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Abstract— There has been increasing interest in mixed 

estimators in nonparametric regression, although so far these 

have only been used for cross-sectional data. This paper 

proposes a new method to estimate nonparametric regression 

curves for longitudinal data. It uses two estimators: a truncated 

spline and Fourier series. The estimation of the regression 

curve is completed by minimizing the penalized weighted least 

squares and weighted least squares. This article also includes 

the properties of the new mixed estimator, which is biased and 

linear in the observations. This study selects the model with the 

smallest generalized cross-validation value. The performance of 

the new method is demonstrated by a simulation study with 

different subjects and numbers of time points. We also apply 

the proposed approach to a dataset of stroke patients. This 

study proves that the mixed estimator provides better results 

than a single estimator. 

 
Index Terms— Fourier series, longitudinal data, mixed 

estimator, nonparametric regression, truncated spline 

 

I. INTRODUCTION 

egression analysis aims to determine the relations 

between the response and the predictors. A method used 

when the pattern of the regression curve for the data is 

unknown is nonparametric regression [1]. The strength of 

this method lies in its great flexibility, since it is necessary to 

find a way to estimate the regression curve only using the 

data, without being influenced by subjective opinions of the 

researcher [2]. Some of the estimators used for this are 

splines, Fourier series, kernels, and polynomials. 

A truncated spline is a function capable of defining the 

change in the pattern in certain sub-intervals. This function 

can also, by the use of knot points, capture a pattern of the 
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data that changes drastically from one interval to another.  

Splines are popular estimators in nonparametric regression 

because they provide an excellent visual interpretation. 

Several studies using splines have been carried out, 

including a simulation study to compare knot selection 

methods in a penalized regression spline model a 

geographically weighted nonparametric regression with a 

truncated spline approach [4], and a B-spline curve 

interpolation model [5]. The Fourier series is a much used 

function to describe curves that describe sine and cosine 

waves. This estimator is commonly used when there is some 

kind of periodicity. Bilodeau [6] estimated additive 

components with functions consisting of a truncated Fourier 

cosine series, using penalized least squares (PLS) to obtain 

the coefficients. In addition, [7] developed a Fourier series 

estimator for bi-response nonparametric regression.  

Nonparametric regression often uses a single estimator, 

but this does not limit its ability to develop a mixed 

estimator. There are many cases where each predictor 

variable has a different pattern. Several studies using mixed 

estimators have been published, including [8] with a mixed 

estimator of a truncated spline and Fourier series in 

multivariable nonparametric regression, and [9] and [10] 

estimated the regression curve by using a mixed smoothing 

spline and kernel model. Besides, [11] developed a mixed 

estimator of smoothing spline and Fourier series.  

Previous studies of mixed estimators have been limited to 

cross-sectional data. To remedy this, we here develop a 

longitudinal data model. The longitudinal data are obtained 

from observations on n  independent subjects repeatedly 

observed over a certain period of time; this has the 

advantage of being able to observe changes over time [12]. 

In the previous study [13], the mixed estimator has a limited 

sample size. The present study extends the use of a mixed 

truncated spline and Fourier series (MTSFS) model to 

variety number of subjects and varied time point designs. 

Some properties of the new mixed estimator will also be 

provided. We use generalized cross-validation (GCV) to 

determine the best model from among various numbers of 

knots, oscillations, and values of the smoothing parameters. 

Simulation studies and real data are provided to demonstrate 

the performance of the proposed method. The case study 

used in this study includes the four factors that affect the 

Glasgow Coma Scale (GCS) in stroke patients, i.e., systolic 

blood pressure, diastolic blood pressure, body temperature, 

and pulse rate. 

The rest of this paper is organized as follows. In Section 
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2, we present the details of the new mixed estimator, its 

properties, and how to select the optimum number of knot 

points, oscillation parameter, and smoothing parameter. In 

Section 3, we present the results of a simulation study based 

on the proposed method. This is followed by an application 

to the data in Section 4. Section 5 is the Conclusion.  

