
 

  
Abstract—This article describes the compact quadrature 

sinusoidal oscillator, which produces both voltage and current 
quadrature outputs at the same time. By utilizing a voltage 
differencing gain amplifier (VDGA) as an active element, the 
proposed dual-mode quadrature oscillator is realized with 
only three grounded passive elements, namely one resistor and 
two capacitors. The adjustment rules for the condition of 
oscillation and the frequency of oscillation are orthogonally 
controllable by the independent VDGA bias currents. Non-
ideal influences on the circuit’s behavior are also examined in 
detail. PSPICE-based computer simulation was used to 
evaluate the theoretical hypotheses of circuit functioning. 
 

Index Terms—Voltage Differencing Gain Amplifier 
(VDGA), quadrature oscillator (QO), dual-mode operation, 
tunable circuit. 

I. INTRODUCTION 
 sinusoidal quadrature oscillator (QO) that creates two 
equaled-amplitude outputs with a 90° phase difference 

is a fundamental circuit block that is used in many signal 
processing and information systems, such as single-
sideband vector generators, quadrature mixers, and 
selective voltmeters. Numerous QO solutions based on 
various high-performance active devices have been 
proposed in the open technical literature over the last few 
decades [1–21]. A close examination reveals that the QO 
realizations in [1–8] produced current-mode outputs, 
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whereas the works in [9–21] produced voltage-mode 
outputs. Also, recall that none of the previously listed 
oscillator circuits can create both voltage and current 
signals at the same time.  There are a few circuits in the 
literature that have the benefit of simultaneously providing 
explicit quadrature voltage and current signals [22–27]. 
However, these oscillator realizations possess one or more 
of the following drawbacks: (i) contain two or more active 
elements [23]-[25]; (ii) include at least four passive 
components [22], [24]-[27]; (iii) comprise floating passive 
components [24]; as well as (iv) lack electronic adjustment 
of their essential parameters [22], [24].  

Therefore, this study makes an attempt to present an 
electrically adjustable sinusoidal QO with both voltage and 
current quadrature outputs at the same time. The suggested 
QO circuit is canonic and low-component count, with just 
one voltage differencing gain amplifier (VDGA), two 
capacitors, and one resistor. Three passive elements are all 
grounded, which is favorable for further monolithic 
implementation. External biasing currents are used to 
achieve orthogonal electronic control of the condition of 
oscillation (CO) and the oscillation frequency (ωo). The 
characterization operations of the proposed QO have been 
examined through PSPICE simulation based on 0.35-µm 
CMOS manufacturing technology.    

II. DESCRIPTION OF VOLTAGE DIFFERENCING GAIN 
AMPLIFIER (VDGA) 

The VDGA is a five-terminal versatile analog active 
building block suggested by J. Satansup and W. Tangsrirat 
in 2013 [28]. In the literature, certain applications of the 
VDGA element have been developed, including a voltage-
mode biquad filter [28], an nth-order low-pass filter [29], 
and a sinusoidal oscillator [30]. Fig. 1 depicts the VDGA's 
symbolic circuit representation. Ignoring the non-idealities 
of the device used, the ideal behavior of this element may 
be stated as 
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The VDGA, as defined in the literature, can be realized 
using a suitable CMOS technology, as illustrated in Fig. 2 
[28]. The three floating current sources (FCSs) M1A-M9A, 
M1B-M9B, and M1C-M9C realize independent programmable 
transconductance gains of gmA, gmB, and gmC [31]. The 
expression for the transconductance gmk (k = A, B, C) of the 
FCS M1k-M9k may well be written by:     
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where Bkik KIg = for i = 1, 2, 3, 4 (3) 

and K is the transconductance coefficient of the device, and 
IBk is the external bias current.  It may be mentioned that 
the transconductance gmk can be controlled electronically by 
utilizing IBk.   
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Fig. 1.  Circuit symbol for the VDGA   
 

According to Fig.2, the FCS M1A-M4A is a differential-
input voltage to current converter with the 
transconductance gmA (iz = gmA(vp-vn)), whereas the FCS 
M1B-M4B converts the voltage vz into the x-terminal current 
ix with the gain gmB (ix = gmBvz). A pair of FCSs M1B-M4B 
and M1C-M4C effectively realize a tunable-gain voltage 
amplifier stage between the w and z terminals (vw = βvz). 
For this circuit, the voltage transfer gain β for this stage is 
equal to  

 

 Bm KIg =  (4) 

 
which can be fine-tuned with modifying the gmB/gmC ratio or 
the IBB/IBC ratio.    

