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High-order Linearly Energy-preserving Compact
Finite Difference Schemes for the Korteweg-de
Vries Equation

Jin-Liang Yan and Liang-Hong Zheng and Fu-Qiang Lu and Wen-Jun Li

Abstract—In this paper, the discrete variational derivative which are respectively named mass, momentum and energy.
method (DVDM) and the compact difference method are  The quality of a numerical approximation hinges on how
combined to construct linearly energy-preserving schemes for well the physical properties of the original system can be pre-
the Korteweg-de Vries equation. The sixth-order compact dif- . .
ference method is used in the spatial direction, and the discrete served. The consfervatlve method§ have begn shown t,o enjoy
variational derivative method is used in the temporal direction. favorable properties such as qualitative solution behavior and
The resulting fully discrete schemes are linear, unconditionally improved overall accuracy [2]. To our knowledge, there have
stable, uniquely solvable, and can precisely conserve the discreteheen many results for the KdV equation. For instance, finite
mass and energy. At last, some benchmark numerical examples difference methods [3], [4], finite element methods [5], [6]
are given to demonstrate the accuracy and efficiency of the s . T

spectral method [7] and operator splitting method [8], and

proposed schemes. Numerical results show that the proposed T -
schemes are more advantageous than the existing methods. SO on. However, the majority of the aforementioned methods

Index Terms—Energy; Compact difference scheme; DVDM; are de_S|gned to preserve only, not other invariants.
Korteweg-de Vries equation Besides, some other methods are proposed to conserve
the invariants of the KdV equation. For example, symplectic
methods [9], [10], momentum-preserving methods [11]-[13],

. INTRODUCTION and energy-preserving methods [14]-[16]. It is worthwhile

HE Korteweg-de Vries (KdV) equation to note that Gong [10] proposed several systematic meth-
I ou 9Bu ods to discretize general multi-symplectic formulations of
I +€u% -Hi@ =0, (1) the Hamiltonian partial differential equations (PDES). Yi

describes the evolution of the solitary wave. The parameté}g‘]’ Bona [12] and Yan [13] designed some momentum-

e, u represent real constants. To determine the solution Rjeserving schem(_as to solve the_KdV equation. More rece.”"
(1), we prescribe the following initial value and periodiéy’ researchers paid more attention to the energy-preserving
bOl,Jndary condition methods, for example, Celledoni proposed an average vector

field (AVF) method in [14], Brugnano [15] developed the

u(z,0) = uo(x), ula,t) =u(b,t). Hamiltonian boundary value method (HBVM) and Furihata
16] proposed the discrete variational derivative method
E)VDM) to solve the general conservative or dissipative
DEs. The DVDM methods has been extended in various
aspects. For more details see [17]-[20]. Inspired by the

The KdV equation is a completely integrable equation, it h
infinite number of conserved properties [1], the first thre
conservation laws are

M(t) = /.bud:z: compact DVDM in [19], we designed two linearly energy-
a ’ preserving schemes to solve the KdV equation.
1 /b ) The rest of this paper is organized as follows. In Sec?ion
K(t) = 5/@ u” dz, we briefly introduce the basic knowledge of the compact d-

b ifference method, and derive the proposed energy-preserving
H(t) = / [_fu3 + ﬁui dz, schemes. In SectioB, the uniqueness and solvability of the
a 6 2 proposed schemes are analyzed. In Sectjome analyze the
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A. Compact finite difference method

