
A Keyphrase Graph-Based Method for Document
Similarity Measurement

ThanhThuong T. Huynh, TruongAn PhamNguyen, and Nhon V. Do

Abstract—Measuring similarity between texts is an essential
task in a large variety of applications. Contemporary ap-
proaches for this task rely heavily on statistical and lexical
information to represent text. They thus produce opaque and
hard to interpret models that could be hard to adapt in some
applications and hamper the user experience. To represent the
text document more interpretable, we propose a graph-based
semantic model that integrates more semantic information
among keyphrases as well as the structural information of the
text. The utilization of large knowledge bases (e.g. DBpedia,
Wikipedia) makes available fine-grained information about
concepts, entities, and their semantic relations, thus resulting
in a knowledge-rich interpretation. The relevance evaluation
between two documents can then be performed by calculating
the semantic similarity between two keyphrase graphs that
represent them. The final result comes close in performance
to the specialized black-box methods particularly tuned to this
task on a traditional dataset.

Index Terms—Document representation, Graph-based docu-
ment model, Keyphrase Extraction, Document similarity, Graph
matching

I. INTRODUCTION

DOcument representation is a fundamental task required
in the vast majority of natural language processing

systems, with applications as diverse as document retrieval,
clustering, classification, document similarity assessment,
and document summarization. The most challenging aspect
of this task is capturing as much of the text’s underlying
semantic information as possible in a computer-readable
model.

Early statistical approaches like Bag Of Words and Vector
Space Models characterize documents as (features, weights)
pairs, where the feature could be a single word or phrase
extracted from the body of the text. Furthermore, in order
to construct highly discriminative representations of various
texts, such features are also provided with weights or prob-
abilities. For the document similarity assessment problem,
the methods that use the document representation in the
manner mentioned above rely mostly on the exact match of
the keywords identified as appearing in the two documents;
they do not take into consideration diverse meanings of the
same word or synonyms.

Many studies have built on this principle by providing
more complicated and effective features that are based

Manuscript received July 26, 2021; revised March 17, 2022.
ThanhThuong T. Huynh is a PhD student and lecturer at the Faculty of

Computer Science, University of Information Technology - Ho Chi Minh
National University, Ho Chi Minh City, Vietnam (corresponding author to
provide phone: +84985-538-775; e-mail: thuonghtt@uit.edu.vn).

TruongAn PhamNguyen is a lecturer at the Faculty of Computer Science,
University of Information Technology - Ho Chi Minh National University,
Ho Chi Minh City, Vietnam (e-mail: truonganpn@uit.edu.vn).

Nhon V.Do is an Associate Professor and the Dean of Faculty of Engi-
neering ang Technology, Head of Department of Information Technology,
Hong Bang International University, Ho Chi Minh City, Vietnam (e-mail:
nhondv@hiu.vn).

on additional conceptual aspects rather than just simple
words. Lemmas, N-grams, Noun Phrases, phrases produced
by syntactic relations like subject-verb-object, and phrases
comprising non-contiguous words in texts are some well-
known complex feature models. The last two models are
also called (head, modifier, ... modifier) tuples. Unfortunately,
representations derived from spaces of such more meaningful
and semantically richer features are more difficult to generate
automatically and errors in feature extraction can hinder the
accuracy of tasks built on top of them. These techniques
are also regarded to be overly reliant on term frequency
and lack reflection on the semantic relationships between
terms. Furthermore, neither the structural nor the semantic
information included in the text has been studied in depth.
Another disadvantage is that the size of the feature set
or the number of dimensions of the vector will be quite
enormous, requiring a large amount of storage space as well
as consuming computational time.

Several Language models, such as Probabilistic Latent
Semantic Indexing [1], Latent Dirichlet Allocation [2], and
Word2Vec [3], provide another approach to dealing with syn-
onymy, polysemy, and dimensionality reduction by modeling
the document as a vector of hidden topics, instead of a vector
of terms. These models assume that several chunks of text
with comparable meanings (related to the same topic) are
more likely to appear in a similar context and should be
represented as vectors with close distance to each other.
Topic vectors are substantially shorter than vectors used
in traditional models. Topic models are also getting a lot
of attention recently because of how simple and efficient
they are in describing the features of a text. However, these
models do not take into consideration the actual information
structure of topics and the semantic links between topics
and hence may be limited in their ability to describe compli-
cated topics in complex domains. Furthermore, it is almost
impossible for humans to interpret and grasp the theme of
the text based on the existing representational structure. The
results can be analyzed mathematically, but have no meaning
that can be explained in natural language. Good formalisms
enable the reader to capture their meaning, comprehend the
system’s output, and understand how the system computed
those results.

For understanding the meaning of a text, semantic or
conceptual approaches attempt to incorporate some degree
of syntactic and semantic analysis. Semantic approaches
emerge as a result of significant advancements in information
extraction techniques and the growing use of large-scale
general knowledge bases. Several novel forms of vectors for
document representation are proposed that aim to capture the
semantics of the text in terms of concepts rather than words.
The vector’s ith component is a weight that indicates the
relevance of the knowledge source’s ith concept (or entity)

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

to the content of the given document. By including the
annotated entities into the vector space model, the document
representation can be improved, as shown in works [4], [5].

The document in [7] is represented as a set of concepts
extracted by an entity linking system, where the concepts
are referenced to entities with related descriptive information
documented in Wikipedia articles or to entities available in
the DBpedia knowledge base. Rather than focusing solely on
concepts or entities, and with the assistance of extra semantic
resources, the work in [8] treats entities and words equally,
i.e. takes into account both types of objects simultaneously.
Entity-based representations are bags of entities created from
entity annotations, whereas word-based representations are
typical bags of words. An entity linker scans the body of
text for mentions and connects each one to a relevant entity
in the knowledge base.

Many other studies, such as Explicit Semantic Analysis
(ESA) [6], leverage information acquired from Wikipedia
articles, categories, and wikilinks (or internal links) connect-
ing articles, thanks to which the meaning of the text can be
expressed as a vector of weighted Wikipedia concepts. The
concept name is the title of the relevant Wikipedia article.
The semantic relevance of two documents is determined by
the cosine of the angle formed by their representative vectors.
In comparison to latent topics of Language models, the
meaning of a document expressed by concepts (or entities)
of the knowledge base is more natural, and easier to interpret
and understand for humans. The length of such vectors,
however, is equal to the number of concepts described in
the knowledge base, which can be fairly large (possibly up
to several million concepts) and computationally expensive.
Most of these approaches are still based on ”flat” representa-
tions like the vector space model. Despite the fact that such
new models still inherit the simplicity and more knowledge-
rich than traditional models, they do not take advantage of
relational knowledge and network structure encoded within
wide-coverage knowledge bases.

Text modeling as graphs has gained popularity in recent
years in a variety of fields, including document retrieval,
document similarity, text classification, text clustering, text
summarization, and so on. Because of well-defined theory
foundations and good empirical performance, the graph-
based technique has been widely utilized in a variety of
text-centric tasks and a wide range of graph models have
been proposed. The types of vertices, types of edge rela-
tions, external semantic resources, methods for generating
structured representations of texts, and weighting schemes all
differ significantly between these models. The abundance of
available information and methodologies poses the challenge
of figuring out how to combine them all and fully exploit the
potential of graphs in document representation.

In [9], the text is modeled as a graph, with nodes rep-
resenting terms that appear in the text and directed edges
indicating co-occurrence relationships of terms. Each edge
is given weight so that the relationship’s strength can be
assessed. The position of terms that occur together in the
same unit determines the direction of edges. In comparison
to a numerical vector, this graph model can retain more
structural information in texts, however, the model ignores
the meanings of terms and their semantic relationships.

The approach in [10], [11] obtains detailed information

about entities and their semantic relationships from the DB-
pedia knowledge base, resulting in knowledge-rich document
models. Nodes in these models are concepts that are related
to the content of the document and referenced to entities in
DBpedia using existing entity linking tools such as SpotLight
or TagMe. Weighted edges connect related concepts based on
semantic relationships found in DBpedia. Both works apply
a graph model to the document similarity measurement task,
but the former also additional demonstrate the benefits of this
model through the task of entity ranking. Both works apply
a graph model to the document similarity measurement task,
but the former [10] also additional demonstrate the benefits
of this model through the task of entity ranking. In addition
to assigning weights to the edges in the same way as [10],
the method in [11] also uses a closeness centrality measure to
weight the concept nodes in order to reflect the relevance of
these concepts to aspects of the document. It should be noted
that these works have ignored the structural information
of the text, the relationships between the nodes are not
extracted from the given document itself, i.e. independent
of the document structure.

The main challenges in graph-based document modeling
are the requirement for automated techniques to generate text
representations and the computational time complexity for
the graph matching task. To capture the semantic similarity
between texts, finding the maximum common subgraph (sub-
graph isomorphism) between two corresponding graphs is a
huge challenge. Because graph matching could be performed
in non-polynomial time, this makes it impracticable for big
datasets.

Motivated by the previous work, this paper deals with
the task of document similarity evaluation, where a more
expressive way to represent the texts is proposed. Graph-
based semantic models for representing document content
take into account the incorporation of structural (syntactic)
information in text and semantic information derived from
various existing knowledge bases to improve task perfor-
mance. Domain-specific or generic knowledge has been
exploited to obtain fine-grained information about concepts
and their semantic relations, thereby resulting in knowledge-
rich document models.

This work’s main contribution can be summarized as
follows:
• Several keyphrase graph-based models are proposed to

facilitate a more thorough understanding of the doc-
ument’s content along with a method for generating
representations of the text. The task of graph-based
keyphrase extraction, which is inherently involved as a
crucial phase in the process of document representation
is also presented. The weighting of graph elements such
as keyphrase nodes and relational edges is influenced by
a variety of factors and it is an essential treatment that
contributes to reflecting how useful these components
are as document descriptor features.

• We describe a method for determining the fundamen-
tal semantic similarity between two keyphrases, which
can subsequently be utilized to construct other various
similarity measures between sophisticated structured
document representations.

• Finally, to estimate inter-document similarity, we intro-
duce a graph matching technique based on the pairwise

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

similarity between keyphrase vertices and relational
edges of the graphs.

We demonstrate how well a keyphrase graph-based doc-
ument representation model is designed to help with esti-
mating the degree of semantic similarity between two docu-
ments. Figure I provides an overview of our entire approach.
Given two input texts, we first construct labeled keyphrase
graphs with fully weighted nodes and edges (techniques de-
tailed in section II-C) and then compute semantic document
similarity based on the graph’s features. The problem of
document similarity measurement is formulated as a graph
matching problem (as in section III). Since a keyphrase graph
is made up of keyphrase nodes and relation edges, the graph
similarity is naturally calculated by the pairwise similarity
between the keyphrases and between the relationships. This
approach not only outperforms baseline document similarity
assessment methods, but it also competes with state-of-
the-art methodologies for this problem, according to our
experiments as in section IV. In addition, our keyphrase
graph-based document models, as well as the graph con-
struction techniques and, in particular those for estimating
keyphrase similarity and graph matching, can be integrated
as fundamental components in various document retrieval
frameworks.

