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Parameter Estimation for Hyperbolic Model with
Small Noises Based on Discrete Observations

Chao Wei

Abstract—In this paper, we consider the discretely observed
hyperbolic diffusion model with two types of small noises. The
least square method is utilized to derive the drift parameter
estimator. The consistency and asymptotic distribution of the
estimator are obtained under condition of two types of small
noises. Finally, some numerical calculus examples are given.

Index Terms—Hyperbolic diffusion; small noises; drift pa-
rameter estimation; consistency; asymptotic distribution.

I. INTRODUCTION

Research on stochastic differential equations has a long
tradition( [2], [3], [8], [12], [19], [21]). However, parameters
in stochastic differential equations are always unknown. This
seems to be a common problem in stochastic model. In
the past several decades, some authors studied parameter
estimation for financial models. For example, Tunaru and
Zheng( [17]) utilized Bayesian method to discuss parameter
estimation risk in financial modelling. Wei et al.( [18])
applied maximum likelihood method to study the parameter
estimation for Cox-Ingersoll-Ross model. Yang et al.( [22])
used a-path method to estimate the unknown parameter of
uncertain differential equation from discretely sampled data.
But, some financial processes show discontinuous sample
paths and heavy tailed properties. These features cannot be
captured by Brownian motion( [5], [6], [9], [16]). Hence,
the financial process has been described by Lévy process.
In the last few years, some authors investigated parameter
estimation for stochastic models driven by Lévy noises( [1],
[4], [11], [14]). For example, Long( [10]) studied parameter
estimation for a class of stochastic differential equations driv-
en by small stable noises from discrete observations. Shen
et al.( [15]) analyzed parameter estimation for the discretely
observed Vasicek model with small fractional Lévy noise.
Wei( [20]) used least squares method to obtain estimators
of stochastic Lotka-Volterra model driven by small a-stable
noises, discussed the consistency and asymptotic distribution
of estimators. Zhao and Zhang( [23]) investigated minimum
distance estimate for stochastic nonlinear differential equa-
tions with small a-stable noises.

As we all know, parameter estimation for hyperbolic
diffusion has been studied by some authors. For example,
Protassov( [13]) proposed a simple EM-based maximum
likelihood estimation procedure to estimate parameters of
the distribution when the subclass is known regardless of
the dimensionality. Kuang and Xie( [7]) investigated the
properties of a sequential maximum likelihood estimator of
the unknown parameter for the hyperbolic diffusion process.
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However, there are few literature about the parameter esti-
mation for hyperbolic diffusion driven by Lévy noises. In
this paper, we investigate the parameter estimation problem
for hyperbolic diffusion driven by two types of small Lévy
noises from discrete observations. The contrast function is
introduced to obtain the least squares estimator. The consis-
tency and asymptotic distribution of the estimator are derived
under the condition of two types of small Lévy noises by
using Cauchy-Schwarz inequality, Gronwall’s inequality, B-
D-G inequality and dominated convergence.

This paper is organized as follows. In Section 2, parameter
estimation for the hyperbolic diffusion driven by small Lévy
noises is studied. In Section 3, parameter estimation for
the hyperbolic diffusion driven by small «a-stable noises is
discussed. In Section 4, some simulation results are given.
The conclusion is given in Section 5.

II. PARAMETER ESTIMATION FOR THE HYPERBOLIC
DIFFUSION DRIVEN BY LEVY NOISES

We consider the following hyperbolic diffusion model:

X
dX; =a———dt + eadL;, te0,1],e € (0,1]

V1+ X2 (1)
Xo =0,

where « is unknown, (Lt > 0) is a Lévy noise with
decomposition as follows:

¢ ¢
L, =W, +/ / zN(ds,dz) +/ / zN(ds,dz),
0 Jz|>1 0 JzI<1 @

where (W, t > 0) is a Brownian motion, N(ds,dz) is a

Poisson random measure independent of (W;,¢ > 0) with

characteristic measure dtv(dz), N(ds,dz) = N(ds,dz) —

v(dz) is a martingale measure. It is assumed that v(dz) is a

Lévy measure on R\{0} satisfying [(|z|> A 1)v(dz) < oc.
We give the following contrast function:

X,
n |Xt7 - th‘,—l - tli; Ati—ll
X
() = E 202Al;_; )

i=1

where Ati_l = ti — ti—l = %
We have
(Xt'iixti—l)Xti

/1-~-Xt2i71 -

— : )
n ti—1

2

~
One =

1 ;
n Zi:l 1-‘,—)(?171

By the Euler-Maruyama scheme for (1), we obtain

Xti—l

V1+XE

Xti_Xti—l = Ati_l—‘rEO'(Lti _Lti,l)- (5)
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Then,

Substituting (6) into (4), we have

(Lt; — L, )

502@ 1 \/W o1
G

1
E:z 1 L+X2 .

Consider the following ordinary differential equation:

Qp e — Qo =

0

X
dX) = a——L——=dt, X§ =z >0.
1+ (X7)?
Let H;"® = X[,,4)/,, Where [nt] denotes the integer part of
nt.

