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Abstract—This paper investigates a finite-time backstep-
ping control for robust stabilization of fractional-order hydro-
turbine governing system. We assume that the controlled system
is perturbed by external disturbance, the bound of external
disturbance to be unknown in advance. Through designing the
virtual controllers step by step, then the appropriate actual
controller is obtained. The fractional-order stability theory is
used to shown the correctness of the proposed control strategy,
and finally numerical simulations have been implemented to
confirm the effectiveness and feasibility of the presented finite-
time backsteping method.

Index Terms—finite-time control, backstepping method,
fractional-order hydro-turbine governing system, stability anal-
ysis

I. INTRODUCTION

THE hydro-turbine governing system is a highly non-
linear, multi-variable coupled and nonminimum phase

system, hydro energy is the largest renewable energy source
for global electricity generation, accounting for about 71%
of total renewable energy generation in the world. Compared
with wind and solar energy, hydroelectricity is a reliable,
flexible, and cost-effective energy generation technology,
with the advantages of high energy efficiency and easily
stored in reservoir, and it can be used for frequency regula-
tion, peak load shaving and emergency reserve in smart grid
[1, 2]. Due to its great potentials on social, economic and
environmental benefits, the modelling and control of hydro-
turbine governing system is significant to ensure the system
frequency stability and the stable operation of hydroelectric
stations.

Fractional-order calculus derives from the end of 17th cen-
tury, it is particularly suitable for describing the viscoelastic
system [3], and the memory and hereditary properties of
various materials and processes. Now, studying fractional-
order systems has became an active research area. In partic-
ular, control and stabilization of the fractional-order systems
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have attracted much attention from various scientific fields. It
has been proven that applying fractional-order controllers to
fractional-order system can obtain a better control effect than
integer-order controllers, such as fractional-order PID control
[4], fractional-order sliding mode control [5], fractional fuzzy
control [6], fractional-order finite-time control [7], and so on.

The backstepping method is a recursive approach for
controller design, through designing virtual controllers and
partial Lyapunov functions step by step, a common Lyapunov
function of the whole system can be deduced from the above
operations. This method can guarantee the global stability,
tracking, and transient performance of nonlinear systems [8].
In view of the excellent performance of backstepping, an in-
creasing number of researchers have focused on this potential
problem. Many studies for the backstepping-based control
and synchronization of fractional-order chaotic system have
been reported. For example, Luo [9] researched the robust
control and synchronization of a fractional-order system by
adding one power integrator. Shukla [10,11] realized the
stabilization.

However, the above mentioned approaches are only focus
on the asymptotic stability of the controlled system, the
finite-time stabilization of fractional-order nonlinear system
based on backstepping method is rarely involved, besides,
there are many research results about integer-order hydro-
turbine governing system, while the finite-time control for
fractional-order hydro-turbine governing system is seldom
reported so far. Consequently, in view of the advantages
of fractional-order models, it is still very challenging and
essential to research the finite-time stabilization of fractional-
order hydro-turbine governing system.

Motivated by the above discussions, in this paper, a finite-
time backstepping control strategy is proposed to realize
the stabilization of fractional-order hydro-turbine governing
system with unknown bounded uncertainties. The structure
of this paper is organized as follows. In section 2, relevant
definitions, lemmas are given. Main results are presented in
section 3. Simulation results are shown in section 4. Finally,
conclusions are included in section 5.

II. PRELIMINARIES

Firstly, we recall the basic definition with respect to
Caputo fractional derivative, which is the most commonly
used definition of fractional calculus.
Definition 1 The Caputo fractional derivative of order α of
the function f(t) is defined as

t0D
α
t f(t)=

{
1

Γ(m−α)

∫ t

t0

f(m)(τ)

(t−τ)α−m+1 dτ,m− 1<α<m
dm

dtm f(t), α = m
(1)

where Γ(·) is the Gamma function, m is the smallest integer
number, larger than α. In the rest of this paper, we will use
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Dα instead of 0D
α
t .

