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Abstract—Butterfly optimization algorithm (BOA) is a new 

nature-inspired algorithm that imitates the food-searching and 

mating behavior of butterflies to solve the global optimization 

problem. In nature, butterflies not only determine the locate 

nectar or mates by smell, but also the visual function of 

butterflies cannot be ignored. We proposed a novel hybrid 

firefly algorithm (FA) with BOA, namely FA-BOA, in which we 

take the visual function of the similarity of fireflies and 

butterflies into consideration. To substantiate the optimization 

performance of the proposed algorithm, FA-BOA is tested on a 

set of eight benchmark functions. Besides, the proposed 

algorithm is used to solve two real-world engineering design 

problems (Three-bar truss design and Speed reducer design). 

Experimental results demonstrate that the proposed algorithm 

is effective and outpeforms other optimization algorithms in 

terms of convergence accuracy and stability. 

 
Index Terms—butterfly optimization algorithm, firefly 

algorithm, high dimension, speed reducer design, three-bar 

truss design  

 

I. INTRODUCTION 

n innovative optimization system is proposed to emulate 

the food-searching strategy of butterflies. Based on the 

butterfly food forging approach, BOA is a nature-driven 

meta-heuristic algorithm [1]. Arora et al. [2] applied BOA to 

optimize the node localization problem in wireless sensor 

networks and obtained excellent solutions. Malisetti et al. [3] 

utilized a novel BOA based on quasi-objection for the cluster 

head selection problem in WSNs. Provas et al. [4] proposed a 

two-step BBO-BOA (hBBO-BOA) to solve the economic 

load distribution problem of an integrated power system 

composed of conventional thermal power generating units 

and renewable energy sources. Kun et al. [5] proposed a 

modified adaptive BOA to address the "early search 

blindness" and the relatively poor adaptability of the sensory 

modality. Zhang et al. [6] proposed a hybrid BOA with PSO 

 
Manuscript received June 21, 2021; revised January 11, 2022. This work 

was supported in part by the Guizhou Graduate Innovation Fund (No. 

YJSCXJH (2019) 005) 

Jinqian Zhang is a postgraduate student in the School of Electrical 

Engineering, Guizhou University, Guiyang, 550025 PR CHINA (e-mail: 

928683496@qq.com). 

Xuefeng Xie is a senior engineer of Guizhou Aerospace Kaishan 

Petroleum Instruments Co., Ltd, Guiyang 550025 PR CHINA (e-mail: 

2550649632@qq.com). 

Min Wang is a postgraduate student in the College of Electrical 

Engineering, Guizhou University, Guiyang, 550025 PR CHINA (e-mail: 

w_min0715@163.com). 

Mengjian Zhang is a postgraduate student in the School of Electrical 

Engineering, Guizhou University, Guiyang, 550025 PR CHINA (e-mail: 

mjz960106@163.com). 

algorithm to improve the global optimization capability of the 

basic BOA. Above the BOA research (improvement research 

or application research), there are very few papers on the 

BOA hybrid algorithm. 

Firefly algorithm has the advantages of clear flow, few 

parameters, and easy implementation, and is widely used in 

computer networks, image processing, and engineering 

design [7-8]. Researchers have studied hybrid optimization 

on the Firefly Algorithm, which improved the ability of FA 

global optimization. Farahani SM et al. [9] mixed GA into FA 

to enhance the global search capability of firefly algorithm. 

The introduction of GA balances the exploration and mining 

capabilities of FA. Abdullah et al. [10] incorporated DE 

algorithm into the standard firefly algorithm. The hybrid 

algorithm increases the information sharing between fireflies, 

avoids convergence to local optimum, and improves the 

search efficiency of the algorithm. Guo et al. [11] combined 

the standard FA with Harmony Search (HS) algorithm , in 

order to integrate the exploration ability of HS with the 

mining ability of FA. Li et al. [12] proposed a fuzzy adaptive 

firefly algorithm to search for multi-level thresholding for 

color satellite images.  

Hybrid algorithms mainly combine the advantages of two 

or more optimization algorithms to improve the optimization 

performance. However, the bionic algorithm is based on the 

imitation of biological characteristics, and the essential 

characteristics of the algorithm need to be considered in the 

improvement. In this article, the habits the photosensitive 

characteristics of butterflies in nature are taken into 

consideration. Therefore, we chose FA as a complementary 

optimization algorithm to make up for the limitations of the 

BOA, and proposed a new hybrid method. 

Olfactory signals may be a key factor in the butterfly's 

foraging process, playing an attractive role. Visual signals 

may be an important factor for butterflies to find food sources, 

and then mainly rely on olfactory signals to stimulate foraging. 

Some species of butterflies use visual signals as the dominant 

factor to locate nectar sources, other species may rely mainly 

on olfactory information, and some species make 

comprehensive use of these two sensory channels [13-15]. 

The details are as follows: 

1) Ômura and Honda [14] found that the newly emerged 

Vanessa indica Herbst mainly relies on vision, and secondly 

relies on smell to visit flowers. 