II. DOCUMENT REPRESENTATION BASED ON
KEYPHRASE GRAPHS

One of the focuses of the work is text representation, with
the goal of transforming text documents into a structured
format that computer programs may use to process the text’s
primary content. The problem is to find a suitable document
representation capable of representing semantic information
among keyphrases as well as the structural information of
the text. Representing documents in a semantic approach
requires going through a complex processing process in
text semantic analysis. The first is the document analysis
phase to extract basic information units from the document
and represent the document by those information units.
Information units can be words, or more complex phrases,
concepts, and document content can be represented by a
simple structure such as a set of words(or phrases) with
weights or a more semantically rich form of a graph.

Graph-based approaches were chosen for the following
main reasons: (i) they are universal in nature and can be
utilized with any graph-like knowledge resource, whatever
its specific vocabulary; (ii) they have demonstrated to be
effective for language comprehension tasks. Understanding
the content of a document requires an understanding of
the key concepts and entities in the document, as well as
how they relate to each other, and most of all, a graph
is a mathematical structure capable of effectively modeling
relationships along with important structural information. In
recent years, the graph-based text representation model has
been increasingly noticed and used individually in differ-
ent problems of text mining fields such as Clustering and
Classification, Information Extraction and Retrieval, Text
Summarization, Topic Detection. The results of applying the
graph models on English documents show that this kind
of model has a lot of potential because it takes advantage
of important information about the structure and semantic

relationships that are not considered in the traditional models.
Many graph models have been proposed such as seman-
tic networks, Concept Graphs - CGs, improved CGs, Star
Graphs, Frequency Graphs, Distance Graphs, Co-occurrence
Graphs, etc. evaluated as having a lot of potential for use,
having a clear and strong theoretical background and good
experimental performance.

Each discipline builds these models in different ways
due to different research objectives and means of use.
Representation models and techniques may vary in: vertex
types, relational edge types, semantic resources used, ways
to create structured representations of text, weighting scheme
for vertices and edges of the graph, as well as how to solve
subproblems from extracting features as vertices, determining
relationships between features, graph matching, and ranking
result. The richness and diversity of existing information
sources, techniques, and models present a new challenge
in the research community: analyzing the applicability of
existing models and techniques, thereby finding ways to
apply, coordinate, improve and develop in order to exploit the
full application potential of the graph approach and enhance
the efficiency of solving the problems posed.

Our method is based on descriptive information encoded
within the backend knowledge base. Using DBpedia as
an underlying knowledge base, we describe a technique
for generating structured representations of textual content,
similar to [10], [11].

A. Labeled Keyphrase Graph

A Labeled Keyphrase Graph is a directed, finite, multi-
graph. The term ”Multigraph” refers to the fact that a pair
of nodes can be connected by several edges. Each node is
a keyphrase, a significant, topical phrase chosen from the
document’s body. Multiple different directed edges can link a
pair of keyphrase nodes. Keyphrases offer a concise overview
of the content, and may thus be utilized as features in further
processing.

The meaning of a document is the result of a reader’s
interpretation and understanding. This task requires far more
information than the exact data included in such a document.
In other words, the document structure alone cannot give
sufficient information to comprehend the text’s content. It
is necessary to give the text an additional informative di-
mension, thereby allowing us to grasp the key concepts or
entities mentioned in a document under consideration. As a
result, each keyphrase node should be attached with labels to
indicate that it may refer to well-defined concepts or unique
entities contained in the knowledge base.

We choose DBpedia in this study because it has a substan-
tial quantity of machine-readable knowledge, such as entities,
classes, and fine-grained explicit semantic relationships at
both the ontology and instance levels. Such a method,
however, may be used to any other lexical or ontological
resource, as long as it can be seen as a graph containing
disambiguated entities or concepts and explicit semantic
relationships. A labeled keyphrase graph is built on top of
a DBpedia vocabulary and is subject to such vocabulary’s
specific constraints. We first provide a formal definition for
a DBpedia vocabulary.

Definition 1. (DBpedia vocabulary) [12]

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

Fig. 1. Document similarity measurement workflow

A DBpedia vocabulary is a triple (TO,TR,RCC)satisfying
the following conditions:

• TO and TR are finite, disjoint sets.
• TO = TC ∪ TE is the full set of DBpedia’s concepts

TC(also called classes) and entities TE .
• TR is the set of relation names (called relation symbols)

found in DBpedia.
• RCC ⊆ TO × TR × TO is the set of semantic relations

between concepts and/or entities found in DBpedia.

The two sets TO and TR are said to be discrete because
they must have no common element. TO = TC ∪ TE , where
TC is the full set of concepts included in The DBpedia
ontology. The DBpedia ontology is a shallow cross-domain
ontology developed as a result of a successful crowd-
sourcing effort. There are currently 768 classes in ontology,
which constitute a subsumption hierarchy and are defined
by 3000 distinct attributes. Each concept c ∈ TC has a
unique URI in the form http://dbpedia.org/ontology/Name.
TE is the set of DBpedia’s entities. The DBpedia data
set describes 6.0 million entities classified in a consistent
ontology, including several classes such as person, place,
work, music album, film, video game, organization, species,
disease, other. Entities are given URIs that follow the pattern
http://dbpedia.org/resource/Name, where Name is derived
from the URL of the source Wikipedia article, which takes
the form http://en.wikipedia.org/wiki/Name.

The DBpedia vocabulary may be regarded as a directed
edge-labeled graph, with nodes representing entities or con-
cepts and edges reflecting explicit semantic relationships
between them; equivalently, TO is a set of nodes, TR is a
set of edge labels, and RCC ⊆ TO×TR×TO is a set of edges.

Understanding the content of a text entails not just identi-
fying the significant keyphrases that appear in the document,
but also determining the semantic links between them. As a
result, modeling these relationships is required and a graph
is a suitable tool for this task. Then, each edge reflects the
relationship between the two keyphrases and is also labeled
with the name of the relation.

The weighted keyphrase graph enables the depiction of
semantic and structural links between keyphrases as well as
the measurement of such keyphrase’s importance in addi-
tion to the relationship strength which is unachievable with
poor representative, traditional representation models. Each
keyphrase in a given document can be assigned a weight,
which represents an assessment of how useful it is as a
document descriptor. We may wish to label each edge of
a graph with a number that measures an important aspect
of the edge. Similarly, each relation edge is also weighted
(typically but not always statistical) that indicates the degree
of membership or relevance between two corresponding
keyphrases.

Definition 2. (Labeled Keyphrase Graph) [12]

Given a document d, a labeled keyphrase graph, which
represents the document d (denoted as labdocKG(d)), de-
fined over a DBpedia vocabulary O = (TO,TR,RCC), is a
tuple G = (V,E,φ , lV , lE ,wV ,wE) satisfying the following
conditions:

• (V,E,φ) is a finite, directed multigraph called the un-
derlying graph of G, denoted graph(G). V is the non-
empty set of keyphrases mentioned within the docu-
ment, called keyphrase node set. E is a relation edge set.

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

φ : E→{(x,y)|(x,y) ∈V 2,x 6= y} an incidence function
mapping every edge to an ordered pair of distinct nodes.
The edge represents a semantic (conceptual) or syntactic
relationship between its two adjacent nodes.
The two keyphrase nodes k1,k2 ∈ V are connected if
there exists a relationship r ∈ TR such that (k1,r,k2) ∈
RCC. In addition to semantic relationships, the two nodes
can also be connected if there exist some forms of syn-
tactic relationship between them such as co-occurrence
or grammatical relationships.

• lV : V →℘(TO) and lE : E → TR ∪TS are two labeling
functions of the nodes and edges of graph(G). Each
node can be assigned by multiple labels and is therefore
called a multi-label node. Every edge e ∈ E is labeled
with a relation name lE(e)∈ TR∪TS. TS is a set of names
of syntactic relations used for labeling edges such as
co-occurrence relation or other grammatical relations.
℘(TO) is the power set of set TO.

• wV : V → [0,1] and wE : E → [0,1] are two mappings
which describe the weighting of the nodes and edges of
graph(G). Nodes and edges are thus assigned weights
so as to capture their different levels of specificity.

In several disciplines, graphs are widely employed to
encode structural information, and graph matching is a chal-
lenging task. Subgraph matching, also known as subgraph
isomorphism, is the issue of matching a graph to a portion of
another graph. As a result, we are also attentive to subgraphs
of a labeled keyphrase graph that are labeled keyphrase
graphs themselves.

Definition 3. (Sub labeled keyphrase graph)
Let G = (V,E,φ , lV , lE ,wV ,wE) be a labeled keyphrase

graph. A sub labeled keyphrase graph (sublabKG) of G is
a labeled keyphrase graph G′ = (V ′,E ′,φ ′, lV ′ , lE ′ ,w′V ,w

′
E)

(also denoted as G′ ≤ G) such that: V ′ ⊆ V ; E ′ ⊆ E;
φ ′, l′V , l

′
E are the restrictions of φ , lV , lE to V ′, E ′ respectively;

φ ′(E ′)⊆V ′×V ′; and the weights of every nodes and edges
of G’ are equal to their counterparts in the super keyphrase
graph G.

B. Keyphrase extraction

This section describes an approach that aims to au-
tomatically select from the body of the given document
keyphrases which is relevant and cover the main content
of the document. The objective of keyphrase extraction is
to find a collection of excellent keyphrases that are both
relevant to the primary themes mentioned in the document
and cover those topics. This section discusses how WikiRank
[13] might be used in the automated keyphrase extraction
process. This extraction pipeline consists of three major
steps: candidate generation, entity linking, and graph-based
keyphrase selection. The first two steps have commonly been
utilized to address keyphrase extraction (KE) in previous KE
research.

The candidate generation task aims to generate a set of
potential candidate phrases that are likely to be selected
as document-specific keyphrases. Based on observations of
human-generated keyphrases from several standard datasets
for the keyphrase extraction task, keyphrases often take the
form of noun phrases that appear in the document and
consists of one or more noun combined with zero or more

adjectives. As a result, the default pattern for extracting
such noun phrases can be described as ”a list of nouns”
that may or may not be preceded by ”a list of adjectives”
with no additional Part-of-speech, using the following regular
expressions: < JJ|JJR|JJS > ∗<NN|NNS|NNP|NNPS >+.

An NLP toolkit chunker is employed to partially parse
sentences. A chunker would normally be initialized with the
desired pattern. It then extracts words in sentences, assigns
POS tags, and partially processes the sentence grammar to
find phrases that resemble the input pattern. An example of
this chunker in action can be seen in the paragraph below,
candidates that matched the pattern were highlighted:

”Mad cow disease has killed 10,000 cattle, restricted the
export market for Britain’s cattle industry and raised fears
about the safety of eating beef. The government insists that
the disease poses only a remote risk to human health, but
scientists still aren’t certain what causes the disease or how
it is transmitted.”