Lemma 1 (see [12]) Let x(t) ∈ Rn be a continuous and
derivable function. Then, for any t > 0,

1

2
Dαx2(t) ≤ x(t)Dαx(t) (2)

Lemma 2 (see [13]) Assume a, b and 0 < r < 1 are real
numbers, then the following inequality holds:

(|a|+ |b|)r ≤ |a|r + |b|r (3)

III. MAIN RESULTS

In this section, a finite-time backstepping control strategy
is presented to achieve the stabilization of fractional-order
hydro-turbine governing system, the effects of unknown
bounded external disturbances and saturated nonlinear input
are both considered. For deal with these uncertainties, the
fractional version of unknown parameters update laws are
given.

In order to derive the main theory results, the structure of
strict feedback system should be first given. Strict feedback
system [14] can be used to express different real world
systems, which can be described as follows

Dαx1 = g1(x1, t)x2 + δT1 F1(x1, t) + f1(x1, t)

Dαx2 = g2(x1, x2, t)x3 + δT2 F2(x1, x2, t) + f2(x1, x2, t)

...
Dαxn−1 = gn−1(x1, x2, ..., xn−1, t)xn + δTn−1Fn−1(x1, x2,

..., xn−1, t) + fn−1(x1, x2, ..., xn−1, t)

Dαxn = gn(x1, x2, ..., xn, t)u+ δTnFn(x1, x2, ..., xn, t)

+fn(x1, x2, ..., xn, t) (4)

where δi is the system parameters vector of the i-th state
equation, gi(·), Fi(·), fi(·) for i = 1, 2, ..., n are known,
smooth nonlinear functions. When consider the effects of
external disturbance di(t) and the saturated nonlinear input
sat(u(t)), meantime, g1(·), g2(·), ..., gn(·) are constants, then
the system can be rewritten as

Dαx1 = k1x2 + δT1 F1(x1, t) + f1(x1, t) + d1(t)

Dαx2 = k2x3 + δT2 F2(x1, x2, t) + f2(x1, x2, t) + d2(t)

...
Dαxn−1 = kn−1xn + δTn−1Fn−1(x1, x2, ..., xn−1, t)

+fn−1(x1, x2, ..., xn−1, t) + dn−1(t)

Dαxn = knu(t) + δTnFn(x1, x2, ..., xn, t)

+fn(x1, x2, ..., xn, t) + dn(t) (5)

In this paper, the research object is fractional-order hydro-
turbine governing system [15] with external disturbances
di(t), which is described as

Dαx1 = ω0x2 + d1(t)

Dαx2 =
1

Tab

(
x3−Fx2−

Eq
′Vs

x
′
dΣ

sinx1−
V 2
s

2

x
′

dΣ− xqΣ

x
′
dΣxqΣ

×

sin2x1

)
+ d2(t)

Dαx3 =
1

eqhTw

(
− x3 + eyx4 +

eeyTw

Ty
x4

)
+ d3(t)

Dαx4 =
1

Ty

(
u(t)− x4

)
+ d4(t) (6)

Obviously, fractional-order hydro-turbine governing sys-
tem is strict feedback system, where α = 0.98, ω0 = 314,
Eq

′ = 1.35, xqΣ = 1.474, x
′

dΣ = 1.15, Tab = 9, F = 2,
Tw = 0.8, Vs = 1, Ty = 0.1, eqh = 0.5, e = 0.7, ey = 1,
respectively. u(t) is the comprehensive actual controller to
be designed later.
Assumption 1 It is assumed that the external disturbances
di(t), i=1, 2, 3, 4 are bounded by

|di(t)| ≤ ρi (7)

where ρi is an unknown positive constant.
Next, the main control strategy will be introduced in

detail, through design the virtual controllers step by step,
then an appropriate actual controller is determined. In order
to deal with these unknown parameters, some fractional-
order version of adaptive update laws are given. Finally,
the fractional-order finite-time stability theory is applied to
demonstrate the finite-time stability of the controlled system.