2) Some species of butterflies (Cethosia bibles Drury, 

Tirumala limniace, and Idea leuconoe) have a certain 

response to visual signals when foraging, but they rely more 

heavily on smell. 

3) Heliconius Melpomene L. relies on the combination of 
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visual and olfactory signals to locate nectar information, but 

its newly emerging adults mainly rely on smell to select 

flowers [15]. 

Besides, the combination of visual and olfactory signals 

can increase the number of flower visitors visiting flowers and 

the degree of foraging activities [13]. Different 

flower-visiting insects can assign different weights when 

using the visual and olfactory information of nectar sources 

[16]. Therefore, the use of multi-channel signals is beneficial 

for butterflies to distinguish unrewarded flowers in the 

ever-changing distribution of food resources and improve the 

efficiency of flower visits. 

Since the BOA only relies on olfactory foraging or ignores 

its visual signal, we use the characteristics of the firefly in the 

FA algorithm to find the global optimal value through the 

visual signal. In addition, the proposed hybrid algorithm 

FA-BOA of the FA and the BOA improves the ability to find 

the global optimum, which is more in line with the habit of 

butterflies in nature. 

The remainder of the paper is organized as follows. Section 

II introduces the principle of the FA, the BOA, and the 

FA-BOA. Section III illustrates the experimental results for 8 

representative test functions. Section IV presents the 

simulation results of two classic engineering application 

problems. Finally, the conclusion and future studies are 

summarized in Section V. 

II. FIREFLY ALGORITHM AND BUTTERFLY ALGORITHM 

A. Principle of Firefly algorithm 

The FA is a intelligence algorithm with simple structure yet 

superior performance which is utilized to solve complex 

optimization problems in continuous search space. The 

flashing and attraction behavior exhibited by fireflies is 

crucial to their evolution.  

The position of each firefly represents a feasible solution to 

the problem to be solved, and the brightness of the firefly 

represents the suitability and superiority of the firefly position. 

Then, the position update formula of firefly i attracted by the 

brighter firefly j is defined as: 

 ( 1) ( ) ( ( ) ( )) ( )id id jd id ix t x t x t x t t          (1) 

where xid and xjd are the D-dimensional positions of the 

fireflies i and j. Furthermore, β is the attractiveness, α 

represents the step factor, and t indicates the iteration number. 

Finally, ε is uniformly distributed in the range of [−0.5, 0.5]. 

The parameter α of the firefly algorithm is calculated as 

follows: 

 0( ) tt     (2) 

where α0 is the initial step size factor of the FA, which is taken 

as 1; the value of θ range is [0.95, 0.99]. 

The relative fluorescence and attraction of two fireflies can 

be approximated as: 
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where I0 represents the highest fluorescence brightness 

obtained when γ = 0; β0 denotes the maximum attraction, i.e. 

the attraction at r = 0, and rij represents the distance between 

firefly i and j, calculated as follows.  
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The basic steps of the Firefly Algorithm are summarized as 

the pseudo-code shown in Algorithm 1. 

 

Algorithm 1: Firefly Algorithm 

1. Objective function f(x), x = (x1, x2, ···, xdim)  

2. Initialize a population of fireflies xi (i = 1, 2, ···, n)  

3. Define light absorption coefficient γ 

4. While (t < MaxGeneration)  

5.    For i = 1: n all n fireflies  

6.         For j = 1: i all n fireflies    

7.              Light intensity Ii at xi is determined by f(xi) 

8.              If (Ij  > Ii) 

9.                  Move firefly i towards j in all dimensions  

10.            End if 

11.            Attractiveness varies with distance r via exp[-γr2]  

12.            Evaluate new solutions and update light intensity  

13.         End for j 

14.    End for i 

15.   Rank the fireflies and find the current best 

16. End while 

17. Output the best solution found  

 

B. Principle of Butterfly Optimization Algorithm 

The BOA [1] is a intelligent optimization algorithm 

derived from simulating the food search and mating behavior 

of butterflies (butterflies use scent to locate nectar or mating 

objects). In BOA, each butterfly produces a scent of a certain 

intensity, the magnitude of which is related to the physical 

intensity of the stimulus. The specific formula for fragrance 

size is: 

 a

if cI   (5) 

where fi is the scent size, that is, the scent intensity that other 

butterflies can perceive. c represents the sensory modality , 

taking values at [0, 1]. And I is the stimulus intensity, a takes 

vaule in [0, 1]. Theoretically, the value of any sensory 

morphological coefficient c can be in the range of [0, ∞]. The 

parameter c in the optimal search phase of the BOA can be 

formulated as follows: 

 1

max

0.025
( )t t

t

c c
c T

  


  (6) 

where Tmax is the maximum number of iterations of BOA, and 

the initial starting value of parameter ct is 0.01. 

Also, each algorithm consists of two key steps. In the 

global search stage, butterflies moves towards the optimal 

butterfly (solution gbest), and the global position update is 

expressed by Eq. (7). 