 

II. MTSFS MODEL FOR LONGITUDINAL DATA 

A. The Estimators of the MTSFS Model for Longitudinal 

Data 

Suppose ity  is the response variable and itx  and itz  are 

the predictor variables with sample size n  subjects 

 1,2, ,i n , each subject with T  observations 

 1,2, ,t T . The relationship between the response and 

predictors is assumed to follow the nonparametric regression 
model for longitudinal data, as follows: 

 1 1,..., , z ,..., zit it pit it qit ity x x    (1) 

where   is the regression curve and it  is the random error. 

Assume that the form of the regression curve  is unknown 

and additive, so that 

     1 1

1 1

,..., , z ,..., z
p q

it pit it qit ji jit ki kit

j k

x x f x g z
 

    (2) 

where  
1

p

ji jit

j

f x


  is the truncated spline component and 

 
1

q

ki kit

k

g z


  is the Fourier series component. The functions 

,  1,2,jif j p  are approximations using truncated spline 

functions and the ,  1, 2,...,kig k q  are from Fourier series. 

The estimator   is obtained through a two-stage 

optimization, i.e., penalized weighted least squares (PWLS) 
and weighted least squares (WLS). Some lemmas and a 
theorem are provided to obtain an MTSFS model for 
longitudinal data.  

Lemma 1. If the Fourier series component in Equation (2) 

is given by  
1

q

ki kit

k

g z


 , then the goodness of fit is 

   1 * *N   y Zc W y Zc . 

Proof of Lemma 1. The function kig  is assumed to be 

unknown and contained in  0,C  , the space of continuous 

functions on the interval (0,π). The function is then 
approximated using Fourier series with trend, modified from 
Bilodeau [6]: 

  0

1

1
cos

2

H

ki kit ki kit ki hki kit

h

g z d z c c hz


    (3) 

For convenience, Equation (3) can be written in following 
matrix form: 

g Zc  (4) 

where  

1

2

n

 
 
 
 
 
 

Z 0 0

0 Z 0
Z

0 0 Z

, 

1 1 11 1 1 1 1 1

2 2 21 2 1 2 1 2

21 1 2 1

1 2 cos cos1 2 cos cos

1 2 cos cos1 2 cos cos

1 2 cos cos1 2 cos cos

i

qi qi qii i i

qi qi qii i i

qiT qi qiTiT i iT

z z Hzz z Hz

z z Hzz z Hz

z z Hzz z Hz



 
 
 
 
 
  

Z

1

2

n

 
 
 
 
 
 

c

c
c

c

, and 

1 01 11 1 0 1 .i i i i H i qi qi qi Hqid c c c d c c c    c

If the regression model follow the Equation (1), then we can 
modify it as shown below: 

   

 

1 1

*

1

, 1,2,..., ,  1,2,...,

p q

it ji jit ki kit it

j k

q

it ki kit it

k

y f x g z

y g z i n t T





 



  

   

 



 (5) 

The goodness of fit for Equation (5) can be written as 

 
2

1 *

1 1 1 1

2

1 *

0

1 1 1 1 1

1
cos

2

qn T T

it it ki kit

i t k t

qn T T H

it it ki kit ki hki kit

i t k t h

N w y g z

N w y d z c c hz



   



    

 
 

 

  
     

  

 

  

 (6) 

As a result, the goodness of fit component in Equation (6) 
can be drawn in the following matrix form: 

     
2

1 * 1 * *N N     W y Zc y Zc W y Zc  □ 

Lemma 2. If the penalty component is given by 

  
2

1 0

2q

k ki k k

k

g z dz





  , 

then 

    
2

1 0

2q

k ki k k

k

g z dz


 


   c D c . 

Proof of Lemma 2. Regarding Equation (3), we define 

  0

1

2

1

1
cos

2

cos

H

ki k ki kit ki hki kit

hk k

H

hki kit

h

d d
g z d z c c hz

dz dz

h c hz





  
     

  

 





 

Consequently, 

 

  

2

2

10

2

2 2 2

10

2
cos

2
cos 2 cos cos

H

k k hki kit k

h

H H

hki kit hki kit mki kit k

h h m

P g h c hz dz

h c hz h c hz m c mz dz











 

 
  

 

  
   

   



 

 
Let 

 
2

2

1 0

2
cos

H

hki kit k

h

A h c hz dz


 

   

Engineering Letters, 30:1, EL_30_1_40

Volume 30, Issue 1: March 2022

 
______________________________________________________________________________________ 



 

