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Abstract—To combat the COVID-19 virus, extensive studies
are being conducted on contactless alternative methods for
measuring body temperature and detecting whether masks are
being worn. This study investigated a system that employed
ZYNQ-7020 as the main controller. The accurate non-contact
measurement of a persons body temperature was realized by the
calibration and compensation of infrared sensor data collected
by an MLX90614 thermopile. In addition, OpenCV and a
convolutional neural network (CNN) algorithm were used for
face image recognition and to detect whether a person was
wearing a mask. A mask detection algorithm was developed
based on high-level synthesis and implemented by Python
productivity for Zynq (PYNQ). The PYNQ test results were
output through a high-definition multimedia interface. Users
could also view the real-time human body temperature and
face image recognition results through the web. The system
achieved a temperature measurement distance of 30 cm, with
a measurement error of ± 0.3 ◦C and measurement range
of 2560 ◦C. The system also had an alarm function with a
buzzer that could be used for an over-temperature alert. The
algorithm used the characteristics of field programmable gate
array parallel computing to improve the CNN calculation in
image processing. A variety of optimization strategies were
implemented to achieve hardware acceleration, which improved
the mask recognition rate.

Index Terms—Contactless intelligent epidemic prevention
system, Convolutional neural networks,Infrared temperature
measurement, Mask detection, ZYNQ-7020.

I. INTRODUCTION

COVID-19 is mainly transmitted directly by the trans-
mission of droplets when a patient sneezes, coughs, or

speaks, and indirectly by contacting an object with droplets
on its surface, which then come into contact with the mouth,
nose, or eyes, leading to infection [1], [2], [3]. Therefore, it is
particularly important to detect whether people are wearing
masks and measure their body temperatures in crowded
public places such as train stations and airports to prevent
suspected patients from entering and control the spread of
the virus [4], [5].Among the traditional detection methods,
manual detection or surveillance is most commonly used
[6], [7], [8], [9]. However, this traditional method consumes
considerable human and material resources. In this practical
application context, there is an urgent need for a contactless
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intelligent epidemic prevention system that can satisfy the
need for the rapid and mass unmanned and contactless
detection of target persons and mask wearing. In scenarios
in which it is not possible to deploy servers and there is
sensitivity to cost, a large amount of computation for face
detection and mask detection needs to be performed on
the end device, which requires an implementation platform
with high performance and parallel computation [10]. In this
study, a ZYNQ-7020 was chosen as the main controller to
drive an OV5640 camera to capture the target image. The
recognition of face images and the detection of mask wearing
were implemented through OpenCV and convolutional neural
network (CNN) algorithms [11], [12]. The mask detection al-
gorithm was developed based on high-level synthesis (HLS)
and implemented by Python productivity for Zynq (PYNQ)
[13]. The CNN computation during image processing was
accelerated using the feature of field programmable gate
array (FPGA) parallel computing. The detection results were
output via a high-definition multimedia interface (HDMI).
The system determined a persons body temperature through
the calibration and compensation of infrared (IR) sensor data
acquired using an MLX90614 thermopile, which had a tem-
perature measurement distance of up to 30 cm, measurement
error of ± 0.3 ◦C, and measurement range of 2560 ◦C. An
over-temperature alarm function was also incorporated. In
addition, a hypertext transfer protocol (HTTP) server was
deployed on ZYNQ, which would allow users to view real-
time human body temperature and face picture recognition
results through a web page. A schematic of the system is
shown in Fig. 1.

II. GENERAL FRAMEWORK OF THE SYSTEM

ZYNQ is a new generation of fully programmable
systems-on-a-chip proposed by Xilinx, combining FPGA
logic components (the programmable logic (PL) part) and
a dual-core ARM Cortex-A9 processor (the processing sub-
system (PS) part), with the hardware and software working
together. In this design, an xc7z020clg400-2 (referred to as
the ZYNQ-7020) was selected as the main controller for
the entire system. The AXI bus protocol was used as the
bridge for PL/PS data signal communication in the ZYNQ-
7020 system architecture. Fig. 2 shows the overall framework
of the contactless intelligent epidemic prevention system. In
the PL, the Vivado HLS tool was used to implement the
design of IP cores for camera image data acquisition, the
HDMI display driver, the MLX90614 sensor driver, and the
CNN. The PS part was based on the PYNQ open source
framework, which mainly included the design of the image
storage, face detection and algorithm optimization, HTTP
server construction, and design of the overall functional
logic.
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Fig. 1. Schematic of the contactless intelligent epidemic prevention system.