 
1 2( )t t t

i i best i ix x r g x f        (7) 

where xt
i is the solution vector for the ith butterfly in tth 

iteration; and r taks any value in [0, 1]. Here, gbest represents 

the optimal position among all solutions in the current 

iteration. In addition, the fragrance emitted by the ith butterfly 

is denoted by fi. The position update for the local search stage 

can be formulated as follows: 

 
1 2( )t t t t

j i j k ix x r x x f        (8) 

where xt
j and xt

k denote the solution vectors of the jth and kth 
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individuals randomly selected from within the population in t 

iterations. If xt
j and xt

k belong to the same population, and r is 

a random number in [0, 1], denoting a local random wander.  

In nature, both global and local searches can occur as 

butterflies look for food and mating partners. Therefore, 

switching the normal global search and the dense local search 

requires a switching parameter p to control. Each iteration 

generates a random number in [0, 1], which is compared with 

p to decide whether to perform global search or local search.  

The above theoretical principles constitute the complete 

algorithm of BOA, and its pseudo-code is demonstrated in 

Algorithm 2. 

 

Algorithm 2: Butterfly Optimization Algorithm 

1. Objective function f(x), X = (X1, X2, ···, Xdim), Dim is No. of dimensions  

2. Generate initial population of n Butterflies Xi (i = 1, 2, ···, n)  

3. Stimulus Intensity Ii at Xi is determined by f(Xi) 

4. Define sensor modality c, power exponent a, and switch probability p 

5. While stopping criteria not met do 

6.     For each buttery bf in the population do 

7.           Calculate fragrance for bf using Eq. (5) 

8.     End for 

9.     Find the best bf 

10.   For each butterfly bf in the population do  

11.        Generate a random number r from [0, 1] 

12.        If r < P then 

13.           Move towards the best solution using Eq. (7) 

14.        Else 

15.           Move randomly using Eq. (8) 

16.        End if 

17.   End for 

18.     Update the value of a 

19. End while 

20. Output the best solution found. 

 

The flowchart of BOA is shown in Fig. 1. 

 

Start

Initialization Population Npop, Setting parameters 

Calculate the fitness value of the individual

Calculate the concentration of fragrance produced by each butterfly

P > rand?

Update global location 

Update individual butterfly and global optimal solutions

T > Tmax?

Update local location 

End

No

No

Yes

Yes

 
Fig. 1 Flowchart of BOA. 

C. The Proposed Algorithm 

 In this subsection, we propose a novel hybrid FA-BOA, 

which is a combination of independent FA and BOA. In the 

local search process of BOA, due to the small moving range 

of the individual butterfly, it is easy to fall into the local 

optimum. However, FA has strong global detection ability 

and local development ability. Therefore, integrating FA in 

the local search stage of BOA can make full use of a small 

number of butterfly individuals in the local search process, 

and guide the butterfly individuals to move to the target 

position, enhancing the algorithm. local development 

capabilities. 

 The mathematical model of the global search stage of 

FA-BOA can be calculated as follows: 

 1 2( )t t t

i i best i iX X r g X f        (9) 

In the local search stage of FA-BOA, the location update of 

the optimization process can be expressed as: 

 
+1 = ( )t t k k

i i i jX X X X         (10) 

where the parameter ε obeys a uniform distribution in [−0.5, 

0.5], and the parameter β can be calculated by: 

 
2

0 exp( )ijr      (11) 

The parameter α of FA-BOA can be determined by: 

 0( ) tt      (12) 

where α0 is the starting value of the algorithm step size and is 

set to 1; the value range of θ is [0.95, 0.99].  

And the computational flowchart of FA-BOA is shown in 

Fig. 2. 

 

Start

Initialization Population Npop, Setting parameters 

Calculate the fitness value of the individual

Calculate the concentration of fragrance produced by each butterfly

P > rand?

Update the new position of Xnew

T > Tmax

End

No

NoYes

Yes

The best solution and fitness value

Update rij and parameter β 

global local 

Calculate the fitness value of each butterfly

1 2( )t t t

i i best i iX X r g X f     
+1 = ( )t t k k

i i i jX X X X      

 
 
Fig. 2 Flowchart of FA-BOA. 

 

Based on the above explanation, the pseudo-code of hybrid 
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FA-BOA is given in Algorithm 3. 

 

Algorithm 3: Pseudo-code of hybrid FA with BOA 

1. Generate the initialize population of the butterflies Xi (i = 1, 2, ···, n) 

randomly 

2. Initialize the parameter r1, r2, β, γ, ε 

3. Define sensor modality c, power exponent a, and switch probability p 

4. For i = 1: n 

5.      Calculate the fitness value of each butterfly 

6. End for 

7. While t < Tmax 

8.      For i =1: n 

9.              Update the fragrance of the current search agent by Eq. (5) 

10.          For j =1: n 

11.                Update rij and β by Eq. (4) and Eq. (11) 

12.                If rand < P 

13.                   Update the position using Eq. (9) 

14.                Else 

15.                   Update the position using Eq. (10) 

16.                End if 

17.                Calculate the fitness value of each butterfly 

18.                Find the best f 

19.          End for j 

20.     End for i 

21.     Update the parameter c using Eq. (6) 

22.     t = t + 1 

23. End while 

24. End FA-BOA 

 

Ⅲ.   ALGORITHM SIMULATION AND RESULT ANALYSIS 

A Benchmark set and compared algorithm 

In the simulation experiments, eight benchmark functions 

were selected from Ref. [17] and Ref. [18]. A set of 

benchmark functions of different types are used to evaluate 

the optimization capability of FA-BOA.  