To deduce the actual controller, transformation variables
should be assigned firstly as

ξ1 = x1, ξ2 = x2 − τ1, ξ3 = x3 − τ2, ξ4 = x4 − τ3 (8)

where ξi(i = 1, 2, 3, 4) is transformation variable, τj(j =
1, 2, 3) is virtual controller and can be designed as

τ1 =
1

ω0

[
−m1sgn(ξ1)− ρ̂1sgn(ξ1)− ||ρ̃|| ξ1

||Ξ||2
]

τ2 = Tab

(
−m2sgn(ξ2)− ω0ξ1 +Dατ1 − ρ̂2sgn(ξ2)

−||ρ̃|| ξ2
||Ξ||2

)
+ Fx2 +

E
′

qVs

x
′
dΣ

sinx1 +
V 2
s

2
×

x
′

dΣ − xqΣ

x
′
dΣxqΣ

sin2x1

τ3 =
eqhTwTy

eyTy + eeyTw

(
−m3sgn(ξ3)−

1

Tab
ξ2 +

1

eqhTw
x3

+Dατ2 − ρ̂3sgn(ξ3)− ||ρ̃|| ξ3
||Ξ||2

)
(9)

where ρ = (ρ1, ρ2, ρ3, ρ4)
T , ρ̂i is the estimation of ρi, Ξ =

(ξ1, ξ2, ξ3, ξ4)
T , || · || represents L2 norm. Denote ρ̃i = ρ̂i −

ρi for identifying these unknown parameters, the adaptive
update laws are chosen as

Dαρ̃i = Dαρ̂i −Dαρi = η|ξi| (10)

in which i = 1, 2, 3, 4. η is positive adaptive gain.
Theorem 1 Consider the system (6) with saturated nonlinear
input and external disturbances, the controller which leads to
finite-time stabilization of system (6) is given below

u(t) = Ty

[
− eyTy + eeyTw

eqhTwTy
ξ3 −m4sgn(ξ4)− ρ̂4sgn(ξ4)

+Dατ3 − ||ρ̃|| ξ4
||Ξ||2

]
+ x4 (11)

Proof. Step 1: The first new subsystem can be obtain
according to eqs. (6) and (8)

Dαξ1 = Dαx1 = ω0x2 + d1(t)

= ω0(ξ2 + τ1) + d1(t) (12)
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in order to demonstrate the stability of system (12), the
following Lyapunov candidate function can be chosen as

V1(t) =
1

2
ξ21 +

1

2η
ρ̃21 (13)

taking the α-th derivative of V1(t), according to Lemma 1
and Assumption 1, we have

DαV1(t) ≤ ξ1D
αξ1 +

1

η
ρ̃1D

αρ̂1

= ξ1
[
ω0(ξ2 + τ1) + d1(t)

]
+

1

η
ρ̃1D

αρ̂1

= ω0ξ1ξ2 + ω0ξ1τ1 + ξ1d1(t) +
1

η
ρ̃1D

αρ̂1

≤ ω0ξ1ξ2 + ω0ξ1τ1 + ρ1|ξ1|+ ρ̃1|ξ1| (14)

substituting τ1 from the first equation of (9) into (14), it
yields

DαV1(t) ≤ ω0ξ1ξ2 −m1|ξ1| − ||ρ̃|| ξ21
||Ξ||2

= ω0ξ1ξ2−
√
2m1

(
ξ21
2

)1/2

− ||ρ̃|| ξ21
||Ξ||2

(15)

if ξ2 = 0, then ξ1 and ρ1 are both converge to zero.
Step 2: The Second new subsystem about ξ2 can be

constructed as

Dαξ2 = Dαx2 −Dατ1

=
1

Tab

[
(ξ3 + τ2)−Fx2−

Eq
′Vs

x
′
dΣ

sinx1−
V 2
s

2
×

x
′

dΣ− xqΣ

x
′
dΣxqΣ

sin2x1

]
+ d2(t)−Dατ1 (16)

selecting the Lyapunov function as

V2(t) = V1(t) +
1

2
ξ22 +

1

2η
ρ̃22 (17)

taking the α-th derivative of V2(t), one obtains

DαV2(t)≤DαV1(t) + ξ2D
αξ2 +

1

η
ρ̃2D

αρ̂2

=ω0ξ1ξ2−
√
2m1

(
ξ21
2

)1/2

− ||ρ̃|| ξ21
||Ξ||2

+ ξ2 ×{
1

Tab

[
(ξ3 + τ2)−Fx2−

Eq
′Vs

x
′
dΣ

sinx1−
V 2
s

2
×

x
′

dΣ− xqΣ

x
′
dΣxqΣ

sin2x1

]
+ d2(t)−Dατ1

}
+ρ̃2|ξ2| (18)

