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A New Algorithm of Approximating Trivariate
Matrix Functions with Generalized Inverse
Newton-Thiele Formula

Rongrong Cui

Abstract—This work introduces a new algorithm of approx-
imating trivariate matrix functions with generalized inverse
Newton-Thiele formula. The approximation is of the form
combined with continued fraction and Newton expansion by
using the generalized matrix inverse. A recursive method for
the approximation is derived. We also discuss some algebraic
properties. In the end we take two examples to indicate the
efficiency of the method which is better compared to the existing
one.

Index Terms—Generalized inverse, Continued fraction,
Newton-Thiele-type, Trivariate approximation.

I. INTRODUCTION

ATRIX rational approximation theory has many prac-

tical applications in fields like digital filter design,
circuit theory, control theory as well as elementary particle
physics [1-6]. As we all know, the continued fraction with the
Thiele-type is one of the significant approaches to solve ma-
trix rational approximation problems [7-10]. Bodnarcuk and
Skorobogatko gave the branched continued fractions (BCF)
form in [11] which was not very convenient for practical
use. There were two practical cases of BCF. One was given
by Murphy, O’Donohoe [12] and Kutschminskaja [13]. The
other was given in [14]. However, the two BCFs became
much more complicated for the case of multivariate functions
because of the decompositions for the three- or more-variate
power series into suitable components. Therefore, Siemaszko
in [15] presented a modified version of BCF and showed
how to use the obtained BCF to approximate the bi-variable
functions. Cuyt and Verdonk proposed multivariate reciprocal
differences and limiting values which were different from
the ones mentioned in [15], then obtained the branched
continued fraction expansion in [16]. Wynn in [17] raised
the question of rational vector-interpolation. He gave exact
results via Samelson inverses using e-algorithm to vector
valued quantities. In [9] Graves-Morris established several
principles for generalized inverse rational interpolation. For
the vector valued continued fraction, many open problems
are also left in [9], one of which is whether the scalar three-
term relation could be generalized to vector condition. For
the vector valued continued fraction, Zhao et al. in [18] con-
structed a practical so-called backward three-term recurrence
relation. Gu introduced the definition of generalized inverse
and proposed the methods of two-variable matrix rational
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interpolation and approximation via generalized inverse [19-
23]. This method involves no multiplication of matrices.
Therefore, we need not to define the left interpolations or
the right ones. In [24] Qin et al. presented a new C?
piecewise bivariate rational interpolation scheme with bi-
quadratic denominator. Qin and Zhu constructed a class of
piecewise bivariate rational interpolation surface scheme with
bi-cubic denominator and four parameters in a rectangular
domain, using two new kinds of Hermite-type interpolation
basis functions[25].

In this paper, a new algorithm of approximating trivariate
matrix functions with generalized inverse Newton-Thiele
formula is introduced. The construction of the approxima-
tion, motivated by [10], consists the Newton expansion and
bivariate continued fractions. The approach of the approxi-
mation uses generalized inverse and an efficient algorithm
is inspired by [26]. In Section 2, we first introduce the
definition of generalized matrix inverse and some notation-
S Qitu(Tos 1, ., Ti3 Y0y - - -, Yt5 20, - - -, 20 ), then we give
the algorithm of trivariate Newton-Thiele matrix rational
formula in Algorithm 2.6. In Section 3, we discuss the
algebraic properties such as divisibility and characterization,
and with their help we develop TGMRA 7 of a matrix
function f(x,y,z) and its corresponding error estimate. In
Section 4, an example is used to illustrate that the proposed
method is superior to trivariate generalized inverse matrix
rational interpolation (TGMRI) in [27]. In the final section,
we give some conclusions which contains a brief comment.

II. ALGORITHM OF NTMRF

Define C™*"™ be all the matrices which are consisted of
m rows and n columns where the elements are complex
numbers. Let A = (a;;),B (bij), A,B € Cm™xn,
Definition 2.1 [22]. Define the product as

A-B= i iaijbij = tr(AB"),

i=1 j=1
with B* denotes B’s transpose.
We all know that the Euclidean norm of A is

m n

1AL = OO0 lai[H)2. )

i=1 j=1
then

m n

A A= ay P = tr(AAY), ©)

i=1 j=1
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in (2) A is matrix A’s complex conjugate matrix. Bearing
equations (1) and (2) in mind, we define

4_1_ A x
Tl = A£0, AeCmRn 3)
A AP

as the generalized matrix inverse of A.