The benchmark functions include two distinct types, 

namely unimodal (UM) and multi-modal (MM). The UM 

(F1-F4) benchmark functions, with only one global minimum, 

can strengthen the capabilities of algorithm. If the MM 

(F5–F8) benchmark functions are used, it shows the 

diversification capabilities of the optimization algorithms. 

The mathematical formulas, value ranges and theoretical 

optimal values of the four UM and four MM test functions are 

shown in Tables Ⅰ.  

The simulation results and optimization performance of 

FA-BOA compared with other types of optimization 

algorithms FA, BOA, GOA [19], GWO algorithm [20], 

LBOA [2], PSO algorithm [21], and WOA [22].  

The performance evaluation indicators include the best 

scheme (Best), the worst scheme (Worst), the standard 

deviation (Std) and the average result (Avg). The selected 

GOA, GWO algorithms, LBOA, and WOA are all powerful 

and novel optimization algorithms, while FA, BOA, and PSO 

algorithms are selected as algorithms that are heavily adopted 

in optimization contexts.  

B parameter settings 

The proposed FA-BOA has been tested using the Matlab 

R2018b running Windows 10 with an AMD Ryzen7-4800H 

2.90 GHz processor and 16.00 GB RAM, executed to check 

the performance of the FA-BOA. All tests were performed 

using 30 populations in a maximum of 500 iterations. All 

stored simulation results are the average of 30 independent 

runs, and the obtained results are used for comparison. 

Meanwhile, algorithms of FA, BOA, GOA, GWO 

algorithm, LBOA, PSO algorithm, and WOA all use the 

settings parameters presented from the original work. The 

basic parameter settings of each algorithms are shown in Tab. 

Ⅱ.  

C Quantitative results of FA-BOA 

In this section, we select eight comparison algorithms to 

test each benchmark function together to evaluate the 

performance of the proposed FA-BOA. The simulation results 

of each algorithm on the test function are shown in Tab. Ⅲ, 

where N/A means that the algorithm is not suitable for solving 

this function. Notably, the optimal solution obtained is 

highlighted in bold. 

According to the results in Tab. Ⅲ, the proposed FA-BOA 

outperforms the other algorithms in the average (Avg) vaule 

and standard deviation (Std) values of solving the functions 

F1, F2, F3, F4, F5, F6, and F8. Additionally, the FA only gets 

the optimal value on the function F7, while FA-BOA gets the 

optimal value on other functions. 

As can be seen from the simulation results for the functions 

(F1-F4), FA-BOA is very competitive in optimizing the 

unimodal function, compared with FA, BOA, GOA, GWO 

algorithms, LBOA, PSO algorithms, and WOA. These 

experimental results demonstrate the excellent optimization 

accuracy of FA-BOA with one-global minimal functions.  

At the same time, we can also see that FA-BOA shows 

excellent optimization performance for optimizing the 

multimodal functions. FA-BOA can find superior average 

results for the test functions F5, F6, and F8. 

Obviously, these results imply that the improved FA-BOA 

has a good ability to avoid falling into the trap of local optima 

and seek the global optima. 

 It can be seen from Tab. Ⅲ that the variances of FA-BOA 

on eight test functions are all minimum, indicating that 

FA-BOA optimization algorithm has good robustness. 

According to the simulation results, to analyze the 

robustness of the proposed FA-BOA and other algorithms, the 

convergence curves for the eight test functions (Dim = 30) are 

demonstrated in Fig. 3.  

The convergence curves in Fig. 3 can verify that the 

proposed FA-BOA has faster convergence speed than other 

algorithms. The simulation results verify that the improved 

algorithm FA-BOA can effectively improve the convergence 

trend of the basic BOA.  

The unimodal functions only provide a global optimum, so 

they are applied to investigate the development phase. The 

obtained results proved that FA-BOA exhibited a very 

excellent development ability compared with that of the other 

competitive algorithms.  

The MM functions were applied as they have many local 

optima compared to the unimodal functions. Usually, the 

complexity of variables increases with the size or dimension 

of the problem. In order to optimize each stage to obtain better 

solutions and get rid of the trap of local optimization, these 

evaluations make it easy for us to understand that fa-boa has 

high comprehensive ability in the exploration and utilization 

stage. 
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TABLE Ⅰ. SIMULATION TEST FUNCTIONS 

 

 

TABLE Ⅱ. PARAMETER SETTINGS 

 