In the next step, if each noun phrase identified in the above
manner exists in the dictionary generated from Wikipedia
page titles, that noun phrase will be considered a candi-
date. The second step in the automatic keyphrase extraction
process is to associate the text with a backend knowledge
base to gain a better understanding of the objects mentioned
in the text. This task starts with identifying meaningful
substrings in a document, called mentions, and associating
each mention with related entities contained in the knowledge
base. We conducted several experiments before deciding
on an entity linking tool that would be appropriate for a
keyphrase extraction solution.

Some notable entity association systems considered during
testing are TagMe, DBpedia Spotlight, Illinois Wikifier,
WAT Api, SWAT API, etc. In comparison to the other
tools, our experimental findings demonstrate that integrating
TagMe in the solution generates the best keyphrase extraction
performance. Using TagMe, this phase produces a list of
entities (also known as concepts), each of which comprises
the mention and a link to a Wikipedia page that provides
additional information for the meaning of the mention.

Despite the fact that TagMe provides an enormous number
of annotations, it also offers various optional parameters to
aid in filtering the results. TagMe, in particular, assigns a
confidence score for each annotation it returns, keeping in
mind that this score does not represent the entity’s relevance
to the input text. Confidence scores can be used to filter
out annotations that fall below a certain threshold. On the
other hand, other tools may be more accurate but there
is no way to compensate for their insufficient number of
annotations. Our method depends on such annotations to
further screen candidates, it is more convenient to have
redundant annotations.

A concept-annotated keyphrase graph that represents the
document d generated using a list of candidates K extracted
by the candidate generation task and a list of concepts C
detected by the entity linking task. We then use this graph to
select potential candidates that have many connections with
important concepts in the document.

Definition 4. (Concept-annotated keyphrase graph)
A concept-annotated keyphrase graph , which represents

the document d (denoted as aKG(d)), is a tuple G =

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

(Vk,Vc,E,w) satisfying the following conditions:

• (Vk,Vc,E) is a finite,bipartite, undirected graph.
• Vk ⊆ K is a non-empty set of candidate nodes, Vc ⊆C

is a set of concept nodes
• The node set of the graph is V =Vk ∪Vc,Vk ∩Vc 6= /0
• E is a set of undirected edges. Nodes of the bipartite

graph are divided into two non-empty, disjoint sets Vk
and Vc , with two different kinds of nodes. Following
that, each edge connects one node from Vk and one node
from Vc.

• Given a candidate k ∈ Vk and a concept c ∈ Vc, there
exists an edge from vertex k to vertex c iff the concept
name or a mention of c can be found in k, in other
words, it is the substring contained in k. Mention of a
concept is a word or phrase that appears in the body of
the document and is annotated to that concept by the
entity linking task.

• w : Vk∪Vc→R+ is a weighting function for the graph’s
nodes. Such weights indicate an assessment of the
candidates’ and concepts’ effectiveness as a descriptor
of the document in terms of distinguishing it from other
documents in the collection.

The weight associate with the concept node c ∈Vc of the
graph reflects the importance of the concept within a given
document according to the frequency of mentions of c in the
whole document. However,c is a concept that is annotated
from the target knowledge base (e.g. Wikipedia), so there
are many cases that such concept name does not appear
fully in the document. Therefore, the weight of the concept
c is calculated through all the mentions of this concept, i.e.
through the sum of the times all the annotated mentions to
the same concept c occur in the given document.

For example, consider the document from DUC-2001
Dataset LA030889-0163 with the content as follows:

“Canadian Coach Charlie Francis, who claimed that sprinter

Ben Johnson’s urine sample at the Seoul Olympics was spiked

with a banned steroid, told an acquaintance in Seoul that

Johnson had worried that he might test positive. Lynda Huey,

who was at Seoul working for NBC-TV and as a physical

therapist for some American athletes, said Tuesday that Fran-

cis had bragged to her about Johnson’s preparations for a

showdown against U.S. sprinter Carl Lewis. Huey said she had

known Francis since 1980 when he and sprinter Angella Taylor

Issajenko stayed at her home in Los Angeles. Huey said she had

seen Francis on a practice track at Seoul and he had greeted

her as an old friend. ”Charlie came over to me and we started

talking,” Huey said. ”We were talking about how Ben might

do. Charlie said, ’Ben’s more afraid of failing the drug test

than he is of Carl Lewis.’ He was bragging.” Huey said she is

tired of hearing Francis, who has been in Toronto testifying at

a Canadian inquiry into drug use in sport, say that Johnson

was clean at the Olympics. Francis testified that Johnson was

not taking the steroid, stanozolol, before the Games and that a

mysterious person might have slipped something into Johnson’s

beverage in the drug-testing area before the sprinter gave his

urine specimen. Clean or not, Huey said, ”Francis must have

had some reason to think Ben may not pass the test.” JULIE

CART”.
A part of the concept-annotated keyphrase graph of the

above sample document is shown in Figure II-B (The rect-

Fig. 2. An excerpt of concept-annotated keyphrase graph corressponding
to above document

TABLE I
CONCEPTS ANNOTATED ALONG WITH THEIR WEIGHTS CORRESPONDING

TO FIGURE II-B

ID Concept name Frequency

1 Animal 6

2 bovine spongiform en-
cephalopathy

14

3 cattle 9

4 disease 16

5 sheep 5

angles are called candidate keyphrases, and the circles are
called annotated concepts) and concepts annotated along with
their weights are shown in Table I

Given the concept-annotated keyphrase graph G =
(Vk,Vc,E,w) that represents the document d and constructed
in the previous phase. Let n be the desired number of
keyphrases. We adjusted the technique provided in [13],
as shown in Algorithm 1, to choose a list of prioritized
keyphrases. The following are the primary steps involved in
the key selection procedure:

The first is to weigh each candidate based on the set
of concepts adjacent to that candidate in the graph. Let
Wp(p) be the weight of candidate p and defined as: Wp(p) =
∑c∈PC Wc(c), where PC = {c∈Vc| c adjacent to p}. The step
of weighting each candidate can be quite time-consuming,
especially for long documents that often have thousands of
candidates. We can reduce the processing cost by pruning the
initial graph before performing the calculation by applying
some heuristics as follows: The candidate whose t f × id f
weight is too low can be eliminated from the graph; We can
also remove candidates that are not even associated to any
concepts or ones are only connected to a single concept with
extremely low weight.

The next step is to identify the candidate with the highest
weight, add it to the result set, and delete the selected
keyphrase from the list of candidates. In the third step,
the weight of each c concept, (denoted by Wc(c)) adjacent
to the selected keyphrase is reduced by a ratio of α . In
particular, Wc(c) =Wc(c)/α , with α is a parameter that can
be chosen experimentally. The value of such rate determines

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

Algorithm 1 Generate a list of keyphrases for the text
Input :
G = (Vk,Vc,E,w) is the concept-annotated keyphrase graph
that represents the given document d, n: The number of
desired keyphrases
Output: A list of ranked keyphrases Q
Algorithm
Q ← /0
P ←Vk /* P is a list of candidates */
C ←Vc /* C is a list of concepts */
while |Q|< n do

/* Calculate the weight of candidate
based on the set of concepts
adjacent to that candidate in the
graph */

∀p ∈ P , Wp(p)← 0 /* Wp(p) is the weight of
candidate p */

foreach p ∈ P do
PC = {c ∈C| c adjacent to p}
Wp(p) = ∑c∈PC Wc(c)

end
q = FindMaxWeight(P) /* Find the candidate

in P with maximum weight Wp */
Q = Q∪{q} /* Add q to the result set */
P = P \ {q} /* Remove the selected

keyphrase from the set of
candidates */

/* Reduce the weight of concepts
adjacent to the selected keyphrase

*/
foreach c ∈C do

if c is adjacent to q then
Wc(c) = Wc(c)/α /* α is a parameter

that can be selected through
experiment */

end
end

end
return 0 /* There is no more keyphrase to

visit */

how much weight reduction of a concept after one of its
adjacent candidates is extracted. This step is necessary to
avoid extracting multiple candidates that are adjacent to
the same concept. A group of near-synonym candidates is
frequently associated with a concept, i.e. candidates which
refer to the same concept are more likely to be different
names for that concept or one candidate is a substring of the
other one, it is sufficient to extract only one of the candidates.
The process will be repeated until all n keyphrases have been
selected or until there are no more candidates to visit.

All the different parameters of the solution such as the
suitable entity linking tool, the threshold value of t f × id f
for pruning the candidates, and the ratio of concept weight
reduction after each selection in the aforementioned method
should all be taken into account and the optimal set of
parameters must be chosen for the best performance. A
few experiments are conducted on the DUC-2001 dataset
[15] which is widely used for the keyphrase extraction task.
As a result, TagMe is used to annotate the text and our

experiments with various values of the confidence score
on the dataset reveal that a score of 0.11 yields the best
keyphrase extraction results. There is no one-size-fits-all
value for the t f × id f cut-off threshold. Instead, we create
a lookup table based on the number of candidates, e.g.
documents with less than 150 keyphrases should be treated
with a threshold of 0.26, whereas documents with 150 to
200 candidates should be cut-off at 0.82. Finally, a one-third
reduction in weight (i.e., values of the parameter al pha= 1.5
) allows for improved task performance.

C. Graphical representation of documents

The main idea behind using a labeled key graph to repre-
sent a document is to associate keyphrases in the document
with entities or concepts in the knowledge base, and then to
explore the structural information in the text and semantic
information between key phrases in the knowledge base,
from which the document can be interpreted. The task of
creating a labeled keyphrase graph of the text will be carried
out in three primary steps: key classification, relation edge
detection, and weighting of the graph’s vertices and edges,
given a set of keyphrases identified in the previous stage.

Keyphrase node is a keyphrase that appears in the body of
the text and may correspond to concepts or entities defined
in the knowledge base. As a result, the nodes are divided
into two types: concepts and entities. A concept node can
refer to a class in DBpedia ontology, whereas an entity node
relates to a DBpedia entity. If any class in the DBpedia
ontology has a name that includes the given keyphrase, or if
the class name is a substring of the keyphrase, this keyphrase
is classified as a concept (class). The keyphrase ”power,”
for example, can denote the concept”Power Station,” which
has the URI http://dbpedia.org/ontology/PowerStation. The
DBpedia SPARQL endpoint may also be used to query the
whole DBpedia Ontology. On the other hand, using TagMe,
you can associate each keyphrase with a set of referent
Wikipedia entities. Through the ID of the Wikipedia page
obtained from TagMe, we can retrieve a unique correspond-
ing entity in DBpedia via dbo:wikiPageID and SPARQL
endpoint. For instance, the keyphrase “air defense radar
systems” contains two mentions, which are “air defense”
and ”radar”. Both of these mentions have been annotated on
two related Wikipedia pages with the IDs of such Wikipedia
pages being 146640 and 25676 respectively. Then, using
a simple query, we can derive the respective entity names
“Anti-aircraft warfare” and “Radar”. Then we can use a
simple query to get the corresponding entity name “Anti-
aircraft warfare” and “Radar”.