1 A
In particular, for A € R™*" A 1 = i~ AR A#N0.
Suppose © = (a,b) x (¢,d) x (e, f) C R£ be cubic

domain in three-dimensional space. Then the three sequences

{zo,21,...} C (a,0),{yo,y1,...} C (¢,d),

{#z0,71,...} C (e, f) are of distinct numbers. We de-
note . = {(zi,y;,2) 14,5,k =0,1,...} CQ, b+1
nodes T, - - -, Tay_,, Te, Tq USING the notation xz°_ , xe, x4,

the r + 1 nodes Yagor - - -+ Yqr_as Ye, Y1 USINg the notation
Y& .y, yi and the s+ 1 nodes zp,, ..., 2p, ,, 2u, 2y USING
the notation Z}?S,z s Zuy 2

In ) given a trivariate matrix function f(x,y,z) €
.Forb>2,r>2s>2,

Can

90070,0(3%;%‘; Zk) = f(xu Yj, Zk)7 (4)
©1,0,0(Te, Ta3 Yj5 2x)
_ <Po,o,0(ffd; Yj; 2k) — SDO,O,O(xdyj; 2k) (5)
Ty — T, ’

©b,0,0(T3°_, e, Ta; Yj5 2k)
©b-1,0,0(Te_, Tas Y3 2k)

= ¥b-1,0,0(T6_,, Te; Yy 2k)

- e o
©0,1.0(%i; Ye, Yi; 2k)
_ Y — Yt : (7)
©0,0,0(T43 Y15 21) — ©0,0,0(T3; Y 2k)
©0,r0(Ti; Y20, Y, Yis 2k)
_ - Y — Y (®)

900,%170(552‘; Yaqr—25 Y5 2k)
—00,r-1,0(Ti; YL, Y5 2k)s

©0,0,1 (i3 Y55 20, Zu)
Zw T Ry

= ) (9)

Sﬂo,o,o(l‘i; Yj; Zw) - 800,0,0(%‘; Yj; Zv)

©0,0,s(Ti5 Y5 2505 2oy Zw)
Zw T Ry

= 10
WO,O,Sfl(mi;yj;Zgg—wzw) ’ ( )
—00,0,5—1(Ti; Y53 25°_,, 2v)

a . .
Spb,r.,()(xag,za L, Td; ygg_2a Y, Y13 Zk)
_ Y — Ut (11)
- a . ,,40 .
@bﬂ“fl,o(xagfwxc’xdayqrfzaylazk) ’

a . .
_¢b,r—1,0(xa272a Le, Td; yg?,Qa Yi; Zk)

@O,T,s(xi; yg?.,2 » Yt Y13 ng,z y Zus Zw)
Rw — Ru
. 0,90 . ,Po
@O,T,s—l(xia Yqr—2>Yt, Yis Zps_2>s Z’LU)
—00,r,s—1(Ti; YL, Y, Y13 25°_,, 20)

(12)

a ca.
@b,073($a2727 Ley Xds Yss 252,2 y Ry Zw)
Zw — Ry

= ag . . »Po ’ (13)
©b,0,5—1(Tah_5s Ty T Yj3 2ps—2s Zu)
a . . 1
—¥b,0,5s—1 (xag_Qa Lcy, Tds Yj3 253,2 5 Z’u)

a, . .
@b,r,s(xa272 yLe, Tds ygS,Z » Yty Yis ZZIZS,Za 2v, Zw)

Zw T Ry
ag . 5,90 . ,Po
Pb,r,s—1 (xab 29 Ley Xds Yqr—2y Yty Y15 Zps_2s Zw)
- (Pb,T,Sfl(xag 51 Ley Ldj; 932_2 y Yty Y13 252_2 ) ZU)
(14)

For simplicity, we denote b + 1 nodes
ZTags .-y Lay 5L, Td DY Zo,...,Tp using the notation
xY, the r+1 nodes Ygy, - - - Yg. o+ Y, Y1 bY Yo, - - -, Yp using
the notation y? and the s+ 1 nodes 2, .., Zp. _,, 2, Zw DY
20, . ., 2s Using the notation z?.