Fig. 2. The overall framework of the system.

III. VIVADO HLS-BASED PL SYSTEM DESIGN

A. Introduction to Vivado HLS

In the traditional FPGA development flow, which requires
considerable hardware-oriented design work and verification
time, Xilinx has introduced the Vivado HLS tool to shorten
the development cycle, which allows the for direct devel-
opment of the Xilinx family of FPGAs using C, C++, or
System C. Vivado HLS has a large number of optimized in-
structions, which significantly reduces the time traditionally
spent on FPGA development using RTL descriptions. In this

design, the Xilinx Vivado HLS development tool was used
to package the camera image acquisition, IR temperature
measurement, and CNN into IP cores that could be called
by the PYNQ framework.

B. OV5640 Image Acquisition

The system used an OV5640 camera for image acquisition.
The simplified framework is shown in Fig. 3. The ARM
processor performed an initial configuration of the OV5640
camera via the serial camera control bus to enable it to output
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video data at a set resolution. Then, the Video to AXI4-
Stream IP core was used to convert the captured video data
stream to the AXI4-Stream data format required for virtual
direct memory access (VDMA). VDMA connected to the
AXI HP port in coordination with the AXI Smartconnect
IP core to efficiently access DDR3 and write the image
data into the DD3 external memory. At the same time, the
processor processed the cached image data for face detection,
recognition, etc. [14], [15], [16].

After the recognition and detection of the image on the PS
end, VDMA read the processed image data from the DDR3
and transmitted it to the AXI4-Stream to Video Out IP core.
The AXI4-Stream to Video Out IP core, under the control of
the VTC IP core, converted the AXI4-Stream data into the
video output data format, transmitted the output video data
stream to the DVI Transmitter IP core, and finally displayed
the recognition results using the LCD.

C. IP Core Design for IR Temperature and Distance Mea-
surement

A Melexis MLX90614ESF-DCI high-precision IR temper-
ature sensor was used for the IR temperature measurement
acquisition [17], [18]. The IR sensor communicated with the
ZYNQ through the SMBus bus protocol, and the connection
is shown in Fig. 4. To ensure that the SMBus bus data transfer
remained at a high electrical level in the idle state, two 4.7
kΩ pull-up resistors were connected, and a filter capacitor
(C2) with a capacitance of 0.1 F was placed between the
ends of the sensor power supply.

The sensor output data were linearly proportional to the
object temperature and had a wide temperature range. This
design initiated and controlled the conversion of the sensors
data and read the converted temperature data from its internal
read only memory. The thermopile sensor output signal is
given by Eq. (1):

Vir(Ta, To) = A× (T 4
o − T 4

a ) (1)

where To is the target temperature (K), Ta is the ambient
temperature (K), and A is the sensor sensitivity constant.

The IR distance detection circuit is implemented using
an LM393 comparator with a pair of it transmitter-receiver
tubes. The circuit takes advantage of the IR receiver tube’s
sensitivity to IR light to achieve the distance detection
requirements in this design. The detection circuit is shown
in Fig. 5, in which LM393 pin 6 is connected to an
adjustable potentiometer that adjusts the threshold voltage,
whose magnitude is adjusted according to the actual distance
detection needs.

where To is the target temperature (K), Ta is the ambient
temperature (K), and A is the sensors sensitivity constant.
The IR distance detection circuit was implemented using
an LM393 comparator with a pair of IR transmitterreceiver
tubes. The circuit took advantage of the IR receiver tubes
sensitivity to IR light to achieve the distance detection
requirements in this design. The detection circuit is shown in
Fig. 5, in which LM393 pin 6 is connected to an adjustable
potentiometer that adjusts the threshold voltage according to
the actual distance detection needs.

Because the IR light generated by the IR emitter in the
IR distance measurement module could affect the accuracy

of the temperature acquisition, triodes were used to design
a distance detection module control circuit, as shown in
Fig. 6. When the ctrl outputs a high electrical level, triode
Q1 conducts, and the IR distance detection module is in a
working state; when the ctrl outputs a low electrical level,
triode Q1 does not conduct, and the IR distance detection
module does not work or emit IR light, thus avoiding the
effect on the temperature measurement part.

