

B. Asymptotic Confidence Interval

The asymptotic variance (AV) of an estimate R which is
a function of the two independent statistics f3; and 3, is
given by (see Rao (1973))

AV(R) =V (fy) (;;;) +V(P2) (6R)

where

PN RN
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Asn > oo, m — o, N(O 1) and the asymptotic

100(1 — 6)% confldence interval for R is given by
. 3.5 1 1
Rtz s [aV(R) = R+z1__& e
2 2 (B + ﬁz) m

C.Fuzzy Stress-Strength Reliability

Assume that the stress-strength reliability is a fuzzy
function with triangular membership function. the interval
for the fuzzy stress-strength reliability is given by

[R,Ryl=[L+a—cut(M—L),U—a— cut(U— M)]
where a — cut =0,0.1,...,0.9, [L, U] is the confidence
interval for R and M is the maximum likelihood estimator
for R.

D. Bayesian Estimation

The Bayesian estimator for the stress-strength reliability
will be obtained assuming that the parameters g, and (8, are
independent random variables with the following prior
distributions

Bi~Gamma(94,11)
Bz~Gamma(9,,1)
The joint prior distribution of the two parameters 8; and 3,
is given by
92— 13—711131 7]252

(B, B,) = FB l"{) 2 91, 92,11,M2, 1, B2 > 0

The joint posterlor density of the parameters 8, and S, is
given by

(B, B2 1%, ) =

By, B)L(By, Bos @,V %, Y)
Iy 1y By BILBy, Boy iy @, Y3 X, Y) A1 B,
The Bayesian estimator of the reliability function R under
the squared error loss function using the posterior mean is
given by

Rep, = EQRIx,y) = f f R TI*(By, By, y)dBrd,
0 0

Using Lindley approximation (see Lindley (1980)), the
Bayesian estimator of R under the squared error loss
function can be obtained using the following formula

1 0%R a
Rsg, = E(RIx,y) = [(6[3’ )( Lyo)™ 1+ <6,32>( Loz)™ ]
a(IOgH(ﬁpﬂz))
() oy

(o8 )
o(logll (B, 52)
+< 35, )(aﬁ)( Loy)™t
1 oR
{Lso (6,8 )[(—Lzo)_ 12
oR
+L03<6,B )[( Lox)7t] }
where
L= 9%L L 93L _ﬂ
i = [opap | " om0

The Bayesian estimator of R under the squared error loss
function is deduced as

RSEL—R{1+(1—R)[ -
(o))

The Bayesian estimator of the reliability function R under
Linex loss function is given by

-R R

1
Ry =-— ;lOQ{E(e_TRbC, )}

1 0 (o]
=—;log{f0 fo e-TRn*(ﬁl,ﬁzlx,y)dﬁldﬁz}, t#0

The Bayesian estimator of R under Linex loss function is
given by

1
Ry, = —;log{E (e ™F|x, y)}

Using Lindely approximation, the Bayesian estimator of R
under Linex loss function is given by

1 1 aR
RLL:—;log{e‘TR+E{Te‘TR[ (6[3 apﬂ]( Lyo)t
l

aR
+re"R[ (6[92 aﬁz]( Loz)™ }

(logl(By, B,)) 1
(76/31 > ( Te 6[3 ) (=Lz0)”
(logl(By, B,)) 1
() (e ) o

431 (e %) [(~Loo) '

+ Los (‘Teim B, )[( Loz)™'] ]}

the Bayesian estimator of R under Linex loss function is
deduced as

~ 1 5
RLL:R—;log e ™R |1

+ m((l ~R)(x(1-R)-2)

+R(eR - 2))
9, -1 B,R?
o ( A "”) n
o))
B2 m
~R(1-R) (-4 ) }
E. The Credible Interval

m
The posterior probability density function of R can be
derived and the result is

191,%20 (9, + 9,)r’171 (1 — r)%2?
[9: T, [nr +1,(1 —)[¥1+92 °

fr() = r>0

It can be shown that the posterior distribution of g, and B,
are given by

n
B1lx~Gamma (n +9,m — Z log[l _ e1—(1+uxl-a)y]>
i=1
and

Boly~Gamma (m +9,,1m, — z log [1 — el—(1+uy;a)y]
j=1
From the relations between the gamma distribution and chi-
square distribution, it can be shown that

n
2 (771 _ Z lOg[l _ el—(1+ll.Xia)y]> ﬁlNXg(n+81)

i=1

m
( zwg 1 — et~ (1+uy;%) ])[32“’X§(m+92)
j=1

and
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The posterior distribution of R can be written as