Lemma I: When ¢ — 0 and n — oo, the sequence
{H;"*} converges to {X}} uniformly in probability.
Proof: Since

XO
2 ) Yds + eo Ly,

t
X
X—ona/ = —
o 00(\/1+X§ VI (X0)2

we obtain

X — X7|?
X, X0
< 2a%|/ ( - = )ds|? + 2e20? L}
0o VI+XZ2 1+ (X9)2
tX, X0
< 2to¢§/ | - 5 ds|® +2e%0* L}
o VI+XZ 1+ (X0)?
t
< smg/ |Xs — X022 + 2620 L2,
0

By the Gronwall’s inequality, we obtain
2 2
|X: — XP|? < 262028 0 2

Then, we have

sup |X; — XP| < V2eoe*T % sup L.
0<t<T 0<t<T
Hence, for each T' > 0, we get
o P
sup | X — X;| = 0. (8)
0<t<T

When n — oo, [nt]/n — t, it is derived that sequence
{H;"*} converges to {X?} uniformly in probability.
The proof is complete. ]
Lemma 2: As € — 0 and n — oo,
n 2 1
RN / ﬂdt.
. o 1+ (X7)?

Ly S
2
n <~ 1+ X7

Proof: According to Lemma 1, we obtain

n 2

(XO)Q

1 th 1 ! t
sup | Z1+X2 1_/0 1+ (X7)2

dt|

1 n 2 1 0)\2
= sup| _(H )T sn)s dt—/ 7(Xt)0 5 dt|
0 1+(H’) 0 1+(Xt)
< dt
- SUP/ |1+ H“ 1+(X0)2|
< sup / (H9)? — (X0t
0
1
< sup [ |HPS XD X
0
1
< sup / (=] 4+ [ XM — X0Jdt
< (sup |Xt|+ bup |X0|) sup |H”E X7
0<t<1
.
Hence,

1< X7
P e e

ti—1

1 042
£ / &dt.
0 1

The proof is complete.
Lemma 3: When € — 0 and n — oo,

i X, 1 X7
S (L~ L) D

=1 1/1+XZ,1

Proof: According to Lemma 1, we obtain

L ti T Lti—l)

'iW

1 XO

0o V1+( XO

Hna 1 XO
/1 + Hn €

< 9 / (H}* — X0)dLy)

1
. / (H™ — X0)dB,

1
+/ / (H"® — X)zN(dt,dz)
0 J|z|>1

1
+ // (H" — X))zN(dt,dz)]
|z|<1

IN

1
2| / (H™ — X0)dB,|
0

1
12| / / (HP — XO)2N(dt, d2)|
0 Jz|>1

1
+ 2I// (H — X)zN(dt,dz)|.
0 J|z|<1
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When ¢ — 0 and n — oo,

1
| / / (H™ — X0)=N(dt, dz)|
0 Jlz|>1
1
< / / H — XO||2| N (dt, dz)
0 Jz|>1

1
~xi [ [ v
0 Jlz|>1
£ . 9)

< sup |H*
0<t<1

By the B-D-G inequality, dominated convergence and
Lemma 1, for any given > 0, when € — 0 and n — oo, it
follows that

1
P / (H — XO)dBy| > 1)

1/,
< 4E [y (H;"" - XP)?dt

— 0,

and
1 ~
P(] / / (H™ — X0)=N(dt, dz)| > n)
| |<1
fo f ‘<1 /’LE

~ X9)2N(dt, dz))?

> 772
1 )
fo E(th’a - X?)thj]z\gl |Z‘2V(dz)
< 2
— 0.

Then, we obtain

1
[ e - xtas) o, (10
0
and .
|/ / (H — X0):N(dt,d=)| B 0. (1)
0 J|z|<1
According to (9), (10) and (11), we have
zn: Xt (Li, — Ly, ) 5 /
ti— 1
14/1+ X2 V14 ( X0
|

Now, we introduce the main results below.
Theorem 1: When € — 0 and n — oo, the least squares
estimator &, . is consistent in probability, namely

~ P
Qp e — Q.

Proof: According to (7), Lemma 2 and Lemma 3, when
e—0and n — oo,
Qne — £o. (12)

The proof is complete. ]
Theorem 2: When ¢ — 0 and n — oo,

1 X7

o i e
1 _(XP)? '
0 THexoyzdt

e ! (Gneg) —

Proof: According to (7), we obtain

oY 1\/172
+X
)= 1
nzl 11-‘,—X2 .

