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Iteration andExistence of Positive Solutions for
Fractional Integral Problems involved
p(t)—Laplacian Operator

Jinping Xu*, Baiyan Xu

Abstract—A new p(t)— Laplacian problems with fractional discussp— Laplacian equations of fractional-order. For in-

integration in boundary conditions is investigated in this paper. stance, Wang et al [14] studied the following questions
Monotone iterative technique is adopted. On the basis of the

results of positive solution, we also obtain the approximation Dé”+ (pp(Dgru(t))) + f(t,u(t) =0, 0<t<1,
sequence for it.

Index Terms—Positive solutions; the operator involved u(0) =0, u(l)=au(), Dgru(0)=0.

p(t)—Laplacian; fractional integral boundary value problem;

iterative monotone technique. In [15], the author investigates the following questions

according to the idea of upper and lower solution

|. INTRODUCTION Dg+ (pp(Dgru(t))) + f(tu(t)) =0, 0<t<1,

RACTIONAL differential equations occur more fre- u(0) =0, u(1) = au(§), Dgiu(0) =0,
quently in different research areas, for example control o o
theory, biophysics, signal and image processing and eco- D+ u(1) = bDg; u(n).
nomics, etc [1-5]. Let's take the controller which is called j(¢)— Laplacian operator, as a generalizatiopef Lapla-
PI*D"— as an example. The following form is the heagjan operator, represents a nonhomogencity. Its nonlinearity
function of the above controller is more complex. The problem involvedt)— Laplacian is
U(S) B . seldom studied in the literature, mainly because it is more
Ge(S) = E(S) =@p +QIWTP+QpWY, (p,v>0). ifficult than the problem involvegh— Laplacian, and the

results aboutp(t)— Laplacian operator equations are very
The expression for th&* D*— controller’s output is few.

u(t) = Qpe(t) + QrDPe(t) + Qp D e(t). For example, the following problem
B a _
Taking p = 1 and v = 1, we obtain a classicaP/D— Dy (ep(r) (Do y(7)) + f(my (7)) =0, 0 <7 <1,

controller.p.: 1l andv = 0 give aPI— controller.p.: 0 y'(0) = y(1) = y"(0) =0, DZ y(0)=0.
andv = 1 give aPD— controller.p = 0 andv = 0 give a _
gain. was discussed by Shen et al [16].

All these classical types oPID— controllers are the 1he guestion
particular cases of the fraction&/”D"— controller. The cpB D% () = f(r. v(r 0<r<1
PI?D¥— controller can better characterize the fractional o+ (Pp(n) (Di-0(T)) = (7, 0(7), '
system. v(0) =0, DS 'v(0) = vI (1), D§.v(0) =0,

Motivated by the wide application of the equation which i
involved in fractional derivative, in the last few years, som
scholars have come up with useful results [6-12]. In [12
the existence result of the solution is obtained for

erel <a <2 0<g,6 <1, v > 0 was investigated
Ey Tang et al [17]. The Caputo Derivative is represented
Y CDé’+ and the Riemann-Liouville fractional derivative is
represented by, .

Du(t) = f(t,u(t),u'(t), te(0,1) When the first derivative is included in the nonlinear term
oo of the differential equation, the change of the selected Banach
Dy 7u(0) =0, u(1) = nu(§). space and so on brings many difficulties to the problem under

It is well known that the non-Newtonian fluid theory Candiscussion. Therefore, when the first derivative is included in

produce thep— Laplacian equations[13]. So many scholarlfshe nonlinear term of the differential equation, There are very
' ittle literature on it.
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As far as the author knows, no one has discussed the cp;I (0) =0, z=0,
following problem

. o represents the invertible operator @f(z) = [z[P(") =22,
D, ey (D ult) +alt,u(t), o/ (£) =0, t€[0,1], | 5is \write it down asp 1 ()

(1) iti > -
w(0) = 0, w/(0) = 0, Dg‘flu(l) — A u(o), D u(0) = 0, Proposition 2.6 [20] Suppose that > 0,v > —1, then
_ () D — L(v+1) 0
was discussed by us. Hepe< o <3, 0 < B,e <1, A > 0+ I'(v—pB+1)
0, 0 < o <1, qis a positive continuous function defined
on an mterval[() 1). The Caputo Derivative is represented©!ds.
by CD(W in this placep(t) € C'[0,1], p(t) > 1. Proposition 2.7 [20] Suppose that > 0,v > —1,v #
B—4,i=12--[f]+1,s0
[l. SOME USEFULBASICS e L(v+1) s
Definition 2.1 [20] For a functionk : (0, +00) — R, 0+ v+ p+1)