No. Algorithms Population Size Parameter Settings 

1 Butterfly Optimization Algorithm (BOA) 30 0.1, (0) 0.01, 0.6a c p    

2 Firefly Algorithm (FA) 30 0 1, 1    

3 Grasshopper Optimization Algorithm (GOA) 30 max min1, 0.00004, 1.5c c     

4 Grey Wolf Optimizer (GWO) 30 2, 0frist finala a   

5 Butterfly Optimization Algorithm with Lévy flights (LBOA) 30 0.1, (0) 0.01, 0.6, 1a c p      

6 Particle Swarm Optimization (PSO) 30 1 2 max min max min2, 1, 1, 0.9, 0.2c c V V         

7 Whale Optimization Algorithm (WOA) 30 1 2[2 0], [ 2 1], 1a a b      

8 FA-BOA 30 0 00.1, (0) 0.01, 0.6, 0.2, 0.2a c p        

 

TABLE Ⅲ. SIMULATION RESULTS OF EIGHT COMPARISON ALGORITHMS 

 

Functions BOA FA GOA GWO LBOA PSO WOA FA-BOA 

F1 

Best 1.0832E-11 8.0585E-08 1.1830E+01 3.4318E-29 3.9633E-15 3.8737E-07 2.5066E-88 0 

Worst 1.4304E-11 1.3532E-07 1.1219E+02 4.6471E-26 3.4806E-11 1.4108E-04 1.0263E-71 1.5823E-205 

Avg 1.2572E-11 1.1132E-07 3.7080E+01 3.0913E-27 4.7553E-12 1.0397E-05 5.2314E-73 5.4560E-207 

Std 8.2541E-13 1.3178E-08 2.4387E+01 8.9724E-27 6.3009E-12 2.5157E-05 2.0772E-72 0 

F2 

Best 1.3568E-09 9.0934E-06 1.7757E+01 8.1813E-17 1.2481E-09 3.5642E-03 2.0942E-51 1.2402E-128 

Worst 5.8275E-09 1.5498E-04 8.0473E+01 3.7793E-16 5.3183E-09 1.5909E-02 9.3275E-51 5.8079E-128 

Avg 4.6481E-09 1.3875E-04 1.4826E+01 1.0042E-16 1.3017E-09 3.8583E-03 6.8064E-52 3.8296E-129 

Std 1.3568E-09 9.0934E-06 1.7757E+01 8.1813E-17 1.2481E-09 3.5642E-03 2.0942E-51 1.2402E-128 

F3 

Best 9.6696E-12 1.1249E-08 1.7678E+00 2.2652E-30 1.5064E-13 7.6080E-06 3.3296E-82 1.3568E-304 

Worst 1.3489E-11 2.0808E-08 9.0017E+01 9.1990E-28 9.5905E-12 5.6376E-04 4.3402E-70 3.6041E-260 

Avg 1.2040E-11 1.5004E-08 2.6763E+01 2.0962E-28 2.7997E-12 8.0024E-05 1.5064E-71 1.2897E-261 

Std 8.4649E-13 2.2728E-09 2.3256E+01 2.5850E-28 2.3330E-12 1.2592E-04 7.9194E-71 0 

F4 

Best 1.0951E-11 6.8495E-09 1.0056E-01 2.0318E-29 1.2908E-13 3.4770E-06 8.6514E-85 0 

Worst 1.3865E-11 1.2414E-08 6.0027E+02 2.5490E-27 1.5820E-11 3.2815E-04 4.9501E-70 0 

Avg 1.2515E-11 9.5769E-09 5.9637E+01 3.8551E-28 3.7920E-12 7.2819E-05 1.6569E-71 0 

Std 7.9152E-13 1.2563E-09 1.1646E+02 5.5358E-28 3.9472E-12 8.0401E-05 9.0364E-71 0 

F5 

Best 1.8916E-17 1.7655E-11 1.3150E-03 4.6813E-247 1.7319E-22 4.3816E-67 5.1021E-131 0 
Worst 1.2033E-11 5.5092E-09 1.6605E+03 1.0030E-200 2.0166E-17 3.3251E-60 3.5758E-99 0 
Avg 5.4713E-12 1.6806E-09 2.5190E+02 3.3436E-202 3.8248E-18 1.8044E-61 1.1919E-100 0 
Std 4.0994E-12 1.5644E-09 4.9994E+02 0.0000E+00 5.3847E-18 6.3373E-61 6.5284E-100 0 

F6 

Best 2.3642E-10 7.0607E-06 1.0134E-01 5.2452E-17 1.3845E-21 2.3744E-04 1.6368E-58 4.3851E-292 

Worst 8.3800E-10 7.7259E-05 7.0200E+00 2.0992E-03 2.9702E-13 2.8310E-03 2.1097E-50 1.3152E-82 