  2 2

0

2
2 cos cos

H

hki kit lki kit k

h l

B h c hz l c lz dz


 

   

Thus,  

  4 2

1

H

k k hki

h

P g A B h c


    (7) 

After obtaining the result of penalty in Equation (7), it can 

be rewritten in matrix form: 

 c D c  

where 

 

 

 

 

1

2

n








 
 
 
 
 
  

D 0 0

0 D 0
D

0 0 D

, 

 4 4 41 2 ,  0,0, ,

1,2,..., ,

k k k k k kH diag

k q

     



I d I
, 

and  

1

2

i

q



 
 
 
 
 
  

d 0 0

0 d 0
D

0 0 d

. □ 

Considering the goodness of fit in Lemma 1 and penalty 
component in Lemma 2, we obtain the PWLS optimization 
as 

    
2

2
1 *

1 1 1 1 0

2
,0

q qn T

it it ki kit k ki k k k

i t k k

N w y g z g z dz



 




   

 
     

 
    (8) 

For simplification, Equation (8) can be rewritten in matrix 

form: 

     1 * *N     y Zc W y Zc c D c  (9) 

Theorem 1. If the goodness of fit is given in Lemma 1 and 
penalty component is given in Lemma 2, then the Fourier 
series component obtained by minimizing PWLS in Equation 
(8) is 

    *

, ,
ˆ , 

k h λ
g x z Ly  

where *  y y f  and  
1

N 


    L Z Z WZ D Z W . 

Proof of Theorem 1. The optimization in Equation (8) can 
be written as 

 
    

2
2

1 *

 0,
1 1 1 1 1 0

2
 

k

q qn T T

it it ki kit k k k k
g C

i t k t k

Min N w y g z g z dz











    

   
   

   
   

 (10) 

Equation (10) can be rewritten in matrix form:  

 
     

 
  

1 * *

 0,

 0,

C

C

Min N

Min Q











     
 



c

c

y Zc W y Zc c D c

c

 (11) 

We obtain 

   1 * * 1 * 12Q N N N 
         c y Wy c Z Wy c Z WZc c D c

The completion of the optimization (11) is obtained by 

taking the partial derivatives of  Q c  at c  and setting them 

to zero, 

 Q




c
0

c
 

giving the result 

 
1 *ˆ N 


    c Z WZ D Z Wy . (12) 

By substituting Equation (12) into Equation (4), we obtain 

     
1 * *

, ,
ˆ ˆ, N 


      k h λ

g x z Zc Z Z WZ D Z Wy Ly (13) 

Hence, the nonparametric regression model in Equation (5) 

can be written as 

   * *

, ,
ˆ , 

k h λ
y g x z Ly , 

where *  y y f  and  
1

N 


    L Z Z WZ D Z W . □ 

Lemma 4. If the truncated spline component in Equation (2) 

is given by  
1

p

ji jit

j

f x


 , then the WLS is 

                  I L y I L Mγ W I L y I L Mγ . 

Proof of Lemma 4. The function 
jif  is a linear truncated 

spline function with s knot for each ,  1,2,...,jx j p  

   
1

s

ji jit ji jit uji jit uji

u

f x x x K 




    (14) 

where  
  ,  

0 ,  

jit uji jit uji

jit uji

jit uji

x K x K
x K

x K

 
 







. 

According to Equation (14), the trunvated spline function for 
nonparametric regression for longitudinal data can be 
expressed in matrix form 

 
     

 

α
f X S Mγ

β
 (15) 

where 

1

2

n

 
 
 
 
 
 

X 0 0

0 X 0
X

0 0 X

,

1

2

n

 
 
 
 
 
 

S 0 0

0 S 0
S

0 0 S

,

1

2

n

 
 
 
 
 
 

α

α
α

α

, 

1

2

n

 
 
 
 
 
 

β

β
β

β

,

1 1 2 1 1

1 2 2 2 2

1 2

i i pi

i i pi

i

iT iT piT

x x x

x x x

x x x

 
 
 
 
 
  

X ,

1

2

i

i

i

pi







 
 
 
 
 
  

α ,

       

       

       

1 11 1

1 1 11 1 1 1 1 1 1

1 11 1

1 2 11 1 2 1 2 1 2

1 11 1

1 11 1 1 1

i i i s i pi pi pi spi

i i i s i pi pi pi spi

i

iT i iT s i piT pi piT spi

x K x K x K x K

x K x K x K x K

x K x K x K x K

   

   

   



    
 
 

    
 
 
 

     

S

and 11 1 1

T

i i s i pi spi      β . 