From (4)-(14), we construct R,, ., (z,y,2) which is a

trivariate rational matrix function as follows:

Rm,n,u(x7y7 Z) = lO,n + ll,n(‘r - -TO) + -

, (15
Flpn(z—z0)(®—21) - (T — Tim—1) (15)
with
li,n - lz,n(y7z)
Y—% Y — Yn—1
= h; == 16
fori=20,1,...,m,
and
hit(2) = @ieo(x?;y2; 20)
zZ— 20 Z— Zy—1

@i (22 y20) o i@yl 29)
fort=0,...,n

(17)

To obtain Theorem 2.2, let
— 2,

W) = sl ) + g
i, )t Rl ) s s+1 ’
e ()
for s =0,...,u,
where ()
h ( tu(@05 975 20),

)=
Q) = h()
Y=Y

then 1{?) = hj ,(2) +

l(p+ )’
where "

1) = hin(2), 1) = lin.

Y 7,n

Theorem 2.2.  Suppose that
i) @iepadiyfizp),i=0,...,m,t=0,...,n,
p=0,...,u exist and nonzero(except for ¢; 1 0(z?;y?; 20)),

() A () = pisle 0 =% ith

0.,,0

zayt7zs) + s+1
h (2)

W (2) #0,5=0,...,n— 1,

y—Yy . +
and 1) = huyl(2) + Y i 1,

Y (Yp»2s) # 0,

s=0,...,u—1,
80 Ry nu(®,y,2) mentioned in (15)(16)(17) exists such
that Rm,n,u(xia Yj, Zk) = f(xla Yj, Zk),WhGI'C(Ii, Yj, Zk) S

Qm,n,u-
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Proof If conditions (i) and (ii) hold, then
ZE — 20
hii(2k) = @ino(xds 485 20) + ——5—o5—03
L e e 7 2
Zk — Rk—1 ZE — 2k

o+ piek(aliyls ) + hg?l)(zk)’

1=0,....m,t=0,...,n,

. k41 “k — *k
since ('™ (21) # 0. then =0 we get
hiy' " (zk)
Zk — 20
_ 0.,0.
hit(z) = @it 0273955 20) + —— 50 —ov
(pi,t,l(l'i yYts Zl)
&
T pnn(aliyd; 2Y)
Zk — 20
_ 0.,0.
= it,0(273Y;5%0) + —— 50 on
wie1 (5985 27)
2k T Zk—2
0.,0.,0
+ + @it r—1(2]syds20_q)
2k — Rk—1
+ 2k — Zk—1
0.,0.,0 0.,0.,0
@i,t,k—l(% YL Zh_as 2K) — tpi,t,k—l(% yYes Zk—l)
2k — 20
_ 0.,0.
= w0239 20) + —— 50 ov
Pie1 (77975 27)
2k — Rk—2
0.,0..0
+ + @i,t,k—l(zivytvzk_szk)
Zk — 20

0.,0
= =Qit0(T;5Yi%0) T
vt ( e ) %,t,1($?;y?;2072k)

= wiro(@; 95 21),

(18)
Yi — Yo Yi —Yj—1
1,n(yJ Zk) L,O(zk) hi,l(zk) R hz’j (Zk)

0 Yi — Yo

= ©i00&;Y03%k) F ——— 0

‘ ( ’ , ) soi,l,o(x?;y?;zk)

Yi —Yj-1
tee %,j,o(x?;y?;Zk)

Y; — Yo

= 90‘70,0(9505y0§2k +

! ¢ ) w0299 2e)

Yi —Yj—2
T i@y g 2k)
Yi —Yj-1
+ Yi —¥Yj—1
‘Pi,j—l,o(x?§y?_2vyj§ 2k) — sﬁi,j—l,o(ﬂﬁ?; yJQ_l; 2x)

0 Yi — Yo

= ©i,0,0(%;5Y052k) T ———o5—0

s00(%: ) %,1,0(17?;1/?;2%)

Yi —Yj—2

Tt giio10(@ Yo Y 2)

_ _ 0 . Yi — Yo
= =;0,0(Z;5Yo; 2k) +
500( ! ) ‘Pi,l,o(l’??yo»yﬁzk)

= 901',0,0(96?; Yjs 2k)
(19)
By using(6), (7) and (14), we have
R7n,n,u(xia Y, Zk) = lO,n(yja Zk) + ll,n(yja Zk)(xl - SC())
+ o i (Y, z) (@ — xo) (@ — 1) - (0 — @)
= f(@i, ¥, 2k)-
Algorithm 2.3 summarizes the trivariate Newton-Thiele
matrix rational formulaNTMRF) R,,, ,, (2, y, 2).