From Lemma 2 and Lemma 3, we have

(Lti - Lti—l)

571 (an,sao

1 X7
Ufo —t st
1/~ , \/1+(X°)
e H@n ca0) S X0y : (13)
0 1+(X0)2
The proof is complete. ]

ITI. PARAMETER ESTIMATION FOR THE HYPERBOLIC
DIFFUSION DRIVEN BY a-STABLE NOISES

We investigate parameter estimation for following a-stable
hyperbolic diffusion:

X
dX, =y————dt + e0dZ;, te[0,1]
V1+ X? (14)
Xo =0,
where v is unknown, Z is a strictly symmetric «-stable

motion with o € (1,2).

We assume that the process {X;,¢ > 0} can be observed
at discrete point {t; = iA,i = 0,1,2,...,n} with A > 0.
Consider the following contrast function:

X
X, — X, — wjml |2
n 7 i 1+x2 )
pn’E(’Y) = Z 520'2Ati 1 9 (15)
i=1 -
where Ati_l = ti — ti—l = %
It can be obtained that
Z" (X =X 1)X%‘71
=1 /1+X2
an,s = 1 (16)
Ez 1 1~|»X2 .
Since
X, — Xy, ds + 60’/ dZ,.
(17)
Substituting (17) into (16), we have
an,s
n fti XXt o
iz e Wm
1
Zz 1 1-i-X2 .
S 7)( dZ,
€0 2. i=1 t, 1 /1+X2
+ (18)

1
Zz 1 1-&-Xz .

Consider the following ordinary differential equation:
X*
dX| = y———=dt, X =xy.
1+ (X7)?
Firstly, we give some important lemmas.
Lemma 4: When € — 0 and n — oo,

sup | X, — X7 5o

0<t<1
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Proof: Since

When ¢ — 0 and n — oo,
tXE (X7 ,)?

. 1
X, - X Z _
: X X ; |n;(1+Xt2i_l 1+(X;;_1)2)|
- s — s ds—|—6a/ dz,, n B
70\/0(\/1+X§ \/1+<X;)2) 0 _ |lz thl 1_(Xt171)2 |
. ne (14 X7 )0+ (X5 _,)%)
we obtain i=1 ’ ‘
1 - 2 * 2
|Xt _)(E<|2 S EZ‘Xti71 - (Xtifl) |
=1
X Xx
< 2l [ (s - s 1 : *
o VIrXxZ 1+ (XD = D X XX - X
t y —
+2€202|/ dz,|* Lo
Y < DX | IX L DIX - X
< 2t72/| Xs X ds|? =
— 0 - * _ *
0 \/tl+X3 V1t (X7)2 < Oiggl(\thJrlXt\)lXt X/
+25202|/ dz,|? )
0
t t Since
< 8m§/ |XS—X:|2+25202|/ dZ,|*.
0 0

By Gronwall’s inequality, one has
t
X, — X2 < 2520268*7&/ dZ,)?.
0
Then,

t
sup | X — X/| < V2eoet ™ sup | [ dZs|.
0<t<1 o<t<1 Jo

For any given 7 > 0, when ¢ — 0 and n — oo,

t
P(|\/§50647§ sup | [ dZ|| > 9)
o<t<1 Jo

t
< 5_1\/55064%?1@[ sup | | dZs|]
o<t<1 Jo

< 05 "W 2eqetm
— 0,
where C is a constant.
Therefore,

sup |X; — X/| 5o.
0<t<1

Lemma 5: When € — 0 and n — oo,

1 n XQ_ 1 X* 2
S
n= 1+ X7 o 1+ (X7)?

Proof:
1o~ X2,
H;1+XEH
_;i (X7_,)?
Con~1+ (X;l71)2
;i RGN
(et 1+X2 4 (XxE )T

1 n X* 2 1 X* 2
72 ( tz—:) > f)/ ( t)* 2dt,
n i=1 ]' + (Xti_l) 0 ]' + (Xt )

we obtain
n 2 *
l X i—1 £> ! (Xf )2 dt
nzl+X2 1+ (X7)2
-1 ti1 0 t

Now we introduce the main results.
1
Theorem 3: When € — 0, n — o0, and en!~s — 0,

~ P
Tn,e — 70-
Proof: Observe that
b X Xy,
70 Z —
t? 1 1 + X2 \/ 1 + X2

5 / X, X;
0
0 1+ X2/1+ (X7)?

When € — 0 and n — oo,

Z/ XXy,
0 1+ X2 \/1+X2

P (X3
(19) —>’yo/0 71+(Xt)2dt'

For V6 > 0, when € — 0, n — oo, and enl— % — 0,

dt.

| ]
P(leo / ———dZ| > 9)
Z W1+ Xt% )
X
<6 gaZm LS
V1+XE
< 2K 'eon'™% sup E[(Xf)%}
0<t<1
— 0,
where K is constant.
Thus,
X
20) / — i gz, 5.
ti_1 1+ X?

ti—1
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Therefore,

l/y\n,s £> Yo- (26)

Theorem 4: When ¢ — 0, n — oo, and ne — 0o,

L X yagpt
fomd”

(o

e Fne —0) > Sa(1,0,0).