Consider the following two scenarios for determining if
two keyphrase nodes can be connected by edges:
• Two keyphrases can be connected by an edge if there

is a relation between them specified on the DBpedia
vocabulary, such edge obtained from DBpedia will be
labeled by the name of the relation.

• If two keyphrases appear together in the same sentence,
then several syntactic parsing techniques are applied to
determine the type of syntactic relationship between the
two keyphrases.
In case the possible syntactic relationship between the
two keyphrases cannot be identified, the co-occurrence

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

relationship is recorded. Edges constructed in this man-
ner are called edges obtained from the document struc-
ture.

There are many various sorts of relationships that can exist
between two keyphrase nodes and therefore many different
types of edges. However, we will first focus on only five
different sorts of connections in this research, including:

• The Hyponymy relationship between two concepts can
be derived from hierarchical structures in the DBpedia
ontology (denoted ”subClassOf”)

• The Relatedness relationship between two entities is
obtained based on the calculation of relevance according
to the formula Eq. 2 and returns a value greater than a
certain threshold (denoted ”relatedness entity”)

• The rdf:type property in DBpedia helps to detect the
type relationship between a concept and an entity (de-
noted by ”entity type concept”)

• There exists a synonym relationship between two
keyphrases when they are annotated to the same entity
by an entity linking tool (called ”alt name”)

• There will be a Co-occurrence Relationship between
two keyphrases that appear together in the same sen-
tence in the document.

We give the keyphrase nodes in the graph weights to repre-
sent how important they are to the document’s meaning. The
three weighting methods considered for use include closeness
centrality, t f × id f scheme, and standard PageRank.

With this in mind, the primary themes of the document
can be reflected by a group of semantically closely related
keyphrases. As a result, the closeness centrality of each
keyphrase node can inform us how significant the keyphrase
is in describing the core content of the document. To de-
termine the weight of each keyphrase node, we calculate
its closeness centrality over the graph, which is based on
the ’closeness property’ of such node to all other ones in
the graph. Closeness centrality is a method of discovering
nodes that can efficiently disseminate information throughout
a graph. The average farness (inverse distance) of a node to
all other nodes is measured by its closeness centrality. The
highest-scoring node has the shortest distances between itself
and all other nodes. A node’s importance in a graph increases
as it gets closer to the center. Therefore, based on finding
the shortest paths between all pairs of nodes, the algorithm
calculates the sum of each node’s shortest distances to all
other nodes. The resulting sum is then inverted to establish
the node’s closeness centrality score.

Furthermore, to evaluate the effectiveness of keyphrases
in distinguishing a document from other documents in the
same collection, there are several weighting methods assum-
ing that: the best descriptor of the document may include
keyphrases that appear frequently in the document but are
rarely present in other documents. Among those techniques,
the weighting scheme t f × id f is one of the most popular.

A node can be associated with a specific entity, which has
its own Wikipedia article, as a result, the node weight can
be calculated based on the PageRank of the corresponding
Wikipedia article. In other words, many entities are de-
scribed by Wikipedia articles and cross-references appearing
in Wikipedia pages allow a directed graph structure to be
established. This structure is perfectly suited when used to

calculate PageRank scores, which are considered important
weights for entities.

Weights are also assigned to directed edges in the graph
to reflect the strength of the relationship as well as capture
the degree of semantic relevance between keyphrases, which
in turn also contributes to the specification of the topics of
the document. For example, for a co-occurrence relationship,
the weight assigned to this relationship is usually calculated
based on the following assumption: Within a document, the
higher the frequency of co-occurrence of two keyphrases
in the same sentence, the stronger the connection between
them. However, the frequency of each individual keyphrase
occurring in the text might be quite low in some types of
documents, thus two keyphrases seldom appear together in
a sentence more than once. The weight allocated to an edge
may thus be defined as the frequency of co-occurrence in a
sentence of both of its adjacent nodes throughout the whole
collection of documents.

As another example, the weight of a semantic relation is
a measure of the semantic similarity between keyphrases
directly linked by this relation. The weight value can be
determined manually or through some experiment and be
subject to some additional constraints, such as Keyphrases
connected by a synonymy relationship will have a higher
degree of semantic similarity than keyphrases linked just by
a hierarchical relationship, and non-hierarchical relationships
are given less weight than hierarchical relationships.

After continuously completing the aforementioned pro-
cesses, an entire labeled keyphrase graph structure associated
with the provided text can be generated by employing se-
lected feature keyphrases, along with their labels, directed re-
lation edges between pairs of keyphrases, and the full weights
of vertices and edges. For example, consider the document
#20 from LP50 dataset with extracted keyphrases whose
referent concepts/entities and corresponding weightes are
shown in Table II: ”The United Nations was determined that
its showpiece environment summit - the biggest conference
the world has ever witnessed - should be staged in Africa.
The venue, however, could not be further removed from the
grim realities of life in the rest of Africa. Johannesburg’s
exclusive and formerly whites-only suburb of Sandton is
the wealthiest neighbourhood in the continent. Just a few
kilometres from Sandton begins the sprawling Alexandra
township, where nearly a million people live in squalor.
Organisers of the conference, which begins today, seem
determined that the two worlds should be kept as far apart
as possible. Tight security surrounds Sandton’s convention
centre and five-star hotels, where world leaders will debate
poverty, the environment and sustainable development while
enjoying lavish hospitality.”

III. GRAPH-BASED DOCUMENT SIMILARITY EVALUATION

A. Semantic similarity between two keyphrases
Documents are usually considered semantically close

when they are described by similar concepts or by closely
related concepts. As a result, one of the core tasks for the
challenge of document similarity measurement is assessing
the semantic similarity between two concepts. This work
takes advantage of DBpedia’s Knowledge Graph and adopts
a method from [16], termed wpath, to measure semantic sim-
ilarity between concepts. This method exploits the structural

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

five-star hotels

sandton

showpiece
environment

summit

sprawling
alexandra
township

united nations

wealthiest
neighbourhood

0.298

0.298

0.161

0.207

0.433

0.254

0.193

0.177

1.0

0.342

0.453

0.177

0.105

0.197

0.886

0.081

0.387

0.342

0.453

0.182

0.256

africa

environment

relatedness

occurrence

alt_name

Fig. 3. An excerpt of keyphrase graph representing the document #20

TABLE II
LIST OF KEYPHRASES OF THE DOCUMENT #20 AND THEIR REFERENT

CONCEPTS/ENTITIES

Keyphrase Concepts and entities Weights:
centrality,
tf, idf and
pagerank score

united nations http://dbpedia.org/resource/
United Nations

1.78, 1, 4.64,
0.10

showpiece
environment
summit

http://dbpedia.org/resource/
Natural environment

1.92, 1, 5.64,
0.16

africa http://dbpedia.org/resource/
Africa

1.78, 2, 4.06,
0.10

sandton http://dbpedia.org/resource/
Sandton

2.02, 3, 5.64,
0.19

sprawling
alexandra
township

http://dbpedia.org/resource/
Alexandra, Gauteng,
http://dbpedia.org/ontology/
Ship,
’http://dbpedia.org/ontology/
Town

1.75, 1, 5.64,
0.08

five-star hotels http://dbpedia.org/resource/
Hotel rating,
http://dbpedia.org/resource/
Hotel,
http://dbpedia.org/ontology/
Star,
http://dbpedia.org/ontology/
Hotel

1.78, 1, 5.64,
0.08

environment http://dbpedia.org/resource/
Natural environment

2.10, 2, 3.64,
0.23

wealthiest
neighbourhood

http://dbpedia.org/resource/
Wealth,
http://dbpedia.org/resource/
Neighbourhood

1.61, 1, 5.64,
0.05

information of the semantic network such as the shortest path
length between concepts in the graph, combined with the

leverage of the Information Content (IC) of the concept to
evaluate the strength of the path.

Definition 5. (Pairwise concept similarity) The semantic
similarity between two concepts ci and c j (also known
as Pairwise concept similarity) is defined over a DBpedia
vocabulary O = (TO,TR,RCC) by the following formula:

simwpath(ci,c j) =
1

1+ length(ci,c j)∗ kIC(clcs)
(1)

where length(ci,c j) signifies the length of the shortest
path between two concepts ci and c j in O. The shorter the
path between two concepts, the closer they are semantical.
General concepts are more likely to appear in a given context
and are therefore assumed to provide less information than
specialized concepts. A concept with a higher probability
of occurrence is less surprising and less informative. The
less likely a concept is to appear, the more surprising and
informative it is. As a result, the amount of information
conveyed by a concept in a particular context is referred to
as its information content.

Information Content of a concept c, denoted by IC(c),
measures the informativeness of a concept as the inverse
of its probability of occurrence and is therefore defined as
follows: IC(c) = − logProb(c) where Prob(c) = |entities(c)|

N ,
N is the total number of entities in O, and entities(c) is the
set of entities with the type c.

We shall, however, calculate the information content of
the most recent common ancestor of the two concepts rather
than the information content of each concept separately.
The symbol clcs represents the Least Common Subsumer
(LCS) of concepts ci and c j found in the given DBpedia
taxonomy of concepts (classes)(derived from O thanks to the
is-a relation), i.e. clcs is the most specific concept which is an

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

ancestor of both. When two concepts share a more specific
concept (i.e. higher the IC of their LCS), it indicates that
they share more information in common and therefore more
similar. The IC of the LCS indicates the amount of common
information content shared by the two concepts and has a
certain degree of contribution or influence to the semantic
similarity between the two concepts. The parameter k ∈ (0,1]
denotes the contribution of the LCS’s IC and experimenting
yielded the most efficient value of 0.8 for k.

Definition 6. (Pairwise entity similarity) Given two en-
tities ei and e j, let In(ei) and In(e j) indicate the two sets
of incoming links to each Wikipedia page of ei and e j
respectively, the semantic relatedness between two entities
ei and e j (also called pairwise entity similarity) is given as
follows:

rel(ei,e j) = 1− log(max(|In(ei)|,|In(e j)|))−log(|In(ei)∩In(e j)|)
log(|W |)−log(min(|In(ei)|,|In(e j)|)) (2)

where W is the set of all entities included in the knowledge
base.

The semantic relatedness of two entities in the knowledge
base reveals how semantically related they are to one another.
We utilize a basic metric based on the amount of shared
incoming links to quantify the pairwise entity similarity of
such entities, as shown in the above formula Eq 2, which is
similar in spirit to [10]. Shared incoming links are English
Wikipedia pages that link to both certain entities. The number
of incoming links indicates the prominence or popularity of
an article in Wikipedia in relation to an entity. The greater the
number of shared incoming links, the closer the two entities
are to sharing the same context. Therefore, the relevance of
the two entities will increase as more of their common links
are added.

According to the above-mentioned method of creating a
Labeled Keyphrase Graph that represents the content of a
document, each keyphrase node can be associated with a set
of concepts along with a set of entities derived from a back-
end knowledge base. As a result, assessing the similarity
between two related concept sets, as well as the similarity
between the two associated entity sets, can be used to deter-
mine the semantic similarity between two given keyphrases.