Firstly, we briefly describe the framework of compact fivi = fir _ af'- + Qf(B) h4f(5)
difference method. For more details refer to see [19], [21], 2h
[22]_and refere_n(_:es therein. _ o + 1 ath(7) + O(h7)
Given a sufficiently smooth functiori(z), which is ap- 5040
proximated byf; (¢ = 0,1,...N — 1) on the uniform  Adding up both sides of the above equalities, we have
mesh with the mesh size = (b — a)/N. In the following, fivo— fiio fis1 — fic1 ,
unless otherwise specified, the discrete periodic boundary b= ih — +a*t oh — = (a+D) [
conditions f;+y = f; will be supposed and the values for a+22b a -+ 24
the nodes outside= 0, 1,... N will be periodically defined. + (Gf)thj@ + (1720)h4f;5) (6)
Typical compact finite difference operator for/ox is (a + 25)
defined in the following form + o0 £ o).
f; +a (fj/-+1 + f]l‘—l) +5 (fjlurz + fj/-_z) Substitutinga = 1, 3=0,a= %, b= 1, andc=0into
=i fia—Tie fies—fios (3 (5) and (6), we have
=a +b +c , 4
whereq, 3, a, b, andc are real constants. g3/t tA vl gl gt 3677
Equality (3) can also be expressed in the following matrix h® 7 7
form , + 1080f +O(h )
Tf =Sf, (@)
five=Fi—2 - firn = fia _ 2 £(3)
where / o / s T/ 9h f + 3 h J;
f:(flaf27"'afN)T7 f :(f15f27"'7fN)T5 +L 4f th(7)+O(h7)
T*C(l o, B3,0,--,0,8,q), 36h 7560
Subtracting the above two equations, we have
S = EC(O 6a, 3b,2¢,0,---,0,—2¢, —3b, —6a), lf',_l . f', . lf'.H B L(fjﬂ )
whereinT and S are respectivelyN x N symmetric and 3 J7 73 36h
anti-symmetric matrix. — —(fir1 — fi f(7) 6
In particular, when = 3 = 0 a=3b=-2%c=% 9h( jH_ 1) = - 1260
ada=31,8=0,a=%b=4¢=0, the sixth order (| e. Thus, the result is hold. n

O(h®)) standard central finite difference operator (C6) and a Similarly, the compact difference operator fét /92
three point compact difference operator (T6) are respectivélgfined in the following form

obtained ford/dz. f” + a(fj”ﬂ + fJ” )+ g(fjf;Q + fjf/_Q)
Proposition 11.1. Let h >0, f(z) € C"[a,b] and a = 3, fj+1 —2f; + fi=1 ij+2 —2f;i + fj—2
B=0,a=1 b=1andc=0, the truncation error of the h2 1h2 (7)

fth Sits =2/ + fi-s

+c ) ;
Proof: By resorting to the Taylor formula, expanding oh

the left side of (3) at node = x;, j = 0,1,..., N, we have Wherea, B, @, b and¢ are real constants.
, , Denoted = —72d + 18b + 8¢, equality (7) can also be

compact dlfference operator (T6) 51260

fi=1 expressed in the following matrix form
afi_, :af ahf ta ’;f“") %Bf;4)+a§f;5) Tif" =8,
f(s) f(7) f(s) 10 (h7), Wheri . s L
1207 T %7207 5040 f=Ufo oINS f = fa oINS
N j+1—04f +ahf +ah2f(3) ah_3f(4) ah_4f(5) T1=C(1,a,ﬁ,0,;.. 7O,BA,Oz), -
2 ! 247 Sy = (1/36K2)C(d, 36@, 9b, 42,0, - - - , 0, 4%, 9b, 36a).
120f(6) 720f(7) 5040f(7) +0(n7). wherein 7; and S; are respectivelyN x N symmetric

Adding up both sides of the above equalities, we get circulant matrix.