D. Mask-Wearing CNN IP Core Design

The mask wearing detection classified the face images in
the face detection results into two categories: ”with mask”
and ”without mask.” The design was based on a modified
CNN model structure, and the CNN acceleration IP kernel
was designed to detect the images of faces and label the
detected images with the detection results [19].

Preparation of dataset

This design mainly used the CNN to achieve mask wearing
detection. It was first necessary to train the CNN model, for
which a RMFD mask shielding face dataset was used [20],
[21]. This dataset contains simulated mask-wearing face data
of 10,000 people and 500,000 faces. The design randomly
selected 24,000 images from the dataset for training: 16,800
for the training set and 7,200 for the test set. The images in
the datasets were preprocessed in a sequence that included
image grayscale conversion, image size adjustment, and
image file renaming, to generate a 28 × 28 dataset in the
IDX format.

CNN model

This design used a CNN model structure based on a mod-
ified CNN, as shown in Fig. 7. The input to the model was
a 28 × 28 × 1 single-channel grayscale map, and the output
was a 1 × 2 matrix with values indicating the probability
of the corresponding class of the input image through two
convolutional layers, two max pooling layers, and two fully
connected layers. The network was trained using a script.
After the training was completed, the model was tested using
the test set and had an accuracy of approximately 99.9%. The
parameters from the training were saved to be used when the
network is deployed.

The network is trained using a script. After the training
is completed, the model is tested using the test set with an
accuracy of approximately 99.9 %. The parameters from the
training are saved to be used when the network is deployed.

E. Parallel Analysis and Acceleration Methods for Mask
Detection

Wearing detection algorithms

To accelerate the mask wearing detection analysis, the
mask wearing detection function of this design was im-
plemented by the CNN, which required a large number
of convolutional and pooling operations. These were the
most time consuming processes of the forward computation
process of the CNN. Because the convolutional operation
process had the characteristics of parallel computing, the
hardware parallel acceleration of this process was performed
at the PL end, and the speed of the entire process was
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Fig. 3. Image acquisition and display frame diagram.

Fig. 4. IR temperature sensor acquisition circuit.

Fig. 5. IR distance detection circuit.

considerably increased by optimization strategies such as
loop reconstruction, array division, loop expansion, and data
access [22].

Fig. 6. Distance detection of control circuit.

Acceleration of convolution process on FPGA

The flow of the convolutional operation is shown in Fig.
8. The inputs of the convolutional operation were CHin
feature maps, and the outputs were CHout feature maps with
a size of C × R. Each output feature map was obtained
by convolving the convolution kernel with the respective
input features. Thus, there were CHout × CHin convolution
kernels with a size of K × K.

The convolution formula is shown in Eq. (2):

Out[cho][r][c] =

CHin−1∑
chi=0

K−1∑
kr=0

K−1∑
kc=0

In[chi]

[r + kr][c+ kr]×W [cho][chi][kr][kc]

(2)

where Out denotes the output of the convolution result; cho
and chi denote the output and input channels, respectively;
r denotes the row of the output; c denotes the column of
the output; In denotes the input of the convolution; and kr,
kc, and W denote the row, column, and weight matrix of
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Fig. 7. Structure of the network model used in this design.

Fig. 8. Schematic diagram of the convolutional operation.

the convolution kernel, respectively [23]. The corresponding
HLS code is shown as follows.

1. for (int cho = 0; cho < CHout; cho+ +)
2. for (int chi = 0; chi < CHin; chi+ +)
3. for (int r = 0; r < Rout; r + +)
4. for (int c = 0; c < Cout; c+ +)
5. for (int kr = 0; kr < K; kr + +)
6. for (int kc = 0; kc < K; kc+ +)
7. Out[cho][r][c]+ = In[chi][r + kr][c + kc] ∗
W [cho][chi][kr][kc];

The network layer parameters used are listed in Table I.

TABLE I
NETWORK LAYER PARAMETERS

CHin Rin Cin CHout Rout Cout K

1 28 28 16 26 26 3

The input, output, and weight variables in the test code
were the single-precision floating-point type, and the Vivado
HLS synthesis when the hardware period was set to 10 ns is
reported in Fig. 9. It can be seen that the latency reached
1,060,833 clock cycles because the loop in the designed
accelerator did not perform a pipelined operation.