Algorithm 2.3 (NTMRF):

Input: {(xuy_ﬂ Zk?)a f('ria Yj, Zk)}

(i=0,1,---,m;7=0,1,....,nk=0,1,...,u).

Output: R, (z,y, 2).

Step 1: For all (z;,y;, 2k) € Ay nu, let
p(wisyss zk) = f (@i, yj, 21)-

Step 2: For j =0,1,...,n,k=0,...,u,
p=1,...,m,i=p,...,m, caculate
@p,o,o(l"gfl’ TiiYj5 Zk)
0.,0 ey _ 0.,0 .. .
o (pp—l,0,0(xiayp—27xzvijzk) @p—l,O,O(Iivyp—laywzk)
) T — Tp—1 '
Step 3: For i =0,...,m,g=1,...
k=0,...,u,calculate
cpi,q,O(x?;yg—layj;Zk)
_ Yj — Yq—1
Pig—1,0(203 Y905 Yji 26) — Pig—1,0(x5 Y915 2k)
= (Yj — Yq—1)

(i,q-1,0(@5 Y92, Y53 21) — Pig—1,0(273Yg_15 2k))
li,q—1,0(273 992, Y55 2k) — Pig—1,0(273 9913 21) |12
q q
Step 4: Fori=0,...,m,j=0,...,n,t=1,... u,
s=1,...,u, compute
i (2 Y3 200, 25)
_ (Zs - thl)
Ciga—1(203Y)5 209, 25) — @iga—1 (1Y) 20_1)
= (Zs - thl)

(@i,j7t—1($?§ y;); 2?727 Zs) — @ig}tfl(x?? y?; 2?71))
[6i5,6-1 (205995 2005 25) — @i ja—1(2d59]5 201 II?
Step S: Fort=0,...,m,j=0,...,n,t=1,...,u,
s=1t,...,u, compute A;;x = ;jr(x);y3;2).
Step 6: For: =0,...,m,57=1,...,n,k=0,...,u, judge
if A; ;1 # 0, if yes go to step 7, otherwise exit and show
“the procedure is unsuccessful”.
Step 7: Fort: =0,...,m,j=0,....n,k=u—2,...,0,

Qijou =1, Piju = Aijou, Qiju—1 = [[Aijull®
Piiuw-1=A4u-1Qiju-1+ (2 — 2u_1)P; ju
Qi = | Aijr+11?Qijkt1
+2(z — 2z 1)t (Ai k41 Pijer2”)
+ (2 = 2141)2 Qi j ke +25
Piw=2A4;1Qijr+ (z—2k)Pijrs1.

Step 8 For ¢ =0,...,m,57 =0,...,n,k = 0,...,u, let
Bm-,k(z) = Pi,j,k/Qi,j,k’ if Bi,j_’k(zk) # 0 , then go to the
next step, if B; ; () = 0 then exit and show “the procedure
is unsuccessful”.

Step 9: For: =0,...,m,j=n—2,...,0,

QQino=1,PP ;0= Bin0QQin-10=|Binol?
PP;y10=DBin-1,00Qin-10+ (Y — yn-1)PP; no,
QQij,0 = I|Bij+1,0/*QQij+1,0
+2(y — yj+1)t7(Bi j+1,0Pij+27)
+ (¥ = ¥j1+1)°QQi 12,0,
PP, ;o=DB;;0QQi 0+ (y—vy;) PP jt1,0.

Step 10: For ¢ = 0,...,m,j = 0,...,n, let l; jo(y,2) =
PP, ;0/QQi 0, if ;i j0(y;) # 0, then go to the next
step, if 1; j0(y;) = O then exist and show “the procedure
is unsuccessful”.
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Step 11: For i = 0,...,m,

let Bi(y, ) = lio0(y,2) = PPipo/QQio0.

Step 12: For k= 1,...,m, let Ry(z,y, 2) = Bo(y, 2),
then compute

ngxa Y, Z)

= Ry—1(2,y,2) + - + (& —0) -+ (& = @-1) Bi(y, 2).