In non-ideal conditions, the practical VDGA, including 
its non-ideal transfer gains, can be modeled as: 
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where αk and δ denote the non-ideal transconductance gain 
and the non-ideal voltage transfer gain, respectively. 
Furthermore, when the parasitic impedances at the 
VDGA’s corresponding terminals are taken into account, 
its non-ideal model is represented in Fig.3. In Fig.3, Rj and 
Cj (j = p, n, z, x, w) represent to the parasitic resistance and 
capacitance at the corresponding terminal, respectively.   
 

III.  PROPOSED DUAL-MODE QO CIRCUIT   
The proposed sinusoidal QO circuit, which is found to 

possess both the voltage and current quadrature signals at 
the same time, is depicted in Fig.4. A single VDGA is used 
as an active element in the realization, along with one 
grounded resistor and two grounded capacitors. The use of 
only grounded resistors and capacitors is appropriate for 
monolithic integration and is also beneficial for absorbing 
various parasitic impedance effects [32]. Routine circuit 
analysis of the QO in Fig.4 using (1) yields the following 
characteristic equation: 
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The condition and frequency of oscillation (CO and ωo) 
can be obtained from (6) as, respectively,  
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Fig. 2.  CMOS realization of the VDGA 
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Fig. 3.  Practical model of the VDGA device involving parasitic elements 
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Fig. 4.  Proposed dual-mode QO circuit 

 
The formulas above show that CO may be regulated 

without influencing ωo by adjusting the regulating gmC. 
(IBC). The ωo, on the other hand, may be altered by varying 
gmA and/or gmB, and therefore by bias currents IBA and/or 
IBB.  

Also from Fig.4, the two explicit quadrature output 
voltages vo1 and vo2 are exhibited to form the following 
relationship:    
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The two quadrature current outputs marked io1 and io2 are 
related by the following equation: 
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It is evident from (9) and (10) that the two outputs will 
be 90° out of phase, proving the circuit is quadrature 
property. As a result, the proposed circuit is versatile since 
it has both voltage and current quadrature outputs to 
provide dual-mode operation. 

IV.  NON-IDEAL GAIN EFFECTS AND SENSITIVITY 
CALCULATIONS   

Taking into consideration the VDGA non-idealities 
indicated in (5), the characteristic parameters CO and ωo 
are modified as follows: 

 mCmBmAA gRgg =1δα , (11) 

and 
21CC

gg mBmABA
o

ααω = . (12) 

It is apparent that the VDGA’s non-ideal transfer gains 
directly influence the values of CO and ωo. To adjust for 
variances in the CO and ωo-values, simply tune over the 
CO and ωo through the transconductances gmC, and gmA 
and/or gmB, respectively. 

According to (12), the relative sensitivity investigation of 
ωo in relation to different circuit components reveals that 
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Evidently from (13) and (14), all the ωo-sensitivity 
coefficients have a magnitude of 0.5. As a result, the 
proposed QO circuit in Fig.4 has a low sensitivity 
performance. 

V.  EFFECTS OF VDGA PARASITICS   
Following Fig.3, Fig.5 depicts the practical small-signal 

behavior of the proposed QO circuit in Fig.4, incorporating 
VDGA parasitic impedances. Thus, taking these parasitics 
into effect the non-ideal parameters CO and ωo are 
modified as follows:   
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Considering (R1 << Rz), (C1 >> Cz) and (C2 >> Cn , Cx), 
then (15) and (16) can be estimated as, respectively,  
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where R′
2 = (Rn //Rx).  According to (17), the parasitic 

impedances have a detrimental effect on the CO for 
identical values of capacitances C1 and C2 and for R1 << Rn 

//Rx. Equation(18) demonstrates that the parasitic 
resistances Rn and Rx cause the ωo to diverge from its ideal 
value. For example, if gmA = gmB = gmC = 380 µA/V, C1 = 
C2 = 10 pF, Rn = 500 kΩ, and Rx = 265 kΩ, the ωo-value 
percentage variation is 0.76%. 
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Fig. 5.  Practical model of the proposed QO.    
 