, / / ; In particular, in case ofi = § = 0,4 = 3, b = -3,
aj71+fj+afj+1 (20 + 1) f; + ah? ¥ c=Ltada=2,3=0a=125=2,2=0,thesixth
® ) ; (5) order (i.e.O(h®)) standard central finite dlfference operator
O‘ﬁfa‘ 360f +0(n7). (C6) and a three point compact difference operator (T6) are
Next, expanding the right side of (3) at node= z;, respectively obtained fop? /0.
J=0,1,..,N, we have Proposmon I.2. Leth >0, f(z) € C"[a,b], anda = &,
fijv2 — fi—2 o4 o, 160, (5 B=0,a=1271= 2 and ¢ = 0, the truncation error of
b=——"——==10 -+—bh 4+ —bh" [ 11’
Gth 1 1 20 Ji the compact dlfference operator (T6) -5 1980f(8)hG
7
5040bh6f( '+ O(h"). Proof: The proof is similar as the Proposition 11.1m
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B. Scheme 1 Proof:
Define a discrete local energy as follows My(U™L U™ — Mg(U™, U™ 1)
2At
sUm? 4 (s um)? N-1 e
Gd(Um+1, Um)l — H ( i ) + ( i ) _ 1 U1 +1_ U1 1A$
+1 ’ +1)2 ? (8) i=0 2A¢
I R (AR No1
6 2 ’ _ //5<1> 0Gq Az
0 - - — c 6(Um+1 Um Um— 1)
whered; ' denotes the first order compact difference opera- b
tor. = { =0.
Substituting (8) into the following equality, we have s(UmH, Um um=t)il,
N1 Similarly,
> [Gd(U’”“, U™); — Ga(U™, U’”_l)i] Az Hy(U™,U™) — Hy(U™, U™ 1)
123\]71 27
=y { — S ur Ut Ut = equurtt — !
= i i i i _ —ZA
=0 0 ZO oU; 2T v
Hor ()2 (rrm+1 m—1 Um“ U~ ' Iif_—l
- _(50 ) (U +U; ) Az n0Ga (1) 6Gq
2 2 = 50 Sy,
N1 Pt oU; ¢ U,
1 € m m m—+1 m—1 N
> -5 ) N g 020G,
Um+1 Um 1 i—0 ¢ (SUl (SUl
- ey e up | P, 0

where Z "f 2 Lo+ fi 4+ fno1+ 3 fx denotes the

trape20|dal rule. C. Scheme 2

Then, we obtain a discrete scheme%@’ asfollows, ) ] ) ]
Given the discrete local energy is defined as follows,

3Gy 3Gy T
5—Ui = 5(Um+1 um Umfl) Gd(U +17U2 )Z )
= —SumUm 4 Ut L U 9) __eumurt ) o
6 6 2
- 5(5.§1>) (Ut L umh. Ln (6FUM™IY? 4 (smu Y2 (12)
2 4
Substituting (9) into (2) and approximating:;); b " (5jU[”)2 + (52Uim)2
(Ui(m“) - Ui(m_l))/%, we have ) 4 ’

gm+l _pgm-1 1) (s 2 o . where 5+ and 6. respectively represents the forward and
————— =50, (5(: ) (Uim +U" ) backward compact difference operator.

27 2°°¢ (10) - . : .
- %6§1>U?(U§” LUmt Uim‘l), Substituting (12) into the following equality, we have
N—-1

wherei = 0,1,...,N. > [Gd(Um“, Um), = Ga(U™, U™ ) | Az
Scheme 1 can also be reformulated as the following matrix =0
form N-1 |: e (Uzm)2(UZm+1 o Uimfl)
(T3 + prSHU™ T = (T3 — prS*Uum™=* =0 6 2
11 € m m—+1 m—1 m+1 m—1
— gTTQSUm(UmH + U™+ U™, (11) - EUz (Uz U )(Ui U )

_ . . _ _ - Eaj(U;”“ + U (Ut — U
which satisfies the following conservative properties

Theorem 1.1. Let U™ be numerical solution of (10), and - 55( (Ut urT e (Ut = U | A
suppose it satisfies the periodic boundary conditions, then N1
the solution of the scheme 1 (10) satisfies _ [ EU_m(U_m + Ut U
6 K2 2 3 ?
m m =0
My (U™ U™) = My (U, U?), u g gt
Hy(U™ U™) = Hy(U',U°). = SO Ut U | A
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Then, we obtain a discrete scheme%@’ asfollows, IV. LINEAR STABILITY ANALYSIS

In this section, we will investigate the linear stability of
— fﬁ(g(@ (Uim+1 + Uim—l) the proposed schemes. To this end, we consider the following
2 (13) linear KdV equation