III. THE DEFINITION OF TGM RANT
Lemma 3.1 [Theorem 3.1, 23]. Define

Y —1Yo Y—Yn—1
lin = lin(y,2) = b LI L
, (Y, 2) o(z) + hii(z) ++ hin(2)

zZ— 20
hii(2) = @ito(@;yd; 20) + —————=<
%t( ) i,t, ( i It ) QPi,t,l(f?;y?;Z?)
F T Fud 1=0,....mt=0,...,n

oot i@yl 20)
With generalized inverse from tail to head, we can get
the rational matrix function ; , with matrix N; = N;(y, 2)
and the polynomial D; = D;(y, z) such that
() lin = Ni/D;, (i) D; >0,
(i) Dy| || Ni(y, 2)||?, where ”|” stands for divisibility.

Theorem 3.2 (Divisibility).
Rm,n,u = Rm,n,u(xy Y, Z)

Suppose that

=lon+ln(r—20)+ - Flmnl®—x0) - (x —Tp_1).
(20)

where I; , = l; (Y, 2).
Using generalized inverse, we rationalize

lin(y,2) of Rpnu(z,y,2) as in (16) from tail to
head, and suppose that all the intermediate denominators
are nonzero, then we obtain a matrix N =N (x,y,z) as
well as a polynomial D= D(x y,z) which satisfy that

(i) Rmnu=N/D,Gi) D >0, (i) D||N|>2

Proof. Consider the construction of N , D and Ronu-
First, let ﬁo =1, and NO = lo,n, By Lemma 3.1, there
are a matrix Ny and a polynomial Dy which satisfy
(1) lO,n = No/D(), (11) Do Z 0, (111) D0| HN()H2 77|” means
divisibility. Then let SU) (x,y,2) = SU=V(z,y, 2)

+ljn(x —x0) (¥ — xj_1) With I, = N;/Dj,
j=1,....,m.
We can get
SO (z,y, 2)
= 80(2,y,2) + (e — 20) -+ (o — )
Nj | Njn
===+ = r—x9) - (x—x;
b, Dj+1f ] 0) - (& =)
_ NiDji1 + DiNj(x — o) - - (& — ;)
. DjDji
_ Njn
Djyy’
where
Njs1 = N;jDji1 + DiNjia(x — x0) - (& — a;),
Dji1=DjDj+1,
Olgviously,
[V +1||2 , ,
= ||N;[*D3 11 + D3| Njsa|* (& — o) - (& — ;)

+(N;j-Njy1 + Nj - NJH)DJHD (x —x) - (z — xj),

since D HlN 1%, DjsallNj4all?, s0 Dja[[IN;a]*.

So that S )(.13 Y,z ) - Rm,n,u(aja Y, Z)
Definition 3.3. Define R(x,y,z) = N/D be the
type of [t/w] if the degree of matrix {N;;} < ¢t for
1 <i<ul <5 <o, forsome(zg)thedegreeof
{Nw} = t and the degree of polynomial {D} = w where
N = (N;;) € Cvxv,

Lemma 3.4 [Theorem 3.4, 23]. Let l;,(y, z) be defined
in Lemma 3.1, and ; ,, = Ni/Di, if n,u are even, l;, is
the type of [r/r]; if n,u are not both even, Uy(y) is the
type of [r/r — 1], where r = nu + n + u.

Theorem 3.5 (Characterization).
Let Rynu(z,y,2) = N/D be
Rmﬁn,u(xvyv Z) = l(],n + ll,n(‘r - -T()) + -

+ l_m,n_(w —xo)(r — 1)+ (T — Tm—1) B
where l;,, = N;/D; as in (16). Suppose that all D, for
i =10,...,m have no common factors, then
()when n,u are both even, R, , .(z,y,z2) is the type of
[(m + )7+ m/(m + 1)r],
(i)when n,u are not both even,
type of [(m + 1)r/(m + 1)(r — 1)].

Proof. The proof is by induction on m. Assume that n,u
are even integers and denote R; ,, . = R;nu(®,y,2), @ =
0,...,m.

When m = 0, Ry .y = lon = No/Dy, from Theorem
3.4 in [15], Ry nu(z,y, 2) is the type of [r/r].

When m =1, for deg{No} = deg{Do} =r,

deg{N1} = deg{D,} =r,

Rm,n,u(xay,z) is the

N
R17n7u = Fl = lO,n + ll,n(x - ZO)
_ D o o
Ny N NoD1 + NiNo(z — xo)
£ AEEh
Dy 1 DoD,

is the type of [2r + 1/2r].