Definition 7. (Groupwise concept similarity)
Given two keyphrases k1 and k2, let C1 = {c11,c12, ...,c1p}

and C2 = {c21,c22, ...,c2q} be two sets of concepts that re-
ferred to k1 and k2, respectively. The ”conceptual” similarity
between two keyphrases k1 and k2 is determined through
the similarity of two groups of concepts associated with k1
and k2 (also known as Groupwise concept similarity), and is
calculated according to the following formula:

gcs(k1,k2) = max{simwpath(c1i,c2 j)|c1i ∈C1,c2 j ∈C2} (3)

By calculating the semantic similarity of each possible pair
of concepts (c1i,c2 j), derived from C1 and C2,i.e. c1i ∈ C1
and c2 j ∈C2, the similarity of the two groups of concepts is
determined by the maximum value of such pairwise concept
similarities. In the same way, the groupwise entity similarity
would be determined.

Definition 8. (Groupwise entity similarity)

Given two keyphrase k1 and k2, let E1 = {e11,e12, ...,e1p}
and E2 = {e21,e22, ...,e2q} are the set of entities that are
associated to k1 and k2, respectively. The ”entity” similarity
between two keyphrases k1 and k2 is defined as the simi-
larity of two groups of entities associated with those two
keyphrases (also known as Groupwise entity similarity) given
by the following formula:

gec(k1,k2) = max{rel(e1i,e2 j)|e1i ∈ E1,e2 j ∈ E2} (4)

The maximum value of the groupwise entity similarity
and the groupwise concept similarity results in the semantic
similarity between two keyphrases.

Definition 9. (Pairwise keyphrase similarity)
Given two keyphrases k1 and k2, the semantic similar-

ity between two keyphrases k1 and k2, (called Pairwise
keyphrase similarity) is defined as:

sim(k1,k2) = max{gcs(k1,k2),gec(k1,k2)} (5)

The algorithm 2 calculate this similarity value.

Algorithm 2 Calculate the semantic similarity between two
keyphrases
Input :
C1: The set of concepts linked to keyphrase K1
C2: The set of concepts linked to keyphrase K2
E1: The set of entities linked to keyphrase K1
E2: The set of entities linked to keyphrase K2
Output: The similarity value between K1 and K2
Algorithm sim← 0 foreach i ∈C1 do

foreach j ∈C2 do
s ← similarity(i, j) /* According to

formula 1 */
if s > sim then

sim← s
end

end
end
foreach i ∈ E1 do

foreach j ∈ E2 do
s ← similarity(i, j) /* According to

formula 2 */
if s > sim then

sim← s
end

end
end
return sim

B. Semantic similarity between two keyphrase graphs

A fundamental concept when using KG for the task of
document similarity measurement is homomorphism, also
known as projection. A KG projection is a mapping between
two keyphrase graphs that preserves the structure of KG.
More specifically, a projection from the keyphrase graph H to
the keyphrase graph G is built based on the mappings going
from the set of vertices and the set of edges of H to the set
of vertices and the set of edges of G where allowing maps
adjacent vertices in H to adjacent vertices in G. Following

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

that, several essential definitions for graph matching and
calculating the similarity of two graphs are required.

Definition 10. (KG projection) [12]
Let G = (VG,EG,φG, lVG , lEG ,wVG ,wEG) and

H = (VH ,EH ,φH , lVH , lEH ,wVH ,wEH) are two labeled
keyphrase graphs. A KG projection from G to H consists of
an ordered pair Π = (f ,h) of two mappings f : VG → VH ,
h : EG→ EH , that satisfy the following conditions:

• f and h are injective functions
• The projection preserves the relationships between

nodes of G, i.e. for all e ∈ EG, f (ad ji(e)) = ad ji(h(e)),
ad ji(e) denotes the ith node adjacent to edge e.

• ∀k ∈ VG,sim(k, f (k)) 6= 0, where sim(k, f (k)) ∈ [0,1] is
the semantic similarity between such two keyphrases

The definition of the (total) KG projection provides a
useful means through which we can assess the relevance
between two pieces of text modeled by the keyphrase graphs.
However, some texts can be considered related even if only
part of them are similar. In other words, if two documents
are represented by two keyphrase graphs and the two corre-
sponding graphs are still said to ”match” if there exist one
or more pieces of content in the first text that are related in
meaning (ie refer to the same topic or related topics) with
the content in the other text. Thus, graphs are said to have a
match when they contain the same vertices or vertices in one
graph are semantically related to some vertices in the other
graph. Therefore, it is more feasible to find a projection from
only part of one keyphrase graph to another keyphrase graph.
We call this a partial KG projection.

Definition 11. There is a partial KG projection from a
labeled keyphrase graph H to a labeled keyphrase graph G iff
there exists a KG projection from H’, a sub labeled keyphrase
graph of H (H’ ≤ H), to G.

Definition 12. (Maximum-projectionable subgraph)
Given G and H are two labeled keyphrase graphs. A

labeled keyphrase graph g is a maximum-projectionable
subgraph of G and H, denoted as mps(G, H), if the following
conditions are satisfied:

• g≤ G
• There exists a KG projection Π = (f ,h) from g to H,

which is also a partial KG projection from G to H.
• There is no other sub labeled keyphrase graph g’, which

satisfies two first conditions, such that |Vg′ |> |Vg|.

Definition 13. (Similarity between two keyphrase graphs)
Let G = (VG,EG,φG, lVG , lEG ,wVG ,wEG) and

H = (VH ,EH ,φH , lVH , lEH ,wVH ,wEH) are two labeled
keyphrase graphs representing documents. The semantic
similarity between graphs G and H is defined as follows:

Sim(G,H) = β ×

Vg

∑
k

sim(k, f (k))×wV (k, f (k))

max(|VG|,|VH |) +(1−β)×

Eg

∑
e

wE(e,h(e))

max(|EG|,|EH | (6)

where wV (k, f (k)) =
min(wVG (k),wVH (f (k))
max(wVG (k),wVH (f (k)) , wE(e,h(e)) =

min(wEG (e),wEH (h(e)))
max(wEG (e),wEH (h(e)) . The similarity between two relation

edges in two keyphrase graphs is simply defined as a ratio
between the weights of the lower-valued edge and the higher-
valued edge. This definition allows the similarity between
two edges to be calculated regardless of the difference in the
type of the relationship between the two edges.

The symbol g = mps(G,H) signifies the maximum-
projectionable subgraph of G and H. There may be numerous
KG projections from g to H, however, the attached projection
is the one with the maximum value of ∑

Vg
k sim(k, f (k))×

wV (k, f (k)). It is possible to have a total KG projection
between two documents’ graphs even if the two documents
are not completely related. The valuation of this projection
should not be the maximum. However, there may not be
any total projections between the two graphs even though
they are related, and then it is necessary to consider the
partial projections between them. The parameter β ∈ (0,1)
in formula 6 is a user-defined artificial coefficient that
indicates the percentage contribution of the vertex matching
in the comparison with the edge matching to the final graph
matching result.

Given two labeled keyphrase graphs G and H as inputs,
finding a maximum-projectionable subgraph is a computa-
tional task aimed at determining whether G contains some
projectionable subgraph such that there exists a KG projec-
tion from this subgraph to a corresponding subgraph of H and
then derive the largest of all the found compatible subgraphs
of G. Extracting a maximum-projectionable subgraph from
two graphs is a difficult task. The bruce force approach
is to first generate all possible partial KG projections for
the two given graphs, and then find the projection with the
largest subgraph of G. A major challenge has arisen since
computing in this way leads to an NP-complete problem.
To overcome this difficulty, we do not aim to find the
exact solution of the mps search problem as well as prove
the correctness of the solution mathematically. Instead, we
just leverage the heuristic approach to graph matching and
estimate the semantic similarity of the two graphs, as shown
in AlgorithmIII-B.

The process of evaluating the semantic similarity between
two graphs can be explained by the following main process-
ing steps:
• First, for each edge e in G, we find the best projection

from e to H. Let h(e) be an edge of H corresponding to e
under this projection, Sim(e,h(e)) reaches the maximum
value compared to other possible projections. Next, store
e and h(e) in the two result graphs which are subgraphs
of G and H respectively. The endpoints of the edge e
are added a queue Q.

• The second phase involves removing a vertex p from
the queue Q and performing vertex expansion, which
entails finding all vertices adjacent to p in G, as well
as all vertices adjacent to f (p) in H(attached to the
corresponding adjacent edges).
Given two sets of edges acquired after the aforemen-
tioned expansion stage as input, a Weighted Bipartite
Matching algorithm is used to select a set of pairs
of edges from the input that is determined to be the
best match in terms of semantic similarity between two
relation edges. Two vertices of each pair belong to two
different graphs. The ratio between the weights of the
lower-valued edge and the higher-valued edge is simply

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

Algorithm 3 Evaluate the semantic similarity between two
keyphrase graphs
input : Two keyphrase graph H and G
output: The the similarity between G and H

result ← 0
foreach edge E in G do

let E ′ be the most suitable projection of E in H
f (E)← E ′

h (E.source)← E ′.source
h (E.destination)← E ′.destination
Q ← Empty Queue
Q.enQueue(E.source)
Q.enQueue(E.destination)
while Q is not Empty do

kg← Q.deQueue()
kh← h (kg)
foreach e where e is adjacent edge to kg and f (e)
is null do

let e′ be the most suitable projection of e that is
connected to kh

f (e)← e′

h (e.destination)← e′.destination
Q.enQueue(e.destination)

end
end
result = max (result, Sim(G,H))

end
return result

calculated to determine how similar the two edges are.
The match between these two edge sets must ensure the
maximum number of matched edge pairs in the result
set. This necessitates us giving up the pair of edges with
the highest similarity in order to choose the pair with
the lower similarity and allow another pair of edges to
be included in the result. In terms of overall interest,
this trade-off can get the maximum score.
The endpoints of the edges of G from the previous step’s
set of pairs are further added to Q and the selected
edges are added to the result graphs. If Q is empty but
there are still vertices in G that are not visited, then
enqueue these vertices to Q in turn. This expansion will
be repeated until Q is empty and all vertices of G have
been considered. When no more expansion can be made,
the maximum projection has been found.

• In the third step, the formula Eq.6 is used to calcu-
late the semantic similarity between G and H. Be-
sides the similarity value, the output also has a re-
sult graph mps(G,H) which is a temporary maximum-
projectionable subgraph of G.

• Finally, the whole process is repeated, starting from the
first step with another edge of G, resulting in a different
value of semantic similarity between two graphs, which
is compared to the currently stored value, then the bigger
value is selected and the storage is updated for the next
comparison.

IV. EXPERIMENTS

Extensive experiments are required not only to evaluate
the efficacy of the proposed method but also to determine the

appropriate parameters for the underlying formulas and al-
gorithms. The keyphrase extraction task is the subject of our
first series of experiments. We can only begin experimenting
to compare our approach against other document similarity
measurement strategies when the best suitable keyphrase
extraction method has been established. We will delve into
the process of finding optimal parameters in the next section.
This section will report the evaluation of our approach on the
LP50 dataset.