Hence, the MTSFS model for longitudinal data in Equation 
(1) can be written in the form 

  y f g ε . (16) 

By substituting Equation (13) into Equation (16), we obtain 
*  y f Ly ε . (17) 

To obtain the estimator of truncated spline component, 

Equation (17) can be written as 

 

   

*  

   

   

y Ly f ε

y L y f f ε

I L y I L f ε

  (18) 
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Equation (18) can be rewritten as 

      I L y I L Mγ ε . (19) 

Thus,  

      ε I L y I L Mγ . 

As a consequence, the WLS is given by 

                    ε ε I L y I L Mγ W I L y I L Mγ .□ 

Theorem 2. Suppose the WLS is given by Lemma 4. Then 
the mixed estimator obtained by minimizing WLS is 

    1

, ,
ˆ , 

k h λ
f x z MJ Ky  

where  2   J L WLM WM  and     .   
  

K L I W I L  

Proof of Theorem 2. The WLS optimization in Lemma 4 
can be written as 

        
  

Min

Min Q

            



γ

γ

I L y I L Mγ W I L y I L Mγ

γ

 (20) 

We obtain 

  

1 1 1 1

2 2

    2 2 2 2

Q

N N N N   

                  

           

γ y Wy y LWLy γ M LWLMγ γ M WMγ y LWy γ M LWy

γ M Wy γ M LWLy γ M WLy γ M WLMγ

 The complete optimization is obtained by setting the partial 

derivatives of  Q γ  at γ  to zero. This yields the result 

     
1

1ˆ 2


         
      

γ L WLM WM L I W I L y J Ky . (21) 

By substituting γ̂  into Equation (15), we obtain 

     1

, ,
ˆ ˆ, , ,  

k h λ
f x z Mγ MJ Ky A k h λ y . (22) 

We obtain ĉ  by substituting Equation (22) into Equation 

(12): 

 

   

   

   

   

1 *

1

1

1 1

1 1

ˆ

ˆ

ˆ

N

N

N

N

N

















 

 

    

     

     

     

     

c Z WZ D Z Wy

Z WZ D Z W y f

Z WZ D Z W y Mγ

Z WZ D Z W y MJ Ky

Z WZ D Z W I MJ K y

 (23) 

As a consequence, 

   

   

 
 

, ,

1 1

1

ˆ ˆ,

, ,

N 
 





      

 



k h λ
g x z Zc

Z Z WZ D Z W I MJ K y

L I MJ K y

B k h λ y

 (24) 

By substituting γ̂  and ĉ  into MTSFS model for 

longitudinal data, we obtain 

           

 

 

 

, , , , , ,

1 1

1 1

ˆ ˆˆ ˆ , , ,

ˆ ˆ

, ,

 

 

  

 

  

   
 



k h λ k h λ k h λ
y μ x z f x z g x z

Mγ Zc

MJ Ky L I MJ K y

MJ K L I MJ K y

C k h λ y

 (25) 

where  2   J L WLM WM ,        K L I W I L , 

 
1

N 


    L Z Z WZ D Z W . 

B. The Properties of MTSFS Model for Longitudinal Data 

This section proves two properties of the MTSFS model 
for longitudinal data: it is biased and linear in the 
observations. It is biased, as proved by 

           

   

 

   

, , , , , ,
ˆ ˆˆ , , ,

, , , ,

, ,

, ,

E E

E

E

E

    
   

   

   



k h λ k h λ k h λ
μ x z f x z g x z

A k h λ y B k h λ y

C k h λ y

C k h λ y

 

considering  , , C k h λ I , so that 

       

          
     

, ,

, , , ,

, ,

ˆ , , ,

, , , ,

, , ,

E E  
 

 



k h λ

k h λ k h λ

k h λ

μ x z C k h λ y

C k h λ f x z g x z

C k h λ μ x z

 (26) 

The result in Equation (26) showed that the mixed estimator 

is biased, because 
       , , , ,

ˆ , ,E   
 k h λ k h λ
μ x z μ x z . Even 

though the mixed estimator is biased, it is linear in the 
observations, as proved by Equation (27) below. 