1+(X
Proof: Since

Eil(an,s_ )
X Xe;

-1
SRRy \/HT\/HT

121 11<|»X2 .

JZZ 1ftL . 7\/Wd25
i Zz 1

+

1+X2 .
2
ti1

€ oy Zi—l 1+X2 )

1211

2
1+X .

We have

XXy,

V1+XE 1+ X2

ds 5o, @7

€ 'VOZ/

and

(28)

As

n ti X,
;/511 ,/1+X2,7
_Z/tL 1 1/1—}— X* &

t; *
’ th 1 Xt'i—l

+ /( -
; tia \/1+ng1 \/1+(X;;71)2

)dZ(29)

1

For V6 > 0, when ¢ — 0, n — oo and nl=* — 0,
Xy, Xt
| / i—1 i— )dZS|
Z \/1—|—X2 ] \/1 Xt*L 1 2
> 0)
X X7
< IZE|/ ti—1 _ ti_1 )
\/1+X2 \/1+(X;71)2
dZ|]
= Y
i=1 ti-1
X A1+ (X)) — X7 ,/1+X211
dZy]
\/1+X2 \/1 )2
< 25 1213/ Xo . — X{|dZ,
t'L 1
< a0 Yu([ X - X e
i=1 Jti-1
< 4C5'SE osup |Xy— X[fnTa
- ; 1<It)<t‘ b |
< 406'N E sup | Xy — X[|n "=
o ; O<tI<)1‘ b |
— 0.

Then, we have

t;
/L . \/1+X2 \/1+(X£Z_1)2

*
ti—1

)dZ, 5 0. (30)

Since
/ X,
ticn (/14 (X[
/ = 1(ti,1,ti](5)dZs
1/1+ X7 )
/ T g, e(s)ds,
\/ t1 1)
1 d
where Z = Z.
We obtain
[y
1/1+ X )P
1 *
5/ (L)o‘dt. 31)
o 1+ (X[)?
Thus,
7o [ 3o
1/1+ (X3¢ )2
1 *
L4 Xi (32)

\/1—1— X*
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Then,
/t’ X
ti—1 1+ X*

d 1
—————)%dt) > S,(1,0,0). 33
a(/{)( 1+(X:)> 55,(10.0). (33
Therefore,

o(fy( \/H{T))adt)g

(fo Wdt)

e Fne—0) > S4(1,0,0). (34)

IV. SIMULATION

We use the discrete sample (X, )i=o.1,....n to compute the
estimator &, . and %, .. In Table 1 and Figure 1, o = 0.8,
= 0.1, ¢ = 0.001. In Table 2 and Figure 2, zog = 0.5,

a = 1.6, =0.002. Two tables list the value of least squares

estlmator ‘Qn,e”, “Yn,e”, and the absolute errors (AE)“|cyg —

”’ |A/() _’yn,a| .

Two tables provide that when n is large enough and e
is small enough, the estimator is very close to the true
parameter value. Two figures illustrate that If we let n
converge to the infinity and € converge to zero, the estimator
will converge to the true value.

TABLE I
LEAST SQUARES ESTIMATOR SIMULATION RESULTS OF g

True Aver AE

ag Size n Qin,e |ovg — @i e |
10000 1.1452 0.1452

1 30000 1.0328 0.0328
50000 1.0007 0.0007
10000 2.1639 0.1639

2 30000 2.0581 0.0581
50000 2.0006 0.0006

TABLE 11

LEAST SQUARES ESTIMATOR SIMULATION RESULTS OF g

True Aver AE

Y0 Size n Fn,e [0 — An,
10000 0.8572 0.1428

1 30000 1.0431 0.0431
50000 1.0005 0.0005
10000 2.1309 0.1309

2 30000 2.0608 0.0608
50000 2.0010 0.0010

\hat Alpha_n

25

10000

20000 30000 40000 50000

Size n

Fig. 1. The simulation of the estimator &n e with g = 1

‘hat Gamma_n

4.5

3.5

25

&)

ol il

1 L L L L . L L . L '
10000 20000 30000 40000 50000

Sizen

Fig. 2. The simulation of the estimator ¥, . with y9 = 2

V. CONCLUSION

The aim of this paper is to estimate the parameter of
hyperbolic diffusion driven by small Lévy noises from
discrete observation. The least squares estimation has been
used to obtain the parameter estimator. The consistency and
asymptotic distribution of the estimator have been derived.
Further research tops will include parameter estimation for
stochastic differential equation driven by fractional Lévy
noises.
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