A. Experiment settings
The LP50 dataset is a classic for the task of document

similarity measurement. There are 50 news articles in this
collection derived from the Australian Broadcasting Corpo-
ration (ABC), resulting in 1225 pairs of documents. These
texts range in length from 51 to 126 words and cover a broad
variety of topics. The similarity between two documents in
each of the 1225 pairs was graded on a scale of 1 to 5
by 8 to 12 different assessors. The ultimate score for each
pair was obtained by averaging all of the judged scores. The
agreement between system outputs and human assessments
is measured using the Pearson linear correlation coefficient.
This statistic provides a single percentage value that reflects
the overall performance across the entire dataset.

We have a significant number of published benchmark
results for comparison due to the sheer popularity of the
LP50 dataset in the research community. The following are
several notable state-of-the-art methods for this task: Con-
cepts Learned [19], Explicit Semantic Analysis (ESA) [6],
Concept graph similarity (ConceptGraphSim) [10], Context
Semantic Analysis (CSA) [18], and graph model (GED) [11].

Aside from the above methods that were tested individ-
ually with the LP50, some authors had also investigated
linear combinations of findings from different methods such
as WikiWalk and ESA [17], CSA combined with Latent
Semantic Analysis (LSA, and CSA combined with ESA. In-
spired by these studies, we performed both including testing
our method separately, and besides also trying some linear
combinations of the original method with reimplementation
of ESA. Our method’s best results were obtained, utilizing
the configuration in Table III.

Last but not least, we also test some of the latest Deep
learning Language models like Roberta [20] and MPNet [21].
These models represent the state-of-the-art Deep learning
approach to build robust language models that required
a large corpus but very little human annotation to train.
These pre-trained models can then be used to produce text
embedding for a variety of NLP tasks. Though none of these
models was trained on the document similarity measuring
task, they are comparable with our method’s long-term goal
- that is - to create a robust document representation that can
be easily adapted to use in document retrieval systems.

To adapt these two models for the inter-document similar-
ity problem, we use Transformers library to produce sentence
embedding vectors for each document in LP50 datasets. Then
compute the pairwise cosine similarity between those vectors
to determine document similarity.

B. Benchmark result and discussion
All results are shown in the Table IV. For a long time,

Concepts Learned has been the dominating champion, though

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

TABLE III
PARAMETERS AND THEIRS OPTIMAL VALUES

Parameter Value
Candidate pattern
(section II-B)

< JJ|JJR|JJS> ∗<NN|NNS|NNP|NNPS>+

Entity Linker (section
II-B)

TagMe with confident score 0.11

weight reduction rateα

(section II-B)
1.5

Keyphrase node
weight (section II-C)

closeness centrality+tf+idf*pagerank (gives the
best results compared to many other combina-
tions)

Types of edge (section
II-C)

Co-occurr, relatedness entity, subClass,
entity type concept, alt name

β in Equation 6 0.71

TABLE IV
RESULTS ON THE LP50 DATASET (PEARSON R CORRELATION

COEFFICIENT)

Method Pearson
CSA [18] 0.62

GED [11] 0.63

MPNet [21] 0.63

CSA + LSA [18] 0.65

Roberta [20] 0.65

ESA paper [6] 0.72

CSA + ESA [18] 0.72

ConceptGraphSim [10] 0.74

WikiWalk + ESA [17] 0.77

ConceptGraphSim + ESA [10] 0.78

KGM (+TagMe) 0.79

KGM (+LE-TagMe) 0.80

Concepts Learned [19] 0.80

KGM (+LE-TagMe) + ESA reimplement 0.81

its lead over is just approximately one or two percent and it
is likely overfitted for the LP50 dataset.

Deep transfer-learning approaches like Roberta and MP-
Net also achieved decent performance, beating CSA and
GED alone but were in turn beaten by some combination
of CSA, ESA, and other concept-based approaches.

Our method, named Keyphrase Graph Matching (abbre-
viated KGM), on the other hand, can achieve performance
comparable to the most advanced state-of-the-art methods,
as well as the same high level of task performance as the
leading method, ”Learned Concepts”.

Besides, by combining our approach with the ESA re-
implementation, we can get ahead of the ”Concepts Learned”
by a little percentage in performance, but that is too small
of an improvement to be noticeable, therefore we will not
invest too much effort in re-implementing other methods in
combination with our technique in a similar manner.

When looking more closely at the example where our
method scores the lowest, we notice a recurring pattern
where the human accessor would judge the similarity of two
documents very much differently from the computer. Given
two paragraphs in the LP50 dataset:

First paragraph:
Washington has sharply rebuked Russia over bombings of Geor-

gian villages, warning the raids violated Georgian sovereignty

and could worsen tensions between Moscow and Tbilisi. ”The

United States regrets the loss of life and deplores the violation of

Georgia’s sovereignty,” White House spokesman Ari Fleischer

said. Mr Fleischer said US Secretary of State Colin Powell had

delivered the same message to his Russian counterpart but that

the stern language did not reflect a sign of souring relations

between Moscow and Washington

Second paragraph:
A U.S-British air raid in southern Iraq left eight civilians

dead and nine wounded, the Iraqi military said Sunday. The

military told the official Iraqi News Agency that the warplanes

bombed areas in Basra province, 330 miles south of Baghdad.

The U.S. Central Command in Florida said coalition aircraft

used precision-guided weapons to strike two air defense radar

systems near Basra ”in response to recent Iraqi hostile acts

against coalition aircraft monitoring the Southern No-Fly Zone.

Our system would give these paragraphs a 1.6/5 similarity
score because they mention two different wars, in two
different time frames with completely different combatants.
However, both paragraphs have a similar topic of collateral
damage in a war between the world’s superpowers against
a smaller country. And this similar theme carries a much
larger score of 3.9 from human accessors of the LP50 dataset.
Now, not only that this underlying theme is hard to extract
by computer, but it is also very subjective to evaluate the
degree of similarity, as the next example will show:

First paragraph:
Hunan province remained on high alert last night as thunder-

storms threatened to exacerbate the flood crisis, now entering its

fifth day and with 108 already dead and hundreds of thousands

evacuated. On the flood frontline at Dongting Lake, the water

level peaked at just under 35m on Saturday night, then eased

about 3cm during the day under a hot sun, with temperatures

reaching 35C. But with the lake still brimming at dangerously

high levels, and spilling over the top of its banks in some places,

locals were fearful that a thunderstorm and high winds forecast

to hit the region last night would damage the dikes. About

1800km of dikes around the lake are all that stand between

10 million people in the surrounding farmland and disaster.

Second paragraph:
The river Elbe surged to an all-time record high Friday, flooding

more districts of the historic city of Dresden as authorities

scrambled to evacuate tens of thousands of residents in the

worst flooding to hit central Europe in memory. In the Czech

Republic, authorities were counting the cost of the massive

flooding as people returned to the homes and the Vlava river

receded, revealing the full extent of the damage to lives and

landmarks.

Our system is surely at the error when it gave these
examples a score of 1 out of 5. It over penalized the
difference in types of disaster (thunderstorm vs natural flood)
and location while failing to notice that the similar impact
of flooding caused by those natural events on human life
is a major talking point of both paragraphs. However, the
human assessors’ generosity in giving these two paragraphs
a whopping 4.6 similarity score is also a debatable decision.
Such a high score would indicate the two paragraphs were
discussing the same event, which they clearly did not.

These two examples served to illustrate both the difficult
and subjective nature of the document similarity evaluation
problem. Therefore, it is worth reverberating that our main

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

goal in this research is not revolutionizing the document sim-
ilarity measurement task. The major objective is to contribute
to the diversification of approaches to this problem so that
the novel proposed method is good enough for assessing
document similarity while remaining flexible enough to be
easily adaptable for a variety of other related tasks in the
field of document retrieval.

V. EFFECT OF PARAMETER SELECTION STRATEGIES

A. Parameters in the keyphrase extraction experiment
As we mentioned briefly in section II-B, the optimal

parameters for keyphrase extraction method spawn from
exploratory experiments on the DUC-2001 dataset [15]. This
dataset is among the first benchmark for a keyphrase extrac-
tion method with 308 news articles on 30 different topics
with an average length of 700 words per document. Each
document was manually labeled with at most 10 keyphrases
by two different annotators, resulting in 2488 keyphrases for
the entire corpus.

The system’s extraction result for each document can be
evaluated using the prototypical metrics: precision, recall,
and F-score. In our experiment, we use the average F-score
of 308 documents as the sole performance indicator for each
combination of parameters’ values. In the preceding sections,
we looked at the reasoning behind these parameters and how
they might affect overall performance.

We first start the experiment with a baseline configuration
for all the parameters. The best feasible value for each
parameter is then discovered by holding the other parameters
constant while testing with a wide range of alternative values
for the parameter under consideration. We keep the value that
brought the best F-score then repeat that process for the next
parameters.

The first to be examined was the keyphrase candidate
pattern. The keyphrase extracting process mainly uses pat-
terns of noun phrases which are mostly combinations of
adjectives and nouns. In addition, we also consider in-
corporating various types of words (parts of speech) to
form a variety of potential noun phrase patterns such as
nouns, verbs, adjectives, adverbs, conjunctions, and even
prepositions. Adjectives, in particular, are mentioned with all
three different degrees – positive degree, comparative degree,
superlative degree of adjectives, while verbs also include
present and past participle forms. The second parameter is
the choice of entity linking tool and the corresponding con-
fidence threshold. Since some tools might be more suitable
for certain domains and application contexts than others, it
is beneficial to experiment with different tools for not only
pure performance metrics but for consistency as well. The
third parameter is the t f × id f (term frequency and inverse
document frequency) cut-off value. One of the heuristics
employed to improve task performance is that candidates
with too low t f × id f -values can be eliminated before the
graph-based keyphrase selection phase starts operating. The
final parameter in algorithm 1 indicates ”how much should
we reduce the weight of concept after we extract one of its
adjacent keyphrase candidates”.

The final configuration will then be compared against
other State of the art keyphrase extraction methods. The
result shown in Table VI cemented the effectiveness of our
keyphrase extraction process.