060Gy
(‘)‘(U'7n-ﬁ-17 U'7n7 Um—l)i
—Sum (U + Ut U,

6 Up + Up + Ugze = 0. (15)
Substituting (13) into (2), and approximating); by Theorem IV.1. The scheme 1 (10) and the scheme 2 (14) are
(U1~ Um™=1)/2At, we have unconditionally linearly stable when is sufficiently small.
) . Proof: Firstly, we can easily derive the following
Uim+ —-um- _ _Hsys) (U.m“ + U."‘*l) scheme for the equation (15),
27- 2 ¢ ¢ * * (14) Um+1 _ U:fﬂ-l 1
-~ Ssur (Ut U = U = (s (U + U,
6 (& K3 3 7 7 bl 27_ (& 7 2 (& K3 K3
(16)
wherei =0,1,...,N. wherei =0,1,..., N.
The above scheme can also be reformulated as the followT"e above scheme can be reformulated as the following
ing matrix form matrix form
Um+1 o Umfl " 3 Uerl + Umfl
(TTy + prSS)U™ = (TT) — pr 88, U™ — =S (1))
- ETTlsUm(Um+1 + U™ +U™), whereJ = T~1S. T is an invertible symmetric matrix and
3 S is a skew-symmetric matrix. R
which satisfies the following conservative properties, AssumeU™ be the exact solution of (16) arid™ be the
numerical solution of the following algorithm,
Theorem 11.2. Let U™ be the solution of (14), and suppose Sl Bt R
it satisfies the periodic boundary conditions, then the solution U -U — _JOom_J3 U +U . @18)

of the scheme 2 (14) satisfies 27 2

mtl rrm - Letp™ = gm—um. Subtracting (16) from (18), we obtain
Ma(U U™) = Ma(U, U7, the following perturbation error equation:
Hd(Um+15 Um) = Hd(Ulv UO) m+1 _ om—1 m—+1 + m—1

PP g a0
Proof: The proof is similar as the Theorem I.1. ® 27 2
Thus, we have

m+1)T m+1 m—l)T m—1

U S (p P (p p
. UNIQUENESS ANDSOLVABILITY m m— m e
Q = (" pm (" =
Theorem I1l.1. The Scheme 1 (10) and the Scheme 2 (14) = —27(p" ' +p™ 1T Jp"
are uniquely solvable. — 1 (pm T 4 pn )T J3 (oAl 4 pmeTy
Proof: The Scheme 1 (11) can be written as the follow- = —27(p"*! + p" )T J (™ + o(7?))
ing matrix form = —7(p™ T 4 pm O g (pm T 4 pm T 4 o(77)),
BU™ ! = b, wherep™ = (p™*! 4 p~1)/2, and the skew-symmetry of
J and .J?® were used in the last two equalities.
whereB = 7% + p75% 4+ £7T2Sdiag(U™) and Thus, whenr is sufficiently small,
m+I\T m+1 m—1\T m—1 —_
b= (T3 _ /”-53 _ %TTQSdiag(Um)) Um—l (P ) p (P ) P 07
€ oo, o i.e., the scheme 1 (10) is unconditionally linearly stable.
- gTT Sdiag(U™)U™. Similarly, we can also prove that the scheme 2 (14) is

unconditionally linearly stable. [ ]
In order to obtain the unique solvability of the Scheme 1,

we only need to prove that is invertible.
If Bx = 0, then

V. NUMERICAL EXPERIMENTS

In this section, some examples are presented to validate
the efficiency of the proposed schemes. To this end/the