Avg 4.0765E-10 2.5784E-05 2.2003E+00 5.7573E-04 2.3671E-14 8.0691E-04 8.6689E-52 1.1140E-83 

Std 1.3879E-10 1.6866E-05 1.4606E+00 6.3003E-04 5.5900E-14 6.5512E-04 3.8416E-51 3.2240E-83 

No. Function Formula Dim Range Optima 

F1 Sphere 
2

1

1

( )
n

i

i

F x x


  30 [-100,100] 0 

F2 Schwefel 2.22 2

1 1

( ) | | | |
nn

i i

i i

F x x x
 

    30 [-10,10] 0 

F3 Sum Square 
2

3

1

( )
n

i

i

F x nx


  30 [-10,10] 0 

F4 Zakharov 
2 2 4

4

1 1 1

( ) ( 0.5 ) ( 0.5 )
n n n

i i i

i i i

F x x ix ix
  

      30 [-5,10] 0 

F5 Cigar 
2 6 2

5 1

2

( ) 10
n

i

i

F x x x


    30 [-100,100] 0 

F6 Alpine 6

1

( ) | sin( ) 0.1 |
n

i i i

i

F x x x x


   30 [-5,5] 0 

F7 Penalized1 

1
2 2 2 2

7 1

1

1

( ) {10sin ( ) ( 1) [1 10sin ( )] ( 1) }

1
( ,10,100,4), 1 ( 1)

4


 









     

   





n

i i i n

i

n

i i i

i

F x y y y y
n

u x y x

 30 [-100,100] 0 

F8 Schwefel 2.26 8

1

( ) | sin( | |) |
n

i i

i

F x x x


    30 [-10,10] 0 
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F7 

Best 1.8199E-01 9.8098E-10 7.5530E+00 1.3053E-02 1.9983E-01 1.0369E+00 9.6675E-03 3.3960E-09 

Worst 9.9164E-01 7.2643E-01 1.9290E+02 8.6832E-02 4.8926E-01 1.0950E+01 1.3889E-01 3.8095E-08 

Avg 6.5520E-01 3.4581E-02 2.8408E+01 4.0546E-02 3.2379E-01 4.6114E+00 3.3954E-02 1.3782E-08 

Std 1.8025E-01 1.3443E-01 3.4255E+01 1.7448E-02 8.5837E-02 2.5105E+00 2.6628E-02 8.5531E-09 

F8 

Best 6.3003E-65 6.1162E-05 5.2213E-01 9.7568E-02 7.4001E-30 1.3576E-05 3.1889E-72 8.6082E-136 

Worst 2.6196E+01 1.3883E-04 8.1281E+00 6.3312E+00 9.6865E-10 3.9299E+00 7.0607E-01 4.8783E-78 

Avg 4.3649E+00 9.6079E-05 1.9503E+00 7.6681E-01 3.2316E-11 3.3792E-01 1.5271E-01 1.6261E-79 

Std 8.9379E+00 1.9545E-05 1.7168E+00 1.2359E+00 1.7685E-10 7.7290E-01 2.0720E-01 8.9066E-79 

 

       
                                     (a) F1                                       (b) F2 

       
                                               (c) F3                                       (d) F4 

       
                                               (e) F5                                      (f) F6 

       
                                               (g) F7                                        (h) F8 

Fig. 3 Convergence curve for eight algorithms with Dim= 30. 
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It is not convincing to compare the advantages of different 

algorithms only according to the average value, standard 

deviation value and convergence analysis. We should utilize 

more statistical tests to assess the optimization performance 

of the proposed FA-BOA. Friedman test [23] and Wilcoxon 

rank-sum (WRS) test [24] are required to verify whether there 

is a substantial improvement compared with existing 

algorithms on a specific problem. 

We usually use the WRS test and the Friedman rank test to 

verify the statistical significance of the proposed FA-BOA. 

We set the alpha in the WRS test to 0.05. The null hypothesis 

reflects the significant difference between the proposed 

algorithm and other algorithms. If this statistic (H) is greater 

than 0.05, null is accepted; otherwise, an alternative is 

accepted. In Tab. Ⅳ, the p-values calculated by FA-BOA and 

other algorithms in the Wilcoxon rank-sum tests for each test 

functions are given. For instance, if the best algorithm is 

FA-BOA, then do pairwise comparisons between FA-BOA 

and FA, FA-BOA, and BOA, and so on. According to the 

results in Tab. Ⅳ, the p-values of FA-BOA are all less than 

0.05. It proves that the performance of our proposed FA-BOA 

is statistically significantly superior to almost all comparison 

algorithms. In conclusion, FA-BOA has higher convergence 

accuracy and faster convergence speed than other algorithms.  
 

TABLE Ⅳ. THE P-VALUE AND HYPOTHESIS (H) OF WRS TEST 

 

No. FA BOA GOA GWO LBOA PSO WOA 

F1 
p 2.56E-06 2.56E-06 2.56E-06 2.56E-06 2.56E-06 2.56E-06 2.56E-06 

H 1 1 1 1 1 1 1 

F2 
p 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

H 1 1 1 1 1 1 1 

F3 
p 3.79E-06 3.79E-06 3.79E-06 3.79E-06 3.79E-06 3.79E-06 3.79E-06 

H 1 1 1 1 1 1 1 

F4 
p 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

H 1 1 1 1 1 1 1 

F5 
p 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

H 1 1 1 1 1 1 1 

F6 
p 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

H 1 1 1 1 1 1 1 

F7 
p 1.73E-06 1.48E-02 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

H 1 1 1 1 1 1 1 

F8 
p 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

H 1 1 1 1 1 1 1 

 

TABLE Ⅴ. RANK SUMMARY OF STATISTICAL ASSESSMENT 

RESULTS 

 