TABLE V
PARAMETERS AND THEIRS TESTED VALUES IN THE KEYPHRASE

EXTRACTION TASK

Parameter Tested Values
Candidate
pattern

< JJ > ∗< NN.∗>, < NN.∗>< RB >< NN.∗>,
(< JJ >< NN.∗>)+,
< JJ > ∗< NN.∗><CC >? < NN.∗>,
<V BG >< NN.∗>+,
< NN.∗>< IN >< NN.∗>+,
<V BG >< NN.∗>+,
< NN.∗>< IN >? < NN.∗>,
< JJ >? <CD >< NN.∗>+,
< JJ >< NN.∗>< IN >< NN.∗><CC >< NN.∗>,
<V BN >< JJ >< NN.∗>+,
(< NN.∗>+)<V BG >,
< JJ > ∗< NN.∗>< IN ><V BG >< JJ >,
<CD >< NN.∗>+,
(< JJ > ∗< NN.∗>+< IN >)? < JJ > ∗< NN.∗>+,
(JJ|JJR|JJS)∗ (NN|NNS|NNP|NNPS)+,
(JJ|JJR|JJS|V BG|V BN)∗
(NN|NNS|NNP|NNPS|V BG)+

Entity Link-
ing System

SingleRank,
Topical PageRank,
WikiRank,
Our system (+ Spotlight),
Our system (+ TagMe with the different confident scores
in [0,1])

t f × id f
cut-off
threshold

(0,1]

Weight re-
duction rate
α

[1, 2]

TABLE VI
RESULTS OF KEYPHRASE EXTRACTION TASK ON THE DUC-2001

DATASET

Method F score

WikiRank paper [13] 27.53

WikiRank reimplement 20.93

Pattern(adj+noun) [14] 27.7

Chunk(+participle) [14] 27.9

Our system (+ Spotlight) 23.62

Our system (+ TagMe) 28.44

Of those parameters, the entity linker tool and the t f × id f
threshold value were the hardest to do experiments since we
have too many combinations to choose from. Instead, we
tried to find the best linker first and figure out the t f × id f
cut-off value later. To find a good linker, we compared their
raw entity taggers output with the golden dataset, treating all
entities/candidates as if they are keyphrases. This comparison
resulted in very low precision and hence low F-score so we
would focus more on recall instead. Our little experiment
shows that TagMe with a confidence of 0.11 provides the
best recall and F-score.

The t f × id f cut-off value was even more tricky to choose.
Since most entity taggers sort their output by the value
of t f × id f score. It may seem trivial to choose a cut-off
value that would result in a more manageable amount of
candidates. However, the scatter plot in Figure 4 clearly
shows a messy and chaotic relationship between the cut-off
value and the number of candidates extracted.

Each dot represents a single document in DUC2001, the
y-coordinate shows the best t f × id f threshold to extract
keyphrase on such document and the x-coordinate shows

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

Fig. 4. Optimal TF*IDF threshold for each document in DUC2001

the corresponding number of extracted candidates. Through
observation, we discover that it would work best to set
different cut-off values for documents based on the number of
candidates detected in those documents. For example, some
guideline specifically for our dataset is that documents with
less than 50 candidates may have the cut-off value of 0.26,
documents with between 100 and 150 candidates should have
the cut-off value of 0.24, etc...

With all those hard parameters chosen, we chose the last
parameter by repeating our experiment and changing this
parameter by a small variance in each step. We were able to
find a local optimum of F-score if the weight of the concept
is reduced by one and a half times after one of the candidate
vertices adjacent to it in the graph is extracted.

B. Parameters in the document similarity measurement ex-
periment

In the proposed solution of the document similarity
measurement task, there are many parameters that need
to be tested in order to choose the best set of param-
eters. Firstly, each document is modeled as a keyphrase
graph, where nodes can be connected to each other by
some of the five types of relationships such as alt name,
subClassOf, entity type concept, co-occurrence, and finally
relatedness entity. Therefore, it is necessary to determine
which sets of relations give the best performance. For
the relatedness entity relation, we also need to choose the
threshold value to conclude whether two keyphrase vertices
are related to each other. Moreover, each relationship type
should be assigned a weight that indicates the comparable
expressive power of the relationship in the same graph over
others. As discussed in section II-C, we investigated three
potential methods for assigning weights to the keyphrase
nodes in the keyphrase graph, namely t f × id f scheme,
closeness centrality, and standard PageRank. We tried several
simple combinations of the three weights. We tried also
several different values of the coefficient β in formula 6 for
measuring the semantic similarity between graphs.

Since there are so many different parameter values to
choose from, if we are to test every combination of the
possible values for these parameters, the number of test cases

TABLE VII
PARAMETERS AND THEIRS TESTED VALUES IN THE DOCUMENT

SIMILARITY MEASUREMENT TASK

Order Parameter Tested Values Default value
1 The threshold

value of the
relatedness
between two
keyphrase
nodes

(0,1] None, this parame-
ter is the first to get
tuned

2 Types of edge All subsets
of Co-occurr,
relatedness entity,
subClass,
entity type concept,
alt name

Use all five types
of edge

3 Keyphrase
node weight

All combinations with
two operators * and
+ of weights such as
closeness centrality, tf.
idf, pagerank

All node get the
weight of value 1
(maximum weight)

4 Relation edge
weight

(0,1] assigned
value for edge of
types: subClass,
entity type concept
and alt name

alt name had
weight 1,
subClass and
entity type concept
weight 0.8

5 β in Equation
6

[0,1] 1

Fig. 5. Pearson score for different related threshold values

is inconceivably large. Therefore, we tried to find locally
optimized results by tuning one parameter at a time. We
start with arbitrary chosen defaults for all parameters given
in Table VII. Then we tried out every possible value for
one parameter while keeping the rest rigid, searching for the
value that would bring the best Pearson score. After that, we
would lock this parameter in the new-founded best value and
repeat the experiments for the next parameter and so forth.

The first parameter to be tuned is the keyphrase relatedness
threshold value, since this parameter affects the number of
edges and the size of the keyphrase graph, we preferred to
deal with it sooner rather than later. Starting at the threshold
of 0 and an increment step of 0.01, we found the Pearson
score peaked at a threshold of 0.52 as shown in Figure 5.

The next parameter would be the types of edges to be
included in the graph since this parameter will finalize the
graph size. There were 5 types of edge, which meant 31
combinations of types of edge to consider, all presented
in Figure 6. One can notice that this parameter makes the
Pearson score fluctuate in a quite wide margin. Also, it’s
to our surprise that the best score was achieved using only

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

Fig. 6. Pearson score for different combinations of types of edge

Fig. 7. Pearson score for different formulas of keyphrase node weighting

two types of edge, none of which come from the knowledge
base, but rather from the structural information within the
document.

Since the best types of edge retain two types of edge, both
of which got their own weighting formula, we do not need
to tune the weighting strategies for types of edge that we
will not use. The next parameter will be a weight combining
strategy for each keyphrase node. There were 4 kinds of
weight for nodes, and thus there were quite a lot of formulas
using different combinations of 4 variables to choose from.
However, we did not feel the need to exhaustively test every
possible formula under the sky, as one can see in Figure 7: Of
all the 41 formulas we did try out, the fluctuation of the final
Pearson score is within 0.03, a too-small margin to matter.
Even our default choice of no weighting at all (treating all
nodes equally with the weight of 1) proved to be more than
good enough. Thus we settle upon the best value out of the
41 and move on to the final parameter.

The β parameter in control whether node similarity or
edge similarity will have more influence in the similarity
measurement between two graphs. We assumed that the
node will be much more influential, which turned out to be
true but not to a degree we anticipated. Ranging β from
1 (completely disregarded edge similarity) to 0.3 yields a
near-identical Pearson score (within 0.05 of each other). The
score, however, drops sharply with β lower than 0.3, to the
point of unusable. Therefore we chose the locally best β of
0.71 and thus found the optimized parameter shown in Table
III.

VI. CONCLUSION

We presented graph-based document models and a
knowledge-rich strategy for producing expressive interpre-

Fig. 8. Pearson score for different values of β

tations of texts in this work. By extracting representative
keyphrases from texts and inferring their explicit semantic
associations from the enormous volumes of structured human
knowledge stored in existing knowledge bases, document
graphs can be constructed. Keyphrases are linked to concepts,
disambiguated entities in DBpedia and Wikipedia to facilitate
the understanding of semantics. Each node and edge of
the graph are assigned weights so that the usefulness of
keyphrases and the strength of relationships may be assessed.

DBPedia is a large-scale knowledge base that covers a
wide range of disciplines and includes numerous detailed,
explicit semantic relations between entities and concepts. Our
method, however, has just used basic relations like subClas-
sOf, relatedness entity, entity type concept, and alt name.
We intend to examine a combination of several types of
connections between keyphrases in future work.

The paper also presented the idea of applying WikiRank
to aid with keyphrase extraction. Several candidates who
are less likely to be keyphrases can be eliminated with the
help of Wikipedia and TagMe, thus reducing noise in the
findings. However, the extraction of both a keyphrase and its
abbreviation is regarded as an error. Longer, cross-concept
candidates appeared to be preferred by the key extraction
algorithm, which is a significant issue in some datasets. It
might help by adjusting the weights that each candidate
contributes to its adjacent concepts, especially when it is
linked to multiple concepts. Furthermore, due to the nature
of Wikipedia, this method is likely to perform well in the
general domain and on news articles, but for the domain-
specific corpus, such as a repository of scientific articles
belonging to a certain knowledge domain, we will need to
exploit other knowledge bases.

The wide range of available weighting schemes and tech-
niques also posed a challenge in terms of figuring out how
to combine them and fully exploit the potential of keyphrase
graphs for better performance. We believe that by integrating
more features and learning their weights, performance can be
enhanced even more, but we will leave that for future work.

By extracting the maximum-projectionable subgraph be-
tween two related keyphrase graphs, a novel graph matching
technique was provided, which can then be used to evaluate
the semantic distance between two documents. This tech-
nique can also be applied to a variety of textual tasks, includ-

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

ing document retrieval, document classification, and entity
ranking, in addition to measuring document similarity. The
algorithms for calculating the similarity between keyphrase
graphs might need some efficency improvements, however,
when facing larger corpus.

APPENDIX

In this section, we will introduce an Entity Linking Method
called Lookup Entity. This method relies on entity names
taken from the DBpedia knowledge base to identify entities
that are related to the content of the document. The Lookup
Entity method allows to identify entities and annotate them
to entities contained in DBpedia. A hybrid method that
combines Lookup Entity and TagMe is also presented, named
LE-TagMe. To begin, certain key concepts in the solution will
be described explicitly.

Definition 14. The main entity, in the text, is an entity whose
mention cannot be joined with the preceding or following
words to produce a new entity. A child entity is one whose
mention can be combined with surrounding words to form
a new entity, which is then referred to as its parent entity.
A child entity can have multiple parent entities. The parent
entity is not necessarily the main entity.

Definition 15. The names of different entities might be
duplicated, that is, a name can refer to many separate entities,
we call entities detected from the same name as unidentified
entities. Entities discovered from different names, i.e. they
do not share the same name, are called uniquely identified
entities.

Consider a sentence “The Hubble Telescope is a space
telescope that was launched into low Earth orbit in 1990 and
remains in operation”. The entity ”Hubble Space Telescope”
is annotated with the mention ”Hubble Telescope.” Because
the related mention cannot be merged with words preceding
or following it to produce another entity, this entity is
considered the main entity. Mention ”Telescope” is annotated
to an entity ”Telescope,” which is a child entity because its
mention ”Telescope” can be joined with ”Hubble” to generate
a new entity, ”Hubble Space Telescope.”