The design took advantage of the parallel computing fea-
tures of FPGAs to adopt various optimization strategies for
the loop body in the convolutional code, with the following
specific steps.

Fig. 9. Vivado HLS synthesis report.

Loop reconstruction

Because the hardware acceleration process of the
convolution was parallelized for both the input and output
channels, the hardware accelerator needed to be repeatedly
called during the convolutional operation. Thus, it was
necessary to put the loops of the input and output channels
in the innermost loop of the entire convolutional operation.
Because the multiplicative accumulation of the convolution
satisfied the associative law, simply changing the order of
the loops was sufficient, and the modified code after the
loop refactoring is as follows:

1. for (int r = 0; r < Rout; r + +)
2. for (int c = 0; c < Cout; c+ +)
3. for (int kr = 0; kr < K; kr + +)
4. for (int kc = 0; kc < K; kc+ +)
5. for (int cho = 0; cho < CHout; cho+ +)
6. for (int chi = 0; chi < CHin; chi+ +)
7. Out[cho][r][c]+ = In[chi][r + kr][c + kc] ∗
W [cho][chi][kr][kc];

Division of arrays

Hardware parallel optimization in convolutional
computing requires parallel access to inputs, outputs, and
weights. They can be expanded by their channels and divided
into multiple random access memory (RAM) blocks, which
allows the data in the RAM blocks to be read in parallel
to reduce latency when performing parallel computations.
Vivado HLS provides the ARRAY PARTITION constraint
instruction to perform array partitioning. The modified code
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after array partitioning is as follows:

1. float In[CHin][Rin][Cin];
2. #pragmaHLSARRAY PARTITIONvariable =
Incompletedim = 1
3. floatOut[CHout][Rout][Cout];
4. #pragmaHLSARRAY PARTITIONvariable =
Outcompletedim = 1
5. floatW [CHout][CHin][K][K];
6. #pragmaHLSARRAY PARTITIONvariable =
Wcompletedim = 1
7. #pragmaHLSARRAY PARTITIONvariable =
Wcompletedim = 2

The Vivado HLS synthesis report showed a latency of
899,809 clock cycles, and thus a reduction of 97,344 clock
cycles compared to this number before array partitioning.

Loop unrolling

The input and output channels of the convolutional
operations needed to be optimized in parallel and be fully
unrolled in the loop to perform hardware parallel acceleration
optimization. Vivado HLS provides the UNROLL instruction
to unroll the loop, and the modified code after the loop is
unrolled is as follows:

1. for (int cho = 0; cho < CHout; cho+ +)
2. #pragmaHLSUNROLL
3. for (int chi = 0; chi < CHin; chi+ +)
4. #pragmaHLSUNROLL
5. Out[cho][r][c]+ = In[chi][r + kr][c + kc] ∗
W [cho][chi][kr][kc];

The report after the Vivado HLS synthesis showed a
latency of 66,301 clock cycles, which was a reduction of
833,508 clock cycles compared to the number before the
loop was unrolled. At this point, the unrolled loop body was
not pipelined.

Pipelining

After the unrolling process, the loop was not pipelined
yet, which indicated the need for further optimization. To
pipeline-unroll the loop body for both the input and output
channels, Vivado HLS provides the PIPELINE instruction
to unroll and pipeline the loop body with the following
modified code:

1. #pragmaHLSPIPELINE
2. for (int cho = 0; cho < CHout; cho+ +)
3. for (int chi = 0; chi < CHin; chi+ +)
4. Out[cho][r][c]+ = In[chi][r + kr][c + kc] ∗
W [cho][chi][kr][kc];

The Vivado HLS synthesis is reported in Fig. 10, in which
it is observed that the indicator Pipelined is marked as yes,
indicating that the loop body has been pipelined. In addition,
there was a reduction of 23,703 clock cycles compared to the
case before pipelining.

However, the reported indicator Initiation Interval value
was not 1. Thus, it is clear that the Out array was involved

in self-adding operations during the loop. As shown in Fig.
11, the Out array was read, computed, and written during
the single loop interval. Thus, the Out array was not read by
the next loop when the current loop was not finished.