-1
—_yn _ —( x; %)Y
1+ mt ‘92)(711 Zl:l log[l e v]) F(Z(m + \92). 2(n+ \91))
(n+9;) (le -2, log [1 _ p1-(1+uy;®) ])
And therefore a 100(1 — €)% credible interval for R will be
given by

A -t A -t
{1 + B F§,2(m+ﬁz),2(n+sl)} ’{1 + B F1—§.2(m+ez),z(n+el)}

where

A=(m+ 192)(711 -, log[l - el’(“"xl’a)y]) and B=Mn+9;) (7)2 -

j=1log [1 - elf(1+ﬂyja)1'])

IV. REAL DATA APPLICATION

The following data from Crowder (2000) will be used
which represents the breaking strengths of single carbon
fibers of length 1 in data setl and of length 10 in data set 2.

TABLE |
DATA SET 1 (THE BREAKING STRENGTHS OF SINGLE CARBON
FIBERS OF LENGTH 1)

2247 2640 2842 2908 3.099 3126 3245 3328 3355 3.383
3572 3581 3681 3726 3727 3728 3783 378  3.786  3.896
3912 3964 4050 4.063 4.082 4111 4118 4141 4216 4.251
4262 4326 4402 4457 4466 4519 4542 4555 4614 4632
4634 4636 4678 4698 4738 4832 4924 5054 509 5134

5359 5473 5571 5684 5721 5998  6.060

TABLE Il
DATA SET 2 (THE BREAKING STRENGTHS OF SINGLE CARBON
FIBERS OF LENGTH 10)

1901 2132 2203 2228 2257 2350 2361 2396 2397 2445
2454 2454 2474 2518 2522 2525 2532 2575 2614 2616
2.618 2624 2659 2675 2738 2740 2856 2917 2928 2937
2937 2977 2996 3.030 3125 3139 3145 3220 3223 3235
3.243 3264 3272 3294 3332 3346 3377 3408 4435 3493
3501  3.537 3554 3562 3.628 3.852 3.871 3886 3971 4.024
4.027 4225 4395  5.020

The maximum likelihood estimators for the parameters
and the reliability of the stress-strength model according to
data set 1 and data set 2 are obtained as fi = 0.298,a =
1.202,7 = 1.708, B, = 40.669, 8, = 10.711  and  the
R = 0.791. The asymptotic 95% confidence interval for R is
[0.733, 0.849]. The results of the intervals for the fuzzy
stress-strength reliability function are obtained in Table I11.

TABLE IlI
THE INTERVALS FOR THE FUZZY STRESS-STRENGTH
RELIABILITY FUNCTION

a— cut [R. Ry]
01 [0.7388, 0.8432]
0.2 [0.7446, 0.8374]
0.3 [0.7504, 0.8316]
0.4 [0.7562, 0.8258]
0.5 [0.7620, 0.8200]
0.6 [0.7678, 0.8142]
0.7 [0.7736, 0.8084]
0.8 [0.7794, 0.8026]
0.9 [0.7852, 0.7968]

To fit the two data sets with the exponentiated power
generalized Weibull distribution, the Kolmogorov-Simrnov
and Anderson-Darling goodness of fit tests are used and the
results are shown in Table IV which indicated that the
exponentiated power generalized Weibull distribution fits
well to data set 1 and data set 2.

TABLE IV
KOLMOGOROV-SIMRNOV AND ANDERSON-DARLING
GOODNESS OF FIT TESTS FOR DATA SETS 1 AND 2

Kolmogorov-Simrnov

Data Set Anderson-Darling Test

Test
Data Set 1 0.121 < 0.180 (critical 1.771 < 2.492 (critical
value) value)
Data Set 2 0.131 < 0.170 (critical 1.839 < 2.492 (critical
value) value)

The goodness of fit of the two data sets is tested for
different distributions using the log-likelihood function (Log
L), Akaike information criteria (AIC), Akaike information
criteria corrected (AICC) and Bayesian information criteria
(BIC). The goodness of fit for the exponentiated power
generalized Weibull distribution (EPGW) is compared with
the exponentiated  Weibull distribution (EW), power
generalized Weibull distribution (PGW), Nadarajah-
Haghighi distribution (N-H), exponentiated Nadarajah-
Haghighi distribution (EN-H) and exponentiated exponential
distribution (EE). The maximum likelihood estimators
(MLE) for the parameters, Log L, AIC, AICC and BIC for
the data set 1 and data set 2 are shown in Table V and Table
VI, respectively.