When m = 2, we know that
deg{N1} =2r +1, deg{D:} = 2r,
deg{Nz2} =r, deg{D3}=r,

NQ Nl N2
Ropu=— + —x0)(z—2
= 5= F 4 Fele - ) - )
N1D2+N2D1(CC—1’0)( 1)
Dy D, ’
S0 R,y is the type of [3r +2/3r].

N,
Rk,n,u = Aik
Dy,

Assume that m = k,

[(k+1Dr+k/(k+ 1.

When m =k + 1, we have
Ny Nk+1
Rivinu = B
k+1, + = Dk+1

Nka+1 + Nk+1Dk($ — 1) -

Dy.Dyia

is the type of

(x —x0) - (x —ag)

(x — xg)

~ Niga

kel b
D11

where deg{Ng41} = (k+1)(r+1)+r = (k+2)r+(k+1),
deg{Dy41} = (k+1r+r=(k+2)r.
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Therefore, when n, v are both even, R, ,, (%, ¥, z) is the
type of [(m + 1)r +m/(m + 1)r].

When n, u are not both even, R, ,, »(x,y,2) is the type
of [(m + 1)r/(m + 1)(r — 1)], then it can be proved in a
similar manner.

Definition 3.6 A rational matrix fraction
Rynnu(,y,2) = N/D is a trivariate generalized inverse
Newton-Thiele matrix rational approximation
(TGMRANT) of a matrix function f(x,y,z) on the cubic
domain Q,, ,, ,, if
(i)RAm,n,u(xia Yj, Zk) = f(xh Yj, Zk:)y (l‘i, Yj» Zk:) € Qm;ﬂ,ua
G)D(xi, Y5, 26) 0, (24, Y5, 2k) € Qnonyus
(iii) (a) when n,u are both even,

deg{N} = (m+1)r +m, deg{D} = (m+1)r,
(b) when n,u are not both even,
deg{N} = (m +1)r, deg{D} = (m+1)(r—1),
(iv) D||N|? (v) D is a real polynomial, and D > 0.
To obtain the remainder term of the TG M RA 1, we first
give lemma 3.7.
Lemma 3.7 Suppose
R;kn,n,u(xa Y, Z) = ls,n + lin(x - ‘/EO) +ee

+ l;kn,n(z - IO)(J; - $1) e (I - zm—l)
with

*
li,n

:h,zo(Z)‘F Y —Yo Y —Yn-1

hi(z) +F hi,(2)

Y—Yn
+ hzn+1( )7
zZ— 20

0.,,0. .0
(Pi,j,l(fll’l- 2 Y55 Zl)
Z— 2y

hf;(z) =

0.,,0.
©i,3,0(273 Y55 20) +
Z— Zy—1

tot Pi,ju ( zvygvzo) + @i,j,u+1($?§y?;2872)’
<Pz',n+1,0(93?;yg7y;zo)

h’;knJrl( )
+ zZ— 20
Pint1,1(23 00,43 20) Tt Gimeru(af vl 20)
Z— 2y
+ <,0i,n+1,u+1($?;3/2ay32272) ,
i, m =0,
l;k,;‘n(x xo)(x—;vl) (m—xm,l).
Y—1Yo Y —Yn-1
h;'k,l(z) +ot hrn( )

Z = Zy—1

[ = hio(2) +

Then Ry, ,, . (7,y, 2) satisfies

Ry nu(@isy, 2) = [y, 2), i=0,...,m,
Ry @y, 2) = Ry (2,y5,2),  5=0,...,mn
Ry o @y, 21) = Ry ®,y, 21),  k=0,...,u

Remark: we can get the proof of the lemma easily for it is
generalized from [15, P.143].

Motivated by [15, P.144], now we give the error term.

N
Let Ryynu(z,y,2) = M,
' D(z,y, 2)
* N* x,Y,z
Rmnu( ,y,z): ~ ( )7
D*(z,y, z)

k% N** ’r y?
- D*(w,y,2)
Theorem 3.8  Suppose the points
Qo = {(x,y6,20) 2 1 =0,...,mk=0,...,n,t =
0,...,u, (z1,yx,2¢) € R} C S = {a <2 < be <

y < die < z < f}. The trivariate matrix function
f(z,y,z) is L times continuously differentiable on S
where L =max(m + 1,n + 1,u + 1), then for any point
(x,y,2) € S, a point (§,n,() € S exists such that

f(xa Y, Z) - Rm,n,u(xv Y, Z)
B 1 Wing1(z) oM+l
= DD*(E;*a (m +1)! 9xm+1
wny1(y) 0" -
m Dyt Ea(x,m,2)
0~Ju+1(2’) 8u+1
(u+1)! gyvtt