substituting τ2 from the second equation of (9) into (18), one
has

DαV2(t) ≤ −
√
2m1

(
ξ21
2

)1/2

+
1

Tab
ξ2ξ3 −m2|ξ2|+ ρ2|ξ2|

−ρ̂2|ξ2|− ||ρ̃||ξ
2
1 + ξ22
||Ξ||2

+ ρ̃2|ξ2|

≤ 1

Tab
ξ2ξ3 −

√
2m1

(ξ21
2

)1/2

−
√
2m2

(ξ22
2

)1/2

−||ρ̃||ξ
2
1 + ξ22
||Ξ||2

(19)

similar to step 1, if ξ3 = 0, then DαV2(t) < 0, that is ξ2, ρ̃2
will converge to zero.

Step 3: We continue to investigate the third new subsystem
with transformation variable ξ3, that is

Dαξ3 = Dαx3 −Dατ2

=
1

eqhTw

[
− x3 + ey(ξ4 + τ3) +

eeyTw

Ty
(ξ4 + τ3)

]
+d3(t)−Dατ2 (20)

This step is to verify the stability of system (20) with the
following Lyapunov function

V3(t) = V2(t) +
1

2
ξ23 +

1

2η
ρ̃23 (21)

taking the α-th derivative of V3(t), it yields

DαV3(t)≤DαV2(t) + ξ3D
αξ3 +

1

η
ρ̃3D

αρ̂3

=
1

Tab
ξ2ξ3 −

√
2m1

(ξ21
2

)1/2

−
√
2m2

(ξ22
2

)1/2

−||ρ̃||ξ
2
1 + ξ22
||Ξ||2

+ ξ3D
αξ3 + ρ̃3|ξ3|

=
1

Tab
ξ2ξ3 −

√
2m1

(ξ21
2

)1/2

−
√
2m2

(ξ22
2

)1/2

−||ρ̃||ξ
2
1 + ξ22
||Ξ||2

+ ξ3

{
1

eqhTw
×[

− x3 + (ey +
eeyTw

Ty
)(ξ4 + τ3)

]
+ d3(t)

−Dατ2

}
+ ρ̃3|ξ3| (22)

substituting τ3 from the third equation of (9) into (2), we
have

DαV3(t) ≤ eyTy + eeyTw

eqhTwTy
ξ3ξ4 −

√
2m1

(ξ21
2

)1/2

−
√
2m2

(ξ22
2

)1/2

−
√
2m3

(ξ23
2

)1/2

−||ρ̃||ξ
2
1 + ξ22 + ξ23

||Ξ||2
(23)

obviously, when ξ4 = 0, then ξ3 and ρ̃3 = 0 will converge
to zero.

Step 4: In the last step, the actual controller is designed.
Similar to the above steps, the last subsystem with transfor-
mation variable ξ4 is determined as

Dαξ4 = Dαx4 −Dατ3

=
1

Ty

(
u(t)− x4

)
+ d4(t)−Dατ3

=
1

Ty

(
u(t)− x4

)
+d4(t)−Dατ3 (24)

the overall Lyapunov function is constructed as

V4(t) = V3(t) +
1

2
ξ24 +

1

2η
ρ̃24 (25)

according to the previous inequality are induced in the step
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1 to 3, the α-th derivative of eq. (25) is

DαV4(t) ≤ DαV3(t) + ξ4D
αξ4 +

1

η
ρ̃4D

αρ̂4

=
eyTy + eeyTw

eqhTwTy
ξ3ξ4 −

√
2m1

(ξ21
2

)1/2

−
√
2m2

(ξ22
2

)1/2

−
√
2m3

(ξ23
2

)1/2

−||ρ̃||ξ
2
1 + ξ22 + ξ23

||Ξ||2
+ξ4(D

αx4−Dατ3)