To solve the Initiation Interval problem, we further op-
timized the code and put the row and column of the con-
volution kernel into the outermost layer of the convolution
operation loop (see Fig. 12). The two adjacent loop intervals
accessed the data at different positions of the Out array.
There was no data dependency relationship, which could
be implemented by pipelining. The code read the Out array
after an R * C cycle interval, and then the iteration finished
accessing the Out array.

The optimized code is as follows:

1. for (int kr = 0; kr < K; kr + +)
2. for (int kc = 0; kc < K; kc+ +)
3. for (int r = 0; r < Rout; r + +)
4. for (int c = 0; c < Cout; c+ +)
5. #pragmaHLSPIPELINE
6. for (int cho = 0; cho < CHout; cho+ +)
7. for (int chi = 0; chi < CHin; chi+ +)
8. Out[cho][r][c]+ = In[chi][r + kr][c + kc] ∗
W [cho][chi][kr][kc];

The Vivado HLS synthesis report is shown in Fig. 13, in
which the value of the metric Initiation Interval is the ideal
value of 1. In addition, the delayed clock cycles decreased
by 36,503.

The latency and hardware resource usage values before
and after the speedup are listed in Table II. It can be seen that
the entire convolutional operation process was accelerated
by a factor of 174.05, but the consumption of hardware
resources also increased.

TABLE II
COMPARISON BEFORE AND AFTER ACCELERATION OF

CONVOLUTION

Before acceleration After acceleration

Latency 1060833 6095
BRAM 18K 12% 12%

DSP48E 2% 36%
FF -0% 9%

LUT 1% 23%

Acceleration on FPGA during pooling process

The pooling layers used in the entire CNN in this design
were all maximum pooling, and the optimization process
for the maximum pooling hardware parallel acceleration
was similar to the convolutional operation, with the same
optimization processes, including loop reconstruction, array
division, loop expansion, and data access optimization. The
entire pooling operation process was considerably accel-
erated, and the latency and hardware resource occupation
values before and after the acceleration are listed in Table III.
It can be seen that the entire convolutional operation process
was accelerated by 61.35 times, but the occupied hardware
resources also increased.
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Fig. 10. Synthesis report of Vivado HLS after pipelining.

Fig. 11. Out array access flowchart.

Fig. 12. Optimized Out array access flowchart.

Fig. 13. Vivado HLS report after pipelining.
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TABLE III
COMPARISON BEFORE AND AFTER POOLING ACCELERATIO

Before acceleration After acceleration

Latency 60486 986
BRAM 18K 14% 22%

DSP48E 0% 0%
FF -0% 2%

LUT 1% 9%

In this design, the C language code of the CNN algorithm
was designed in Vivado HLS, and the corresponding opti-
mization instructions were added. Test functions were written
to perform software simulation and synthesis in C code, and
it was finally package into the IP core. Fig. 14 shows the
flowchart of the CNN implementation on the FPGA.

Fig. 15 shows the overall block design connection diagram
of the system. The design included a CNN acceleration
IP core generated using Vivado HLS, input and output
IP cores for video streaming, temperature measurement IP
cores, and some other peripheral drivers to meet the overall
requirements of the system.

IV. PS END DEVELOPMENT BASED ON PYNQ
FRAMEWORK

A. Introduction to PYNQ

PYNQ is an open source project from Xilinx that uses
the Python language for FPGA development. The PYNQ
framework is structured in three layers: hardware, which
focuses on FPGA design; software, which loads the Linux
kernel with Python; and applications, which are based on
Jupyter Notebook. The PYNQ framework provides complete
PS access to the Python library of PL resources. This
allows upper-layer applications to obtain implementation
details of the underlying hardware, which efficiently and
quickly creates high-performance applications. The design
was based on PYNQ to implement the face detection, HTTP
server construction and implementation, IP core invocation
on the PL end, and implementation of the overall logical
functionality of the system.