No. BOA FA 
FA- 

BOA 
GOA GWO LBOA PSO WOA 

F1 5 6 1 8 3 4 7 2 

F2 5 6 1 8 3 4 7 2 

F3 5 6 1 8 3 4 7 2 

F4 5 6 1 8 3 4 7 2 

F5 6 7 1 8 2 5 4 3 

F6 4 5 1 8 6 3 7 2 

F7 6 1 2 8 4 5 7 3 

F8 3 5 1 8 7 2 6 4 

Avg 4.875 5.25 1.125 8 3.875 3.875 6.5 2.5 

Final 5 6 1 8 3 3 7 2 

 

We utilized Friedman test on the mean of the eight test 

functions computed by each algorithm to make the statistical 

results more convincing. The results of the Friedman rank test 

of each algorithm are shown in Tab. IⅤ. To summarize, we 

can count the final order of the rank means, the eight 

algorithms order is FA-BOA > WOA > GWO > LBOA > 

FA > BOA > PSO > GOA. From these tables, it can be seen 

that there are significant differences between the proposed 

FA-BOA and the other algorithms of the eight test functions 

with Dim = 30. 
 

 
(a) F1-F4 

 
(b) F5-F8 

 

Fig. 4 Boxplot graphs of the comparison algorithms. 

 

The Fig. 4 shows the box plots of the simulation results of 

eight fixed-dimensional test functions by the eight algorithms. 

For the benchmark functions, the GOA results are relatively 

poor in the eight algorithms. For benchmark function F8, the 

WOA is also underperforming. By contrast, FA-BOA 

achieved the best results for all test functions. 

 According to all the experiments carried out, the FA-BOA 

with excellent solution results has shown that it can well 

balance the exploration and exploitation phases. As FA-BOA 

can achieve good results in various test functions, it needs to 

have a good balance in both exploration and exploitation 

phases. 

IV. FA-BOA FOR CLASSICAL ENGINEERING PROBLEMS  

This section discusses two engineering design problems, 

three-bar truss design, and speed reducer design which are 

employed to analyze and evaluate the ability of FA-BOA. 

Since the fitness function may directly affects the location 
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update of search agents, constraint processing is a challenging 

job for the algorithm. Most classical engineering problems 

contain optimization objectives and multiple constraints, 

which evaluate the ability of FA-BOA from the perspective of 

solving the optimization objective with constraints. 

A. Three-bar Truss Design 

This case is designed for a three-bar planar truss [25] 

structure shown in Fig. 5. The goal of the three bar truss 

design problem is to minimize the volume of the truss under 

static pressure and meet the stress (σ) on each truss member 

constraints. This problem can be transformed into the 

problem of optimal cross-sectional area (A1, A2). 
 

 
 

Fig. 5 Three-bar truss 

 

The mathematical formulation of this problem is given 

below: 

   1 2 1 2

1 2

1 2

1 1 2

2

2 2

1 1 2

3

2

1

2

2

2

1

s.t.

 :

, [0,1],  100 ,  2

: , 2 2

2

2 2

2 2

/ ( ) ,  2 / (

1

2

)









  


 



 














  






Minimize f A A A A l

A A
g P

A A A

A
g P

A A A

g P
A A

Variable range

A A l cm P kN cm kN cm

  

 

TABLE Ⅵ. STATISTICAL RESULTS OF THE BEST THREE-BAR 

TRUSS MODEL OF FA-BOA  

 

No. No. iterations Times Average S.D. 

60 1000 30 263.8958434 5.977E-13 

 

The statistical values of the best solution obtained by the 

FA-BOA are shown in Tab. Ⅵ. The solution by FA-BOA is 

(A1, A2) = (0.788675, 0.408248) with the objective value 

equal to 263.8958. 
 

TABLE Ⅶ. COMPARISON OF RESULTS FOR THE THREE-BAR 

TRUSS DESIGN PROBLEM 

 

Item PSO  CS [26] MBA [27] FA-BOA 

A1 7.881 E-01 7.886 E-01 7.886 E-01 7.887 E-01 

A2 4.099 E-01 4.09 E-01 4.086 E-01 4.082 E-01 

Best 2.639 E+02 2.64 E+02 2.639 E+02 2.639 E+02 

Worst 2.639 E+02 N/A 2.650 E+02 2.639 E+02 

Avg 2.641 E+02 2.639 E+02 2.639 E+02 2.639 E+02 

Std 9.000 E-05 1.658 E-01 3.930 E-03 5.977 E-13 

A comparison results between statistical performance and 

the best solutions obtained by FA-BOA and other considered 

algorithms is presented in Tab. 7. The algorithms used for 

comparison are PSO algorithm, CS algorithm, and MBA. 

With regard to the best solution, PSO algorithm, MBA, and 

FA-BOA all obtain the same solution, f(x) = 263.8958. From 

the quality of actual results, FA-BOA outperformed the 

methods considered in other literature by producing the 

optimal worst and standard deviation value. 