_ Ty — T3
0 =x"Bx=x"TX, and L, error norms and convergence ordertat nr are

defined as
where the skew-symmetry @frS® + 772 Sdiag(U™) was N
used. Note thal™ is a symmetric positive definite, thus= Loo = max, Uk — ulg, n7)l;
0, i.e. Bx = 0 only has zero solution. Therefor®, is an N
invertible matrix. Thus, the Scheme 1 is uniquely solvable. Lo = Z(W/? — u(zy,nT)|>h)V?,
Similarly, we can also prove that the scheme 2 (14) is k=0
uniquely solvable. | order= log, (||Uzn — ul|/||Un — ul]).
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The discrete invariants dt= nr are defined as where ), = kix — kit + 21, O = kow — kit + 22, a =
N—1 (k/’l — kg)/(k’l + kg), ki1 =04, ks =0.6, x1 = 4, x9 = 15,
Mj = > U+ UM A, a = 1/5. In the following simulation, we choose = 1,
=0 pw=4.84x10"% 7=0.01 andh = 0.02.
N1 Figure 3 (a) presents the wave profile of the numerical
K} = 3 Z (UM?Ax, solution to the Scheme 2 from= 0 to ¢t = 6. As is shown
i=0 in the Figure 3 (b), the Scheme 2 can precisely conserve
Nl discrete mass and energy to machine precision. Besides, the
Hyj =" Ga(U", U™ ) Ax. wave profile at different times are displayed in Figures 4—6.
=0 Compared with the exact wave profile, we can clearly see
The relative errors of the invariants on theth time level that the wave shapes of the Scheme 1 and Scheme 2 are
are computed byI™ — 1°| /|I°|. captured very well. Specifically, a = 0, the taller wave
located at the left of the shorter one. However, because the
A. Single solitary wave taller wave is faster than the shorter one, it is noted that the

taller wave gradually catches up the shorter one at2.5

and occurs interaction at= 3. Then, att = 3.5, the taller

one pass through the shorter wave and continues to travel
u(z,t) = Asech? (k(z — ct — x0)), forward. The L, errors of the numerical solutions of the
proposed schemes are presented in Figure 7, which shows
that the numerical errors of the Scheme 1 and Scheme 2 are
much the same overe [0, 6].

In this example, we adopt = 1, . = 1 and choose the
following exact solution

where A = 3¢, k = \/¢/2u, andc denotes the speed of the
wave.
In this example, we mainly consider the following tests:
(i) The accuracy of the proposed schemes. Here, we
chooserg = 0, ¢ = 1, and —40 < x < 40. To check the C. Numerical Comparisons
accuracy of the proposed schemes in the spatial direction|n this example, we consider the following solitary wave,
we chose a relatively small time step= 1 x 1075, so )
that the error from the temporal direction can be negligible. u(x,0) = 3sech™(0.5z), = € [-25,25],

Table I'and Table Il respectively presents the spatial errqiger the periodic boundary conditions. Other discretizaion
and convergence rates of the proposed schemes. It is Clefﬁ%}‘ameters are set as= 1/3, 7 = 0.02 and T = 100.

seen that the Scheme 1 and Scheme 2 can reach sixth-of§gt the Scheme 1 and Scheme 2 are tested under standard
accuracy in space. Similarly, to measure the accuracy of igih-order central difference operator (i.e., C6) and the com-
proposed schemes in the temporal direction, the spatial SteB 4zt finite difference operator (i.e., T6). Since the proposed
chosen ag: = 1/16, and the temporal steps are respectively:nemes aré(72), we also consider applying the third-order
chosen as~ = 1/5,1/10,1/20,1/40. The results are listed jyon method and standard fourth-order Runge-Kutta method

in Table I, which indicates that the Scheme 1 is second-ord(ﬁK4) to the following ordinary differential equations
accuracy in time.

(ii) The conservative properties and long time behaviors du =-UxsMU - 6N, (19)
of the proposed schemes. To this end, sgt= 0, ¢ = 1, dt
and mesh sizes are respectively takerhas 0.1, 7 = 0.01, where U = (uo(t),u1(t),...,un(t))? is the semi-

and computation domain is chosen @as20,20]. Figure 1 discretization ofu(z,t), and the symbol+ denotes the

presents the numerical results of the Scheme 10w, 5].  element-wise product'” ands'? represent the C6 or T6
As is shown in the Figure 1(b), the Scheme 1 can preciselpproximation. Concretely, we will consider the following
conserve the discrete mass and energy, and approximatglyes,
conserve the discrete momentumito 8. Figure 2 presents

the numerical results of the Scheme 1 ovee [0,200].