VI.  SIMULATION RESULTS AND PERFORMANCE DISCUSSIONS 
The PSPICE simulator has been used to investigate the 

behavior of the proposed dual-mode QO in Fig. 4. The 
CMOS implementation of the VDGA of Fig.2 was 
performed in simulations employing 0.35-mm TSMC 
CMOS process parameters and 1.5V supply voltages. Table 
I provides the geometrical transistor sizes.   

 
TABLE I 

GEOMETRICAL TRANSISTOR SIZES OF CMOS VDGA IN FIG.2. 
 

Transistors W/L (µm/µm) 

M1k – M2k 22/0.25 
M3k – M4k 24/0.25 

M5k 5/0.25 
M6k – M7k 4.5/0.25 
M8k – M8k 5.8/0.25 

 
The VDGA-based dual-mode QO circuit in Fig.4 was 

designed for fo ≅ 6.08 MHz. The computed component 
values for C = C1 = C2 = 10 pF were derived from (7) 
and(8) as follows: gm = gmk ≅ 382 µA/V (for IB = IBk = 40 
µA) and R1 = 2.6 kΩ. Figs. 6 and 7 show the simulated 
transient responses for the quadrature voltage outputs (vo1 
and vo2) and current outputs (io1 and io2). In both cases, the 
corresponding fo was measured to be around 6 MHz, with a 
percentage error of 1.32%. 

Furthermore, as seen in Figs. 6 and 7, the quadrature 
oscillation outputs deviate in phase by 89° for voltage-mode 
operation and 86° for current-mode operation. It is also 
discovered that for the specified component values, the 
overall power consumption of the circuit is roughly 1.36 
mW. 
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Fig. 6.  Simulated time-domain responses for vo1 and vo2 of the proposed 
voltage-mode QO in Fig.4.  (a) Transient waveforms     (b) Steady-state 
waveforms 
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Fig. 7.  Simulated time-domain responses for io1 and io2 of the proposed 
voltage-mode QO in Fig.4.  (a) Transient waveforms     (b) Steady-state 
waveforms 

 
The Lissajous figures of the two output voltages and 

currents are shown in Fig. 8 to find out the correlation 
between the quadrature outputs. The simulated frequency 
spectrums at fo for both output waveforms are also shown in 
Fig. 9. The total harmonic distortion (THD) values at the 
voltage and current output waveforms are almost 3.25% 
and 3.36%, respectively. 
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Fig. 8.  Lissajous figures at fo showing quadrature property.   
(a) for vo1 and vo2           (b) for io1 and io2. 
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Fig. 9.  Frequency spectrums at fo    
(a) for vo1 and vo2           (b) for io1 and io2 

 
The electronic adjustability of the oscillation frequency fo 

by tuning gm is shown in Fig. 10 for C= 10 pF, 0.1 nF, and 
1 nF. In the high bias current value range, a discrepancy 
between the simulated and calculated values is observed. 
This little discrepancy can be mitigated by fine-tuning the 
value of IB.     
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Fig. 10.  Variation of fo with gm    
(a) for C = 10 pF        (b) for C= 0.1 nF       (c) for C = 1 nF  

 

VIII.  CONCLUSIONS  
The dual-mode sinusoidal QO with a single VDGA and 

all three grounded passive components is detailed in this 
paper. Without modifying the circuit architecture, the 
oscillator circuit may produce both quadrature voltage and 
quadrature current outputs at the same time. All of the 
passive components used in this implementation are 
grounded. By adjusting the bias currents of the VDGAs, the 
condition and frequency of oscillation may be adjusted 
orthogonally and electronically. PSPICE simulation 
findings corroborate the theoretical expectations. 
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