+ρ̃4|ξ4|

=
eyTy + eeyTw

eqhTwTy
ξ3ξ4 −

√
2m1

(ξ21
2

)1/2

−
√
2m2

(ξ22
2

)1/2

−
√
2m3

(ξ23
2

)1/2

−||ρ̃||ξ
2
1 + ξ22 + ξ23

||Ξ||2
+ρ̃4|ξ4|

+ξ4

[
1

Ty

(
u(t)− x4

)
+d4(t)−Dατ3

]
(26)

according to Assumption 1, we have

DαV4(t) ≤
eyTy + eeyTw

eqhTwTy
ξ3ξ4 −

√
2m1

(ξ21
2

)1/2

−
√
2m2

(ξ22
2

)1/2

−
√
2m3

(ξ23
2

)1/2

−||ρ̃||ξ
2
1 + ξ22 + ξ23

||Ξ||2
+

1

Ty
ξ4u(t)

− 1

Ty
ξ4x4 − ξ4D

ατ3 + ρ̂4|ξ4| (27)

substituting u(t) from (11) into (27), one has

DαV4(t) ≤ −
√
2m1

(ξ21
2

)1/2

−
√
2m2

(ξ22
2

)1/2

−
√
2m3

(ξ23
2

)1/2

−
√
2m4

(ξ24
2

)1/2

−||ρ̃||ξ
2
1+ξ22+ξ23+ξ24

||Ξ||2

= −m

[(ξ21
2

)1/2

+
(ξ22
2

)1/2

+
(ξ23
2

)1/2

+
(ξ24
2

)1/2
]

−
√
2η

( ||ρ̃||2
2η

)1/2

(28)

furthermore, according to lemma 2, it yields

DαV4(t) ≤ −m̄

[
1

2

(
ξ21 + ξ22 + ξ23 + ξ24

)
+

ρ̃21
2η

+
ρ̃22
2η

+
ρ̃23
2η

+
ρ̃24
2η

]1/2
=−m̄V

1/2
4 (t) (29)

where m = min{
√
2m1,

√
2m2,

√
2m3,

√
2m4} > 0, m̄ =

min{m,
√
2η} > 0. According to the theory results of

ref.[16], V (t) = 0 for all t ≥ T , here T can be estimated as

T = t0 +

(
Γ(α+ 1)Γ(1/2)V α−1/2(t0)

m̄Γ(α+ 1/2)

)1/α

(30)

which implies that ξi = 0 and ρ̃i = 0 for all t ≥ T . Hence,
the finite-time stabilization of system (6) with saturated
nonlinear input and external disturbances is achieved. This
completes the proof.

IV. SIMULATION RESULTS

In this section, some simulation results are presented to
demonstrate the effectiveness and feasibility of the proposed
control strategy. In the system α = 0.98, the initial conditions
are selected as x(0) = (0.1, 0.1, 0.1, 0.1)T , ρ = (0, 0, 0, 0)T

considering external disturbance d1(t) = 0.01sin(t), d2(t) =
0.03sin(t), d3(t) = 0.05sin(t), d4(t) = 0.07sin(t), the
phase trajectories maps of system (6) without control are
shown in Fig.1.
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Fig. 1: Phase trajectories map of system (6) without control

In order to verify the control effect of the proposed con-
troller, the state trajectories of system (6) without controller
firstly presented in Fig.2.
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Fig. 2: State trajectories of system (6) without control

Letting m1 = m2 = m3 = m4 = 1, η = 1, when the
actual controller u(t) is activated, the time responses of the
transformation variables are shown in Fig.3. It is clearly that
all variables trajectories are converge to zero in given time,
which implies that under the control of the proposed control
strategy, the finite-time stabilization of the controlled system
with external disturbance is realized.
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Fig. 3: Time responses of transformation variables with controller
activated

V. CONCLUSIONS

This paper researched the problem of finite-time stabi-
lizing fractional-order hydro-turbine governing system with
backstepping method. The system is perturbed by unknown
external disturbances, the bounds of external disturbances
are assumed to be unknown in advance. In order to deal
with these unknown parameters, some appropriate fractional-
order version of adaptive rules are proposed. Through design
virtual controllers step by step, then a comprehensive actual
controller can be designed finally. Fractional-order finite-
time stability theory is applied to demonstrate the finite-time
stability of the closed-loop system and simulation results are
presented to verified the feasibility and effectiveness of the
proposed control strategy.
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