It shows that the Scheme 1 still can precisely conserve the 6% 10 ‘
discrete mass and energy after long time computation. The  |[ scheme 1
results of the Scheme 2 are similar to the Scheme 1, for I h PN
e it it anaj 5[ —~—scheme p Scheme
simplicity, we do not list it again. -
S 47
B. Interaction of two solitary waves 2 7
In this example, we study the interaction of two solitary wg " scheme 2 |
waves with different amplitudes and traveling in the same —
direction. The KdV equation (1) has the following exact _
solution, 11
F(x,t
u(z,t) =12 (2, ), x €[0,4], te]o,6], 0 \ \
Gz, t) 0 2 4 6
F(x,t) = k2% + k2e% 4 2(ky — kyp)e®1+2 t
+ a?(k3e% + kief2)eli 02 Fig. 7: The Lo, errors of the proposed schemes with=
G(m,t) — (1 4 691 + 602 + a2691+02)2, 0.02, 7 =0.01.
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TABLE |: Spatial errors and convergence order of the Schemeth wi= 1 x 10~°, ¢ = 0.0001.

h Lo order Loo order CPU(s)
1/2 5.3421 x 1077 — 4.8510 x 1077 — 2.2776
1/4 6.6602 x 10~ 6.33 6.1133 x 1077 6.31 4.3368
1/8 9.7235 x 10711 6.09 9.3875 x 10711 6.03 15.7717
1/16 1.8866 x 10712 5.69 2.2990 x 1012 5.35 84.9269
TABLE II: Spatial errors and convergence order of the Schemeét2 w= 1 x 1075, ¢ = 0.0001.
h Lo order Lo order CPU(s)
1/2 1.1733 x 10~ 7 — 1.0492 x 10~ 7 — 2.4648
1/4 1.7919 x 1079 6.03 1.6189 x 1079 6.02 3.9936
1/8 2.7225 x 10~ 11 6.04 2.6163 x 10711 5.95 14.5081
1/16 4.2268 x 10713 6.01 4.1878 x 10713 5.97 74.7557
TABLE IlI: Temporal errors and convergence order of the Sché&méth h = 1/16, ¢t = 1.
T Lo order Lo order CPU(s)
1/5 4.6746 x 10~ 2 — 2.5880 x 102 — 20.3269
1/10 1.0778 x 1072 2.12 7.1528 x 1073 1.86 35.7398
1/20 2.7369 x 103 1.98 1.7664 x 10~3 2.02 62.0884
1/40 6.9162 x 10—* 1.98 4.4291 x 10—* 1.99 104.4271
-6
2]
3 -8
S
4 : /
3 £ _10 omentum
-
o
2 2 5 energy
1 5 12 mass
0 2
5 < -14
o
-16
0

Fig. 1: The numerical results of the Scheme 1 with= 0.1, 7 = 0.01. (&) numerical solution, (b) the relative errors of

invariants.

(@)

(b)

-4
[2]
T -6} momentum
o
3
g 8
©
§—10
@
@ ~12[
7 X
< -14
: ( mass C1EI0Y
_16 L L L
0 50 100 150 200
t
(a) (b)

Fig. 2: The numerical results of the Scheme 1 with= 0.1, 7 = 0.01. (&) numerical solution, (b) the relative errors of
invariants.

« Heun method applied to (19) with (C6) 88’ ands!”,  « RK4 method applied to (19) with (T6) a&"’ ands{”
« Heun method applied to (19) with (T6) 48’ ands!®,  « Scheme 1 (10) with (C6),
« RK4 method applied to (19) with (C6) @$" ands!?,  « Scheme 1 (10) with (T6),
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0
_SM
momentum
-10

relative error of invariants

(@) (b)
Fig. 3: The numerical results of the Scheme 2 with= 0.02, 7 = 0.01. (a) numerical solution, (b) the relative errors of
invariants.

? T T T T
0sl TT —=-scheme 0sl s —=-scheme
——scheme & hit ——-scheme &
Il
06!l exact 06!l T% exact

(b)
Fig. 4: The numerical solutions computed by the Scheme 1 and Scheme 2 with02, 7 = 0.01. (a)t = 0, (b) t = 2.5.