           

   

 

, , , , , ,
ˆ ˆˆ , , ,

, , , ,

, ,

 

 



k h λ k h λ k h λ
μ x z f x z g x z

A k h λ y B k h λ y

C k h λ y

 (27) 

 

C. The Selection of the Optimal Number of Knot Points, 

Oscillation Parameter, and Smoothing Parameter 

One of the most important steps in nonparametric 

regression modeling is choosing the optimal number of knot 

points, oscillation parameter, and smoothing parameter. The 

GCV value is a criterion that can be used to determine the 

best model from a variety of knots, oscillation, and 

smoothing parameters. The criteria for choosing the best 

model include taking the model with the lowest value of the 

GCV. The modified GCV function of the MTSFS model for 

longitudinal is stated as follows. 

 
  

  

2
1

2
1

, ,
, ,

, ,

N
GCV

N trace







  

I C k h λ y
k h λ

I C k h λ
 (28) 

 

III. SIMULATION STUDY 

In this section, the results of applying the MTSFS model to 
simulated data are presented, to see the performance of the 
obtained estimators. The simulation was carried out with 
four different sample sizes 5,  10,  20,  40n   and two 

different numbers of time points 7,  14T  . We created 

models for each subject generated from the formula that 
discribes two different functions that represent the truncated 
spline and Fourier series pattern. A polynomial function is 
used to represent the truncated spline, while a trigonometric 
series is used to represent the Fourier series. The predictors 

are generated from  0,1U  and random errors it  are 

generated from a multivariate normal distribution. 
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The weight matrix is specified by the user [12], and in this 

simulation study we use weight matrix type 2, 1nW I , so 

that each of the measurements in the same subject is treated 
equally. In this study, we use two numbers of knots ( 1K   
and 2K  ) and also two number of the oscillation 
parameter ( 1H   and 2H  ). The GCV results of the 
simulation studies are shown in Table 1. 

Table 1 shows that the model with 5n   and using one 

knot appears to have smaller GCV value. The same can be 
seen at  10n  ,  20n   and 40n   as well. We can 

conclude that the lower number of knots, the lower the GCV. 
The smallest GCV occurs when  number of time points 

14T   for all subjects, except 20n  . Also, the greater 

number of time points, the lower the GCV for all subjects, 
except 20n  . Other results show that the larger values of 

the oscillation parameter are not guaranteed to produce large 
or small values of the GCV. Therefore, it is necessary to 
choose the optimal value of H, namely, the one that 
produces the smallest GCV.  

 
TABLE I 

COMPARISON OF GCV VARYING THE NUMBER OF SUBJECTS AND TIME 

POINTS 

Number 

of 

Subjects 

Number 

of Time 

Points 

Number 

of 

Knots 

Number of 

Oscillations 

Smoothing 

Parameter 
GCV 

5 

7 

1 
1 0.033 4.709 

2 0.500 4.683 

2 
1 1.000 5.193 

2 0.300 5.182 

14 

1 
1 0.033 3.735 

2 1.000 3.739 

2 
1 0.010 3.818 

2 0.267 3.817 

10 

7 

1 
1 1.000 4.599 

2 0.133 4.435 

2 
1 1.000 4.847 

2 0.067 4.840 

14 

1 
1 0.010 4.413 

2 0.033 4.404 

2 
1 0.010 4.611 

2 0.067 4.558 

20 

7 

1 
1 1.000 3.509 

2 0.800 3.522 

2 
1 1.000 3.856 

2 0.033 3.853 

14 

1 
1 0.033 3.791 

2 1.000 3.798 

2 
1 0.033 3.945 

2 1.000 3.954 

40 

7 

1 
1 1.000 5.215 

2 0.967 5.216 

2 
1 1.000 5.924 

2 0.967 5.923 

14 

1 
1 0.010 3.940 

2 0.867 3.953 

2 
1 0.033 4.043 

2 0.867 4.045 

 