B. OpenCV-based Face Detection

OpenCV is an open source cross-platform computer vision
and machine learning software library. It provides interfaces
to C, C++, Python, and other programming languages, pro-
viding a variety of algorithms for computer vision and image
processing, which can help developers to quickly and effi-
ciently complete the development of image processing and
other applications. OpenCV encapsulates the Haar feature-
based Adaboost cascade classifier [21], which allows fast
human feature detection. In the current design, OpenCV
was used in the PYNQ framework for face detection. The
cascade classifier haarcascade frontalface default.xml was
used to implement the face detection. The CascadeClassi-
fier() function was called to load the cascade classifier, the
detectMultiScale() function was used to complete the face
detection, and the face coordinates, height, and width were
returned. The key code is as follows:

1. import cv2 2. Load cascade classifier file 3. face-
Cascade = cv2.CascadeClassifier(’. /haarcascade frontal-
face default.xml’) 4. Read in images in grayscale 5. img
= cv2.imread(’. /img.jpg’, cv2.IMREAD GRAYSC ALE)
6. Call the detection function and return the coordinates
of the face and its height and width 7. faces = faceCas-
cade.detectMultiScale(img)

C. HTTP Server Construction and Implementation

The design imported the socket network programming
module in the PYNQ framework and implemented HTTP
server construction based on the transmission control proto-
col. Based on the HTTP protocol request-response model, the
client sent a request message by GET. The server provided
the corresponding services to each client requesting connec-
tion. This included receiving the request message, parsing the
message, determining whether the requested data were in the
service range, and responding to the message. The process
flow of this service sub-program is shown in Fig. 16.

D. Logic for Implementing System Functions on PYNQ

The design of the overall logic function of the system
was implemented at the PS end. Fig. 17 shows the process
flowchart of the image processing part, which realized real-
time face image acquisition, in which the OpenCV and CNN
IP cores were called for mask wearing detection. Figs. 18 and
19 show the flowcharts of the IR distance detection module
and IR temperature measurement driver module, respectively,
which automatically began temperature conversion and com-
pensation when a human body approached the measurement
area.

V. WEB PAGE DESIGN AND DEVELOPMENT

The web page design of the contactless intelligent epi-
demic prevention system mainly provided an updated display
of real-time temperature data, along with the ability to
save historical temperature data and view the recognition
result of the latest target detection. The CSS language was
used to configure the overall layout format of the page,
and the JavaScript scripting language was used to process
some simple animation effects and the real-time sending
of a request to the service for the dynamic updating of
temperature data. Previews of the system history data and
target detection results were also available. The web home
page, history data, and target detection page previews are
shown in Figs. 20, 21, and 22, respectively.

VI. SYSTEM EXPERIMENT RESULTS AND
ANALYSIS

A. Experimental Environment

The implementation environment of this design required a
combination of hardware, including a PC host and FPGA
development board, and software, including development
tools such as deep learning libraries and FPGA design
software, as listed in Table IV.
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Fig. 14. Flowchart of CNN implementation on FPGA.

Fig. 15. Overall block design connection diagram.
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Fig. 16. Flowchart of HTTP service sub-program.

Fig. 17. Flowchart of the image processing program.
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Fig. 18. Flowchart of the IR distance detection driver.

TABLE IV
HARDWARE AND SOFTWARE REQUIRED FOR IMPLEMENTATION

Name Model, Version

PC host CPU Intel(R) Xeon(R) Gold 6226 CPU
2.70 GHz

PC host memory 8G
FPGA model xc7z020clg400-2

PC host operating system Ubuntu 18.04.1
Deep learning library TensorFlow 1.15

Image processing software OpenCV 4.4.0
Advanced integrated software Vivado HLS 2018.3

FPGA set design software Vivado 2018.3

B. Experimental Test Protocol

The system needed to perform calibration and compen-
sation for the collected temperature data to prevent errors
in the measurement accuracy caused by environmental and
other factors. Therefore, the data from experimental tests
were particularly important. The test scheme used in the ex-
periment was a water bath to provide a constant temperature
reference source, where the value of a water thermometer was
read for a temperature comparison, and the MLX90614 tem-
perature acquisition module was used to collect temperature
data at different distances. The measured temperature data
were curve fitted to the measured distances under different
conditions, as shown in Fig. 23.

An analysis of the data and the fitted curve showed that

Fig. 19. Flowchart of the IR temperature measurement driver module.

Fig. 20. Preview of web home page.

the temperature collected by the sensor increased with an
increase in the target temperature and decreased with an in-
crease in the measurement distance. When the measurement
distance was approximately 6 cm, the error range was within
± 0.3 ◦C. Therefore, a distance of 6 cm was chosen as the
optimal measurement distance.