The following is a model of the entity extraction problem:
Given a set of entity names derived from the DBpedia
knowledge base and a document d. The returned result of
the problem is the main entity set found in the text d. Each
main entity e in the result has information including 1) Name
is the official name of the entity on DBpedia, 2) Sent is the
ordinal number of the sentence (considered in the whole body
of document) containing the entity, 3) StartToken is the index
of the start token of the mention in document d referring to
entity e, 4) EndToken is the index of the end token of the
mention in document d referring to entity e, and 5) ListSub
is a collection of child entities of e.

The main steps in the process of extracting entities using
the Lookup Entity method include:
• Step 1: Collect all official names and alternative names

of each entity found on the DBpedia knowledge base.
• Step 2: Using the Spacy tool, process token separa-

tion, label tokens, determine the position of the token-
containing sentence in the text. The output of this

Fig. 9. An example of entity extraction result using Lookup Entity

processing phase will be used as the starting point for
entity identification in the next stage.

• Step 3: Separate all of the entities in the document into
nine bags.

• Step 4: Identify the main entities, the child entities from
the nine entity bags.

Each entity can have multiple names. Therefore, to dis-
tinguish entities, in addition to using identifiers (abbreviated
as IDs), DBpedia also uses another attribute, which is the
official name. This type of name is unique, functioning like
an ID that helps distinguish entities from each other. An ID
is often made up of a string of numbers while an official
name often is a combination of alphabetic elements. Names
that refer to the same entity, which are not official names, are
referred to as alternative names. Barack Obama, for example,
is the official name, whereas the collection including Obama,
President Obama, Barack Hussein Obama II are the alternate
names. UIT stands for Ho Chi Minh City University of
Information Technology. ”Vietnam National University, Ho
Chi Minh City,” commonly known as VNU-HCM, National
University of Ho Chi Minh City, or Ho Chi Minh City
National University.

The properties ”is dbo:wikiPageRedirects of” and ”is
dbo:wikiPageDisambiguates of” are used by DBpedia to
classify entity names. ”is dbo:wikiPageRedirects of” stores a
name that is not similar to the name of any other entity, while
”is dbo:wikiPageDisambiguates of” stores ambiguous names
that cannot navigate to a specific official name. Because such
a name could refer to a variety of different entities, it’s
impossible to determine which one the writer is referring
to.

Natural language processing tools such as NLTK, Stanford
CoreNLP, Spacy, and others are currently available. Spacy
was chosen as the document processing tool in this work
since it is currently among the most high performance, and
there are many additional natural language processing tools
being developed around it, which is a favorable factor for
future research improvement.

Spacy splits document d into n tokens
T = {t1, t2, . . . , tn} (as an example in Figure 10).
Each token ti ∈ T contains the following information:
{StartCharti,EndCharti,sttTokeni,POSi,Senti, isStopWordi},
where StartCharti is the position of the starting character
of the token ti in text d, EndCharti is the position of the
end character of tokenti in text d, sttTokeni indicates the
ordinal number of the token in text d, POSi is the label of
ti (eg PROPN, VERB, ADP, NOUN,...) , Senti indicates

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

Fig. 10. An example of identifying noun phrases in a piece of a document

Fig. 11. An example of n-gram splitting of noun phrases

the ordinal number of the sentence containing the token,
and finally isStopWordi indicates whether the token is a
stopword (using Spacy’s stopword list).

The entity recognition process consists of two phase. The
first one is to identify the noun phrases in the document.
For simplicity, we consider phrases without verbs, without
”,” and ”.” are noun phrases. The next phase is to separate
the n-grams of the noun phrases given above and divide
them into 9 bags. Splitting n-grams where n is a large
value takes a lot of resources. It is easy to see that, most
of the names of the entities will be kept short to facilitate
communication. Therefore, we choose to separate n-grams
with n = 9. The units that make up n-grams will be tokens.
These n-grams will be divided into 9 different bags, the i-th
bag contains n-grams with n = i, as Figure 11 illustrates.
An n-gram that exactly matches the entity name is annotated
to the corresponding entity. Here are some notes about the
task of entity annotation: If the n-gram exactly matches
an alternative name, try to navigate the alternative name
to a certain official name. The n-gram is annotated as an
”identified entity” if this task is completed successfully. If it
is not possible to convert the alternative name to an official
name, the n-gram is classified as an ”unidentified entity”.
Additionally, if the n-gram is a stopword in the 1-st bag, it

is not labeled as an entity.

A parent entity, as previously said, will contain child
entities; in other words, a child entity will undoubtedly dwell
in a parent entity. The parent entity will definitely have a
longer mention than all mentions of its child entities. To
discover the parent entities, we begin by looking for mentions
with a large number of tokens. Child entities are those that
are contained within these parent entities. An entity without
a parent entity is known as the main entity. To be able to
determine if an entity is contained within another entity,
we employ a dynamic programming technique to determine
whether or not an entity’s mention was an element of another
mention.

The Lookup Entity method merely identifies entities by
performing a match based on entity names. Meanwhile, the
meaning of a word depends on the context in which it
appears. As a result, in addition to the name-related features
of the entity, the contextual features of the entity also need
to be exploited. TagMe is an entity annotator that exploits
additional contextual information. We will combine Lookup
Entity and TagMe (as Figure 12) to enrich and improve the
performance of this task. In case, for the same mention,
TagMe and Lookup Entity may generate two different anno-
tation results. At this time, we do not consider the correctness

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

Fig. 12. An example of an entity annotation result using LE-TagMe

of the annotation results because each method has its own
advantages. Both results will be kept in order to take benefit
of them. The TagMe has an advantage when the annotated
entity is already defined in detail on the knowledge base.
However, the number of entities is in fact extremely large
and increases over time so that one can only define typical
entities. Trying to refer to a certain entity is sometimes
detrimental because not all entities are available on the
knowledge base. Lookup Entity overcomes this drawback
because it can return results including unidentified entities.

REFERENCES

[1] Thomas Hofmann, “Probabilistic Latent Semantic Indexing”, Proceed-
ings of the Twenty-Second Annual International SIGIR Conference on
Research and Development in Information Retrieval (SIGIR-99), 1999.

[2] Blei David M., Ng Andrew Y., Jordan Michael I. Lafferty John. “Latent
Dirichlet Allocation”. Journal of Machine Learning Research. 3 (4–5):
pp. 993–1022. doi:10.1162/jmlr.2003.3.4-5.993.

[3] Mikolov Tomas, et al. “Efficient Estimation of Word Representations
in Vector Space”, 2013. arXiv:1301.3781

[4] Chenyan Xiong , Jamie Callan , Tie-Yan Liu, “Bag-of-Entities Rep-
resentation for Ranking”, Proceedings of the 2016 ACM International
Conference on the Theory of Information Retrieval, September 12-16,
2016, Newark, Delaware, USA.

[5] Hadas Raviv, Oren Kurland, and David Carmel, “Document retrieval
using entity-based language models”, Proceedings of the 39th Inter-
national ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2016), ACM, 65–74, 2016.

[6] Gabrilovich, Evgeniy, Markovitch, Shaul,“Computing Semantic Re-
latedness using Wikipedia-based Explicit Semantic Analysis”, IJCAI
International Joint Conference on Artificial Intelligence. Vol. 6, 2007.

[7] Faezeh Ennsan, Ebrahim Bagheri,“Document Retrieval Model Through
Semantic Linking”, ACM, WSDM, 2017.

[8] Chenyan Xiong , Jamie Callan , Tie-Yan Liu, “Word-Entity Duet
Representations for Document Ranking”, Proceedings of the 40th
International ACM SIGIR Conference on Research and Development
in Information Retrieval, August 07-11, 2017, Shinjuku, Tokyo.

[9] Jianging Wu, Zhaoguo Xuan and Donghua Pan,“Enhancing text rep-
resentation for classification tasks with semantic graph structures”,
International Journal of Innovative Computing, Information and Control
Volume 7, Number 5(B), 2011.

[10] Yuan Ni, Qiong Kai, Xu Feng Cao. “Semantic Documents Relatedness
using Concept Graph Representation”, WSDM ’16 Proceedings of the
Ninth ACM International Conference on Web Search and Data Mining,
Pages 635-644, ACM, 2016.

[11] Michael Schuhmacher, Simone Paolo Ponzetto, “Knowledge-based
graph document modeling”, WSDM ’14 Proceedings of the 7th ACM
international conference on Web search and data mining, Pages 543-
552, 2014.

[12] ThanhThuong T. Huynh, TruongAn N.Pham, Nhon V.Do, “Keyphrase
Graph in text representation for document similarity measurement”, in
Proceedings of The 19th International Conference on New Trends in In-
telligent Software Methodologies, Tools, and Techniques (SoMeT2020),
IOS Press, 2020.

[13] Yang Yu, Vincent Ng, “WikiRank: Improving Keyphrase Extraction
Based on Background Knowledge,” Information Retrieval (cs.IR), 2018.

[14] Le, T. T. N., Nguyen, M. L., and Shimazu, A. , “Unsupervised
Keyphrase Extraction: Introducing New Kinds of Words to Keyphrases”,
Lecture Notes in Computer Science, 665–671, 2016.

[15] Wan X. and Xiao J., “Single document keyphrase extraction using
neighborhood knowledge”, In Proceedings of the 23rd National Con-
ference on Artificial Intelligence - Volume 2, AAAI’08, pages 855–860.
AAAI Press, 2008.

[16] Ganggao Zhu, and Carlos A. Iglesias, “Computing Semantic Similarity
of Concepts in Knowledge Graphs”, IEEE Transactions on Knowledge
and Data Engineering 29.1,pages 72-85, 2017.

[17] E. Yeh, D. Ramage, C. D. Manning, E. Agirre, and A. Soroa,
”Wikiwalk: Random walks on wikipedia for semantic relatedness”, In
Proceedings of the 2009 Workshop on Graph-based Methods for Natural
Language Processing, 2009.

[18] Benedetti, F., Beneventano, D., Bergamaschi, S., and Simonini, G.,
”Computing inter-document similarity with Context Semantic Analy-
sis”, Information Systems, 2018.

[19] L. Huang, D. Milne, E. Frank, and I. H. Witten, “Learning a concept-
based document similarity measure”, Journal of the Association for
Information Science and Technology, 2012.

[20] Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi,
Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. ”Roberta: A robustly optimized bert pretraining approach.”
arXiv preprint arXiv:1907.11692, 2019

[21] Song, Kaitao, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. ”Mpnet:
Masked and permuted pre-training for language understanding.” arXiv
preprint arXiv:2004.09297, 2020.

Engineering Letters, 30:2, EL_30_2_34

Volume 30, Issue 2: June 2022

__

	Introduction
	Document Representation based on Keyphrase Graphs
	Labeled Keyphrase Graph
	Keyphrase extraction
	Graphical representation of documents

	Graph-based document similarity evaluation
	Semantic similarity between two keyphrases
	Semantic similarity between two keyphrase graphs

	Experiments
	Experiment settings
	Benchmark result and discussion

	Effect of Parameter Selection Strategies
	Parameters in the keyphrase extraction experiment
	Parameters in the document similarity measurement experiment

	Conclusion
	References