IV. DATA APPLICATION 

The MTSFS model for the longitudinal data obtained is 
applied to the stroke patient data set. Stroke is a non-
communicable disease with an increasing number of 
sufferers around the world. In 2013, stroke was the second 
leading cause of death worldwide (11.8% of all deaths) after 
ischemic heart disease (14.8% of all deaths). Furthermore, 
stroke is the third leading cause of disability, which is 4.5% 
of all causes of disability [14]. Based on the 2016 Global 
Burden of Disease (GBD), the estimated global lifetime risk 

of stroke for people 25 years and older reached almost 25% 
[15]. The global prevalence of stroke in 2017 was 104.2 
million people. Indonesia is one of the countries with the 
highest death rates from stroke. According to the 2007 
Indonesian Basic Health Survey report, stroke was the 
leading cause of death (15.4%) [16]. The prevalence of 
stroke in Indonesia was 7% in 2013 and increased to 10.9%, 
according to the 2018 Indonesia Basic Health Survey report.  

Stroke patients often suffer head injuries from falls. 
Trauma or head injury requires vigilance to ensure further 
medical treatment. The GCS was originally used to assess 
consciousness after head injuries and is now used in the 
medical field for both acute and trauma patients. The data 
were applied after an initial study of GCS in stroke patients 
and the four factors that influenced them. The pattern of the 
relations between the predictors and response followed the 
characteristics of a truncated spline and Fourier series. 
Under the characteristic curve of the truncated spline there is 
a predictor that changes in certain subintervals. The other 
predictors have the characteristics of a Fourier series, which 
has a repeating pattern. 

This paper uses GCS as the response in 18 stroke patients 
( 18n  ) with 21 measurements ( 21T  ) for each person. 

The predictor variables are systolic blood pressure, diastolic 
blood pressure, body temperature, and pulse rate. The partial 
relations between GCS and each predictor variable are 
shown in Figure 1. It can be seen from the data in Table 1 
that the plot shows a different pattern for each predictor. 
Diastolic blood pressure is approximated by a truncated 
spline estimator, while the systolic blood pressure, body 
temperature, and pulse rate are approximated by a Fourier 
series estimator. 

To obtain the best model, in this case study we will try to 
use multiple combinations of the mixed estimator model. A 
single estimator is also tried. Due to computational 
limitations, this study is limited to the use of one knot point, 
three oscillation parameters, and multiple types of smoothing 
parameters. Unlike the simulation study, this case study uses 
three types of weights that correspond to [12]. Next, the best 
model with the lowest GCV is selected. The results of 
modeling with different types of combination are shown in 
Table 2. 

As can be seen from Table 2, we attempted to model GCS 
in stroke patients with the MTSFS model on longitudinal 
data with different types of model combinations. The mixed 
estimator model was tested with one knot, three oscillation 
parameters, and several smoothing parameters ( 0.1  , 

0.3  , 0.5  , 0.7  , and 0.9  ). Using the 1H  , 

the lowest GCV was obtained at 1462.374 with a second 
weight, giving the same treatment of observations on the 
same subject. The model uses a combination of smoothing 

parameters, namely 1 0.9  , 2 0.9  , and 3 0.5  . In the 

models with 2H   and 3H  , the best model is obtained 

with the first weight, which treats all observations equally. 
The lowest GCVs in the model are 1462.321 and 1462.314, 
respectively. Both models use a combination of smoothing 

parameters, namely 1 0.9  , 2 0.9  , and 3 0.1  . 
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Fig. 1.  Scatterplot of 18 stroke patients between: (a) GCS and diastolic blood pressure; (b) GCS and systolic blood pressure; (c) GCS and body 

temperature; (d) GCS and pulse rate. 

 

Engineering Letters, 30:1, EL_30_1_40

Volume 30, Issue 1: March 2022

 
______________________________________________________________________________________ 



 

When comparing various types of weights, the third type 
of weight, which takes into account the correlation between 
observations on the same subject, yields a model with a high 
GCV, greater than 1900. The first and second weights give 
almost the same value of GCV in any combination of 
models. One of the important things about Table 2 is that the 
model using a single estimator produces a fairly large GCV. 
The GCV value obtained is very different from the mixed 
estimator. What is striking in the table is that the results of 
the case studies are in line with the results of the simulation 
study. In both cases, the lowest GCV value was obtained 
using the oscillation parameter 3H  . Taken together, these 

results suggest that the performance of the mixed estimator 
exceeds that of the single estimator in the GCS modeling in 
stroke patients. 