‘ ‘ 0.8 :
3 ——scheme £ ——scheme
0.6y 2 &|
[% ——scheme 3 ——scheme £
0.5 %% 0.67 $|
: R 1 exact ! exact
$ @ [
0.4 [ ® |
S ﬁé ® S5 0.4 § %
s 1 ;o
| $ |
? $ 4
¢ 0.2 ;f |
® g 2
0 1 2 3 4
X
(d)

Fig. 5: The numerical solutions computed by the Scheme 1 and Scheme 2 with02, 7 = 0.01. (c) ¢ = 3, (d) ¢t = 3.5.

o Scheme 2 (14) with (C6), Figure 8 presents the wave profiles of the numerical solu-
o Scheme 2 (14) with (T6), tions obtained by the aforementioned schemes. It is clearly
seen that the schemes Heun+(C6), Heun+(T6), RK4+(C6)
and RK4+(T6) are unstable, and the Scheme 1 and Scheme 2
The last four schemes are conservative according to th@vide satisfactory solutions. The evolutions of the discrete
aforementioned theory.
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——scheme |

0.8} L 0.8} +SCheme l
——scheme 2 ——scheme P2
0.6 7exaCt i 0.611 7exaCt
5 5
0.4} 0.4}
0.2 0.2
C0 3 4 C0 1 2 3 4
X
)

Fig. 6: The numerical solutions computed by the Scheme 1 and Scheme & with02, 7 = 0.01. ()¢t = 3.75, (f) t = 6.

energy produced by eight different methods are displayedntral finite difference method can not preserve the correct

in Figure 9, which shows that the discrete energy of thdispersion relation [19]. Thus, we conclude that the compact

schemes Heun+(C6), Heun+(T6), RK4+(C6) and RK4+(T6inite difference method is more accurate than the central

are rapidly diverge, which agree with the instability of thelifference operator.

solution. In contrast, the Scheme 1 and Scheme 2 can

precisely conserve the discrete energy. It indicates that the VI. CONCLUSIONS

Scheme 1 and Scheme 2 are superior than the Heun methogh this paper, we propose two linear energy-preserving

and RK4 method. Tables IV and V lists the discrete masghemes to solve the KdV equation. The methods are based

and energy at = 100. It is clearly seen that the proposecbn the discrete variational derivative method and the sixth-

methods can precisely conserve the discrete mass and enejgider compact finite difference method. The results show

while the Heun method and RK4 method only conserve thigat the proposed schemes can be used to simulate various

discrete mass. wave phenomena, and can exactly conserve the discrete mass
At last, we compare the aforementioned two spatial dignd energy. Besides, the numerical results also indicate that

cretization technique, i.e., (C6) and (T6), to see if thée energy-preserving compact finite difference schemes are

compact finite difference operator is more accurate than tdieperior to the nonconservative methods in terms of accuracy

central difference operator. To this end, we tadke= 1, and stability.
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TABLE IV: Maximum and minimum of global masa/; and their gap for each schemetat 100.

method Step sizes max My

min My | max My — min My|

Scheme 1(C6)
Scheme 1(T6)
Scheme 2(C6)
Scheme 2(T6)

h=1/3,At = 0.01
h=1/3,At =0.01
h=1/3,At =0.01
h=1/3,At =0.01

11.9999999997198
11.9999999997191
11.9999999997308
11.9999999997195

Heun (C6) h =1/3,At = 0.001 11.9999999997360
Heun (T6) h =1/3,At = 0.001 11.9999999997354
RK4(C6) h=1/3,At =0.01 11.9999999997360
RK4(T6) h =1/3,At = 0.001 11.9999999997355

9.4502 x 10~ 13
1.1369 x 1013
1.1754 x 10— 11
4.1744 x 10~13
1.6954 x 10— 11
1.6309 x 10~ 11
1.6872 x 1011
1.6412 x 10— 11

11.9999999997188
11.9999999997190
11.9999999997191
11.9999999997191
11.9999999997191
11.9999999997191
11.9999999997191
11.9999999997191

TABLE V: Maximum and minimum of global energ¥f; and their gap for each scheme fat 100.

method

Step sizes

max Hy

min Hy [max Hy — min Hy|

Scheme 1(C6)
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Scheme 2(T6)
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h=1/3,At = 0.02
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h =1/3,At = 0.001
h =1/3,At = 0.001
h=1/3,At = 0.01
h =1/3,At = 0.001
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