C. Human Temperature Compensation Algorithm and Anal-
ysis of its Measurement Data

When a sensor measures temperature, it first takes a
predictive measurement of the ambient temperature (sensor
temperature), and then calculates the temperature to be mea-
sured [24]. Thus, the human body temperature compensation
was an estimate of the actual human body temperature based
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Fig. 21. Preview of historical data page.

Fig. 22. Preview of target detection results.

on the object temperature and ambient temperature using the
following equation:

Tbody = To + α× (To − Ta) + bias (3)

where Tbody is the human body temperature, To is the
object temperature, α is the compensation coefficient, Ta is
the ambient temperature, and bias is the temperature com-
pensation. The Ta value used for the experimental data test
condition was above 25 ◦C, and the compensation coefficient
and bias were calculated in four temperature ranges for To,
namely 25.0-32.0 ◦C, 32.0-34.5 ◦C, 34.5-36.5 ◦C, and above
36.5 ◦C. The experiment results are shown in Fig. 24.

After utilizing the compensation algorithm for the human
body temperature, the temperature acquisition system per-
formed the following experimental data measurements by
comparing the results obtained with a forehead thermometer.
The results are listed in Table V. It was found that the
measurement error was ± 0.3 ◦C after several measurements.

D. Testing of Multi-device Access to HTTP Server

After the mapping of the LAN ports of the contactless
intelligent epidemic prevention system was completed, multi-

TABLE V
BODY TEMPERATURE DATA COLLECTION

Number of
measurements

Measurement
data (◦C)

Forehead
thermometer

(◦C)
Error (%)

1 36.66 36.5 0.44
2 36.86 36.8 0.16
3 36.78 36.7 0.22
4 36.48 36.3 0.50
5 36.63 36.5 0.36
6 36.39 36.3 0.25
7 36.29 36.1 0.53
8 36.87 36.8 0.19
9 36.52 36.5 0.05
10 36.75 36.6 0.41
11 36.77 36.5 0.74
12 36.53 36.3 0.63
13 36.86 36.8 0.16
14 36.49 36.3 0.52
15 36.95 36.8 0.41
16 36.58 36.4 0.49
17 36.67 36.6 0.19
18 36.86 36.8 0.16
19 36.69 36.6 0.25
20 36.89 36.7 0.52

device access to the target web page of the HTTP server on
ZYNQ was performed to test laptop, mobile phone, and iPad
access to the web page [25]. The test results are shown in
Figs. 25 and 26.

VII. CONCLUSION AND RECOMMENDATION

This paper described the design process for a contactless
intelligent epidemic prevention system based on ZYNQ. The
main efforts included the following: (1) When a temper-
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Fig. 23. Distance vs. measured temperature curve.

Fig. 24. Compensation factor and bias.

Fig. 25. Access tests by mobile phone, PC, iPad and other devices.

Fig. 26. ZYNQ operation in real time.

ature compensation algorithm was used, the human body
temperature measurement error was within ± 0.3 ◦C, and the
automatic non-contact measurement of a persons temperature
was realized. (2) An OV5640 camera was used in real time
to obtain a target image, which was stored and accessed
through a high-speed bus and external memory. (3) Xilinxs
open-source framework PYNQ was used for software devel-
opment, to control the ZYNQ with Python programs, and to
call OpenCV to complete face detection. (4) The advanced
synthesis tool Vivado HLS was utilized to complete the de-
velopment of the FPGA program, and the CNN was deployed
on the FPGA to complete the mask recognition. By calcu-
lating, dividing, expanding, and streamlining the calculation
process, a hardware parallel acceleration process for the
CNN was realized. (5) An HTTP server was established, and
devices on a LAN could access this server to fetch historical
temperature data. The system still needs further improvement
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in some aspects. For example, the reference data used by
the fitting temperature compensation algorithm came from
a water bath rather than a standard blackbody calibration
source. The service scope provided by the server was only
in the LAN, and no identity authentication mechanism was
added to limit access to the page, which lacked security. If
the above issues could be resolved, the contactless intelligent
epidemic prevention system would be more suitable for the
needs of an actual application.
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