El (57 Y, Z)

E3(I7ya <)}

where

D= D(a:, Y, z),ﬁ = ﬁ*(:v, Y, 2), D** = D**(m,y,z),

(.L)m+1( ) (fE—ZL’o)(I—l’l) "(z_xm)7

nt1(y) = (¥ — yo)(y — (Y = Yn),
)

Wut1(z) = (z=20)(z — 21) -+ (2 — 2u)-

v

)
E1=D15*D**[f($,y, 2) = R (2,9, 2)],
Ry, 2)],

Rm,n,u(‘rv Y, Z)]

= DD* D[R}, (%, 2) —

Eg = ﬁﬁ*D**[R;’fn W2y, 2) —
Proof
Ey = DD*D™[f(x,y,z) —

Let
R:n,n,u(mv Y, Z)]v

By = DD*D** (R}, (2, ) — Rit (@, 2)],

m,n,u

and

E3 - DD D**[R:—tn u(xayaz) - Rm,n,u(Qj?va)L
E=FE +Ey+ E5.

where Ez = Ei(a:,y,z),
know

1 = 1,2,3. from lemma 3.7, we

El(xi,%Z') :07 Z.ZO,...7m7

which results in

& wmyt(z) 9
(m 4+ 1)! ggm+1

El |x=£7

where wy,+1(x) = (x — zo)(z — x1) - - -
and § € (a,b) depends on y, z.
Similarly, fromEs(z,y;,2) =0, j =0,...,

((ﬂ - ajm)’

n, have

an+1 A

I wn+1( ) |
~ (n+ 1) gyntt Ealy=n:

and

where  @n11(y) = (¥ — v0)( — v1) - (¥ — Yn)s

1 € (¢, d) depends on z, z.
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TABLE I
THE NUMERICAL RESULTS OF TGMRANT

(‘T:yv Z) f(%y’ Z)
0.98877108 1.16183424
(0.05,0.05,0.05) ( 0.15000000 0.09983342
(z,y,2) TGMRANT
0.98877149 1.16184470
(0.05,0.05,0.05) ( 0.15000006 0.09983963 )
Hf*TGMRANTHF CPUtime
1.217430e — 05 2.642s
(x7 y7 Z) f(x7 y? Z)

(0.15,0.15,0.15) < 0.90044710 1.56831219 )

0.45000000 0.29552021
TGMRANT
( 0.90044875 1.56830481 )

(z,y,2)
(0.15,0.15,0.15)

0.45000004 0.29551631

Hf—TGMRANTHF CPUtime
8.503429¢ — 06 2.590s
(x,9,2) flz,y,2)

(0.25,0.25,0.25) ( 0.73168887  2.11700002 )

0.75000000 0.47942554

(z,y,2) TGMRANT
0.73168440 211701354
(0.25,0.25,0.25) ( 0.74999969  0.47943216 )
|f —TGMRANT||F CPUtime
1570661 — 05 2.7525
we can get that
-~ a)u-ﬁ-l (Z) 8u+1

= Bsl.=c,
(u+ 1) gyn+1 3la=

where  @y11(2) = (2 —20)(z2 — 21) -+ (2 — 2u),
and ¢ € (c,d) depends on z,y.
R ThuAs, weAhave .
E=F —|—(E)‘2 é|— E—&‘-Sl
wm+1 T m N
= (i Y p
{(m + 1)' orm+1 1(65y7z)
. anJrl R ~,t 6u+1
wl-‘rl(y) EQ($,U,Z)+WI+1(Z)
(n+1)! gynt! (u+ 1) gyutt
Therefore, the proof is completed.

Eg(.l?, y)C)}

IV. NUMERICAL EXAMPLE

Example 4.1
order 2 and

Let f(x,y,2) be a matrix function of

cos(x +y + 2)
r+y+=z

o= )

sin(z + z)

and we suppose {z%} = {y3} = {29} = {0,0.1,0.2,0.3}.
The numerical results TGM RAn7 of Algorithm 2.3 and
TGMRI [27] are given in TABLE I and TABLE II.