 
TABLE II 

SUMMARY OF GCS MODELING USING MODEL COMBINATIONS 

Number 

of Knots 

Number of 

Oscillations 

Smoothing 

Parameter 
GCV 

1 2 3 Weight 1 Weight 2 Weight 3 

Truncated Spline Model 

1 - - 361817.8 297849.1 428343.9 

Fourier Series Model 

- 

1 

- 

350463 289807.2 417041.6 

2 143203.5 131242.5 137519.1 

3 93563.96 88905.9 116303.6 

Mixed Truncated Spline and Fourier Series Model 

1 1 0.1 0.1 0.1 1463.113 1462.405 1913.382 

1 1 0.3 0.1 0.1 1462.864 1462.394 1911.442 

1 1 0.5 0.1 0.1 1462.814 1462.391 1911.028 

1 1 0.7 0.1 0.1 1462.793 1462.39 1910.848 

1 1 0.9 0.1 0.1 1462.781 1462.39 1910.747 

... ... ... ... ... ... ... ... 

1 1 0.9 0.9 0.5 1462.460 1462.374 1911.324 

... ... ... ... ... ... ... ... 

1 2 0.9 0.9 0.9 1462.453 1462.374 1911.206 

1 2 0.1 0.1 0.1 1462.946 1462.398 1911.313 

1 2 0.3 0.1 0.1 1462.693 1462.385 1909.613 

1 2 0.5 0.1 0.1 1462.642 1462.383 1909.25 

1 2 0.7 0.1 0.1 1462.62 1462.382 1909.091 

1 2 0.9 0.1 0.1 1462.608 1475.991 1909.002 

... ... ... ... ... ... ... ... 

1 2 0.9 0.9 0.1 1462.321 1475.979 1911.401 

... ... ... ... ... ... ... ... 

1 2 0.9 0.9 0.9 1462.435 1475.982 1910.968 

1 3 0.1 0.1 0.1 1462.947 1462.398 1911.235 

1 3 0.3 0.1 0.1 1462.688 1465.174 1909.532 

1 3 0.5 0.1 0.1 1462.636 1465.171 1909.167 

1 3 0.7 0.1 0.1 1462.614 1465.17 1909.008 

1 3 0.9 0.1 0.1 1462.602 1465.17 1908.919 

... ... ... ... ... ... ... ... 

1 3 0.9 0.9 0.1 1462.314 1465.158 1911.387 

... ... ... ... ... ... ... ... 

1 3 0.9 0.9 0.9 1462.435 1465.161 1910.959 

 

V.  CONCLUSION 

The main goal of the current study was to introduce a new 

mixed estimator in a nonparametric regression model for 

longitudinal data. We also presented a new two-stage 

method to estimate the parameters, i.e., PWLS and WLS. 

We combined the truncated spline estimator and the Fourier 

series to obtain better estimation results when different data 

patterns are found between each predictor. Next, we 

modified this method to choose the best model based on the 

proposed model.  

In this paper, GCV criterion was employed to select the 

best model for the simulation study, as well as the case 

study. The simulation study identified that a larger 

oscillation parameter does not necessarily produce a low 

GCV. Therefore, we must try various combinations of these 

to determine the best model. One of the most significant 

findings to emerge from the case study is that the best model 

(from among those using one knot) is achieved by using  

three oscillations and a combination of smoothing 

parameters, namely 1 0.9  , 2 0.9  , and 3 0.1  . The 

results of this research support the idea that the mixed 

estimator is better than a single estimator in modeling GCS 

in stroke patients.  

The major limitation of this study is the constraint of the 

smoothing parameters. Further studies are needed with 

higher number of knots and different smoothing parameters 

so that researchers can compare results to improve model 

performance. Another possible topic for further research is 

using another function to validate the performance of the 

proposed model. In spite of its limitations, the study 

certainly contributes to our understanding of a new 

alternative for estimating nonparametric regression curves 

for longitudinal data. 
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