B. Speed Reducer Design 

In the comparative study of algorithms, reducer design 

problem is applied to analyze the accuracy performance (see 

Fig. 6). The optimization objective is to minimize the overall 

weight of the reducer. Constraints mainly include: bending 

stress of gear teeth, surface stress, force transmitted by lateral 

deflection of axis 1 and 2, stress in axis 1 and 2, etc. 
 

 
 

Fig. 6 Speed reducer 

 

The objective function and constraints of this problem are 

expressed as follows: 

1 2 3 4 5 6 7

2 2

1 2 3 3

2 2 3 3 2 2

1 6 7 6 7 4 6 5 7

: ( , , , , , , )

0.7854 (3.3333 14.9334 43.0934)

1.508 ( ) 7.4777( ) 0.7854( )
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x x x x
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Variable range: 

1 2 3 4

5 6 7

2.6 3.6,  0.7 0.8,  17 28,  7.3 8.3,  

7.8 8.3,  2.9 3.9,   5 5.5

       
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x x x x

x x and x
 

The corresponding statistical values of the Best FA-BOA 

model and the simple bounds of the speed reducer problem 

are presented in Tab. Ⅷ. A comparison between the 

statistical performance and the best solutions obtained by the 

FA-BOA and the other comparison algorithms is given in Tab. 
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Ⅸ. The algorithms used for comparison are PSO algorithm, 

CS algorithm, and MBA. 
 

Table Ⅷ. STATISTICAL RESULTS OF THE SPEED REDUCER 

DESIGN PROBLEM OF FA-BOA  

 

Item Bound Value 

x1 (2.6-3.6) 3.5 

x2 (0.7-0.8) 0.7 

x3 (17-28) 17 

x4 (7.3-8.3) 7.3 

x5 (7.8-8.3) 7.8 

x6 (2.9-3.9) 3.45836 

x7 (5.0-5.5) 5.245858 

objective function value / 2999.0372 

No. / 60 

No. iterations / 1000 

 

Table Ⅸ. COMPARISON RESULTS FOR THE SPEED REDUCER 

DESIGN PROBLEM OF DIFFERENT ALGORITHMS 

 

Item PSO  CS [26]  MBA [27] FA-BOA 

x1 3.508 E+00 3.501 E+00 3.500 E+00 3.500 E+00 

x2 0.700 E+00 0.700 E+00 0.700 E+00 0.700 E+00 

x3 1.700 E+01 1.700 E+01 1.700 E+01 1.700 E+01 

x4 7.300 E+00 7.605 E+00 7.300 E+00 7.300 E+00 

x5 8.300 E+00 7.818 E+00 7.716 E+00 7.800 E+00 

x6 3.365 E+00 3.352 E+00 3.350 E+00 3.458 E+00 

x7 5.290 E+00 5.287 E+00 5.287 E+00 5.246 E+00 

Best 3.012 E+03 3.001 E+03 2.994 E+03 2.999 E+03 

Worst 3.150 E+03 3.009 E+03 3.000 E+03 2.999 E+03 

Mean 3.051 E+03 3.007 E+03 2.997 E+00 2.999 E+03 

S.D. 1.807 E+01 4.968 E+00 1.560 E+00 2.850 E-10 

 

Tab. Ⅸ presents the comparison results obtained by 

FA-BOA and other algorithms. Obviously, the solution of 

FA-BOA is better than PSO algorithm, CS algorithm in the 

literature. Although the optimal target values derived from the 

MBA is better than that of FA-BOA, the reported values are 

not feasible due to the violation of the fifth constraint (x5) in 

the results of MBA. For the solution results, FA-BOA 

outperformed the considered algorithms by producing the 

optimal worst, mean, and standard deviation values. 

V.   CONCLUSIONS 

This paper proposes a hybrid algorithm that incorporates 

two heuristic optimization algorithms, FA and BOA. The 

proposed algorithm combines the advantages of both FA and 

BOA, where a set of roaming random butterflies in the search 

space is initialized. During this roaming, the evolution of 

these butterflies is performed by integrating FA and BOA, 

where FA acts as a local search to optimise where the 

butterflies are found. Meanwhile, the randomization 

parameter is reduced so that it gradually decreases as it 

approaches the optimal value, and the performance of FA is 

improved. From the comparisons of simulation results, it can 

be seen that there is a certain research space for the hybrid 

intelligence algorithms to solve difficult continuous 

optimization problems, and the hybrid FA-BOA is a parctical 

and valuable method for solving the unconstrained nonlinear 

optimization problems. The optimization algorithm proposed 

in this paper has the following advantages. 

1) It can efficiently make up for the defect that BOA is easy 

to fall into local optimum. 

2) Compared with other existing algorithms, it has better 

optimization performance and competitiveness. 

3) It can efficiently and stably find the global minimum for 

the optimization problems. 

4) Due to the BOA algorithm only relies on smell to forage 

or ignores its visual signal, we use the characteristics of the 

firefly in the FA to search for the global optimum through the 

visual signal. Besides, the proposed hybrid algorithm 

FA-BOA of the FA and the BOA improves the ability to find 

the global optimum, which is more in line with the behavior of 

butterflies in nature. 
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