TABLE V
MLE ESTIMATES, LOG L, AIC, AICC AND BIC FOR THE DATA
SET1
Distribution MLE Log L AIC  AlCC BIC
estimates
7=0298
& =1202
EPGW(,a,7,) 7=1708 73827 155654 156423 154677
B1
= 40.669
_ p=0529
WeibullGua)  AZ0529 ae1ear 327282 327504 326793
4=0428
EW(, a, ) “ﬁ: 1076 6449 198898 199.350  198.165
1
= 6313
A =0.664
PGW(4a,y)  @=0916 -166711 339.422 339.874  338.689
¥ = 0.902
) p=0184
N-H(w ) Do 13865 281316 281538 280,827
4=0570
7=0.103
ENHErp) 211535 420070 429522 428337
1
= 0479
Exponential() ~ A=0213 -139567 281134 281206  280.889
4 =0625
EE(w ) B 80504  183.188 183410 182,609
=11.700

The results obtained in Tables V and VI, indicated that
the exponentiated power generalized Weibull distribution
can be a better distribution to model the data sets than the
distributions power generalized Weibull, Nadarajah-
Haghighi,  exponentiated = Nadarajah-Haghighi  and
exponentiated exponential.
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TABLE VI
MLE ESTIMATES, LOG L, AIC, AICC AND BIC FOR THE DATA SET 2
Distribution Estimates Log L AlC AlCC BIC
i=0298
@ =1202
EPGW(ua,y,f) 7=1708 -191205 390410 391087  389.634
B2
=10.711
) fi=0529
Weibull(, @) 0939 273413 550826 551022 550438
i=0.428
& =1.076
EW(u, a, B) s -230.357 466714  467.114 466132
2
=13.390
i = 0.664
PGW(1, ay)  &@=0916 -278.864 563728 564.128 563.146
¥ = 0.902
_ A=0184
N-H(,y) o logs 208587 541174 541370 540786
i =0570
7=0.103
EN-H(1,7, ) 4 -344.481 694962 695362  694.380
2
=0.437
Exponential() 4 =0213 -268549 539.098 539.162 538.904
i =0625
EE(W B) A 221483 446966 447.162 446578
=5.697

In Table VII, the Bayesian estimate under the squared
error loss and the credible interval for R are obtained for
different values of the parameters of the prior distributions
of B, and B,. In Table VIII, The Bayesian estimate of R
under Linex loss function is obtained for different values of
the parameters of the prior distributions of (B;,5,) and
different values of 7.

TABLE VII
THE BAYESIAN ESTIMATE OF Rsz;, AND THE CREDIBLE
INTERVAL FOR R

(91,92,11,12) Rsgy, Credible Interval
(1,1,05,05) 0.744 [0.680, 0.812]
(2,2,05,05) 0.744 [0.681, 0.812]
(2,3,05,05) 0.742 [0.678, 0.809]
(3,3,0.5,05) 0.745 [0.682, 0.812]
(1,1,15,15) 0.654 [0.616, 0.766]
(2,2,15,15) 0.655 [0.617, 0.766]
(2,3,15,15) 0.652 [0.614, 0.762]
(05,05,1,1) 0.699 [0.644, 0.787]
(05,05,2,3) 0.637 [0.621, 0.770]
(15,15,1,1) 0.699 [0.645, 0.787]
(2,3,2,3) 0.635 [0.620, 0.705]
TABLE VIII
THE BAYESIAN ESTIMATE OF R,,
R R R R
Gudmm) (s r=—05) (=1  (G=-1)
(1,1,05,05) 0.725 0.723 0.726 0721
(2,205, 0.5) 0.730 0.728 0.731 0.727
(2,305, 0.5) 0.733 0.731 0.733 0.730
(3,305, 0.5) 0.735 0.734 0.736 0.733
(1115 15) 0.589 0.566 0.598 0.552
(22,15, 15) 0.504 0.572 0.603 0.559
(23,15, 15) 0.59 0.575 0.605 0.562
(05,05, 1, 1) 0.653 0.643 0.657 0.637
(05,05, 2. 3) 0.498 0.447 0.516 0.412
(15,151, 1) 0.658 0.649 0.662 0.644
(2.3.2,3) 0.507 0.460 0.525 0.428

IV. CONCLUSION

The study of the fuzzy stress-strength reliability model
subject to the exponentiated power generalized Weibull
distribution is introduced. The maximum likelihood
estimator and the asymptotic confidence interval for the
stress-strength reliability function are obtained. Bayesian
estimators and the credible interval for the stress-strength
reliability function are derived. An application based on real
data is introduced to show the results for the stress-strength

model and compare the exponentiated power generalized
Weibull distribution with other different distributions. This
comparison shows that the exponentiated power generalized
Weibull model can be considered a better model to fit the
data sets.
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