Example 4.2
and

Let f(x,y, z) be a 2 x 3 matrix function

f(:c,y,z):<

cos(x+y—+z) sin(fzr+y+z) €
c+y+z e r+y

and we suppose {29} = {y3} = {29} = {0,0.2,0.4,0.6}.
The numerical results TGM RAnr of Algorithm 2.3 and
TGMRI [27] are given in TABLE III and TABLE 1V.

TABLE II
THE NUMERICAL RESULTS OF TGM RI

f(z,y,2)
( 0.98877108 1.16183424

(z,y,2)
(0.05,0.05,0.05)

0.15000000 0.09983342

(z,y,2) TGMRI
0.98876528 1.16184269
(0.05,0.05,0.05) ( 0.15000036  0.09984494 )
f — TGMRI|» CPUtime
1.542720e — 05 24.370s
(x:yv Z) f(ﬁvyvz)

(0.15,0.15,0.15) (0.90044710 1.56831219)

0.45000000 0.29552021

(z,y,2) TGMRI
0.90044875  1.56830481
(0.15,0.15,0.15) ( 0.45000004  0.29551631 )
[f —TGMRIr CPUtime
1.114339¢ — 05 24,5005
(z,y,2) f(z,y,2)

(0.25,0.25,0.25) ( 0.73168887  2.11700002 )

0.75000000 0.47942554
TGMRI
0.73166651 2.11700217
( 0.75000530  0.47943999 )
CPUtime
57.399s

(z,y,2)
(0.25,0.25,0.25)

If = TGMRI|F
2.723745¢ — 05

TABLE III
THE NUMERICAL RESULTS OF TGM RANT

(x7y7 Z) f(z7 y’ Z)
0.955336  0.295520 1.105171
(0.1,0.1,0.1) ( 0.300000 1.105171 0.200000 )
(z,9,2) TGMRANT
0.955321 0295628 1.105252
(0.1,0.1,0.1) ( 0.300001 1.105215 0.200001 )
Hf—TGMRANTHF CPUtime
1.428951c — 04 31755
(z,y, 2) f(z,y,2)
0.621610 0.783327 1.349850
(0.3,0.3,0.3) ( 0.900000 1.349859  0.600000 )
(z, 9, 2) TGMRANT
0.621641 0783264 1.319808
(0.3,0.3,0.3) ( 0.899998 1.349826  0.599998 )
[F —TGMEANT]F CPUtime
9.301701e — 05 3.972s
(z,y,2) f(@,y,2)
0.070737 0.997495 1.648721
(0.5,0.5,0.5) ( 1.500000 1648721  1.000000 )
(z,y, 2) TGMRANT
0.070640 0.097583 1.648800
(0.5,0.5,0.5) ( 1.500004  1.648789  1.000004 )
[7 — TGMEANTF CPUlime
1.671671c — 04 3.9555

From the two examples, we notice that the error using
TGMRANT is less than TG M RI mentioned in [27], and
the CPU time needed is much less than the time of TGM RI
method.

V. CONCLUSIONS

We introduce a new method of approximating trivariate
matrix functions with generalized inverse Newton-Thiele
formula and obtain a recursive algorithm as well as some
crucial properties. According to the numerical example, we
can easily find that the method using T’GM RA Nt is much
better than the one using TGM RI [27].
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TABLE IV
THE NUMERICAL RESULTS OF TGM RI

(x:yv Z) f(fﬂ,y,z)
0.955336  0.205520 1.105171
(0.1,0.1,0.1) ( 0.300000 1.105171 0.200000 )
(z,y, z) TGMRI
0.955205 0.205685 1105216
(0.1,0.1,0.1) ( 0.300003  1.105215 _0.200003 )
[F = TGMRIr CPUtime
2.203323¢ — 04 515315
(xzyv Z) f(%y,Z)
0.621610 0.733327 1349859
(0.3,03,0.3) < 0.900000 1.349859 0.600000 )
(z,y, 2) TGMRI
0.621725 0783260 1.319824
(0.3,0.3,03) ( 0.899995 1.349826  0.599995 )
[f —TGMRIFr CPUtime
418378 — 04 52.0095
(z,y,2) f(z,y,2)
0.070737 0997495 1.648721
(0.5,05,0.5) ( 1.500000 1.648721 1.000000 )
(z,y, 2) TGMRI
0.070500 0097526 1.648796
(0.5,0.5,0.5) ( 1.500012  1.648789  1.000012 )
I —TGMRI| CPUtime
2.522200¢ — 04 545515
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