1 T
18 k(1 :—/ T—sﬂ_lksds, holds.
o+H(7) I'(B) Jo (r=s)""k(s) Lemma 2.8 Allow \o®t*~! < T'(a +¢) and h(t) is a

represents the(3 > 0) order fractional integration. continuous function, the functional expression
Definition 2.2 [20]For a functionk : (0, +00) — R,

8
Lo /Gts 1 (18 (s))ds, @3)
D, k(r) = 7/ (7 — 8" k" (s)ds, Protor
L(B) Jo .
_ o is the solution of
represents thg(5 > 0) order fractional derivative in Caputo
form, in this placen = [3] + 1. °DP, oy (Dgru(t)) + h(t) =0, te[0,1],  (4)
Definition 2.3 [20] For a functionk : (0, +c0) — R,
1 d - u(0) =0, u'(0) =0, D§ u(1) = A5, u(o), Dgyu(0) =0,
DY) = e ()" [ (= ks, ©)
" T Jo in this place
represents the3(8 > 0) order fractional derivative in ot ot e
Riemann-Liouville form, in this place = [3] + 1. t* T t+e) — M (0 — )
Lemma 2.1[6] Allow n — 1 < 3 < n, the functional F(a)(Fl(oc+5) — Agate—1) X
expression (=) T (a+e) = Aot
_ F(a)(T(a+¢e) — Agxte=1) 7
’U(T):CQ+61T+CQT2+-..+CH,1’T” 1, 0<S§t§1, SSO’,
in this placec; e R, i=0,1,2,---,n—1,n=[8]+1is t*'T(a+e) = Mo — S)(Hs_l’
the solution of an equation I'(a)(T(a+ ) — Agate—1)
Glt,s) = 0<t<s<o<1, ©6)
CDO+”( 7)=0. 8= t* I (o +€)
Lemma 221[6] Alow n — 1 < B < n, suppose P(a)(T(a +¢) = Aoetemt) s
Dy, v(r) € C[0,1], so that _(t=s)* " (M(ate) = Ao )
Ia)(T(a+¢g) — Agate=l) 7
IﬁcDoJrv( Y=w(r) +co+erT+ear? - Fep 1T, 0<o<s<t<l,
a—1
in this placec; € R, i=0,1,2,---,n—1,n=[3]+ L i )(Ft( +F()O‘ +;) Ty
; e} a+e€)— AocHTET
Lemma 2.3[6] Allow n —1 < B < n, the functional 0<t<s<lo<s
expression
o(r) = et b P b TP Proof: By (4) and in view of the content of Lemma 2.2,

the following relationship holds:
in this placec; € R, i =1,2,---,n,n = [3] + 1 is the
solution of an equation ep) (DG u(t)) = —I0, h(t) +c. 7

Dg+v(7) = 0. In view of boundary condition®, v(0) = 0, (7) takes the

Lemma 2.4[6] Allow n—1 < 3 < n, supposel)0+v( T)E form

C[0,1], so that o) (D ult)) = =17 h(t),

18, D8 v(r) = v(r) + 17 + eo7P 2 4. 4 ¢, 777", this equation is equivalent to

9

in this placec; e R, i =1,2,---,n—1,n=[0] + 1. D§yu(t) = wg(i)(l(flh(t)). (8)
Lemma 2.5[21] In regard to(r, z) € [0, 1] x R,when we
fix 7€ [0,1], ppr)(2) = |2|P(7) =24 is strictly incremented. In view of (8) and Lemma 2.4, one has

In addition, .
e ut) = —rd [y e USRS g
QDP(T)(Z) = |Z‘ r(=1z, z¢€ R\{O}v +Clta71 + Cgta72 + c3t®™ 3,
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Well, considering.(0) = 0, «/(0) = 0, one has:y = ¢3 =0,
thus, (9) goes like this
1 i 1,1 (1P a—1
u(t) = —@/0 (t—s) (S)(Iwh(s))ds—f—clt .
(10)
Applying the Propositions 2.6 and 2.7, we obtain

Dy tu(t) = 7/ (s)(Iwh( s))ds + c1I'(«)

and
t
oult) =~ [ (-9 e (0 s)ds
o Mat2) Jo #oto o
a+te—1
['(a+e) ’

based onthe boundary conditiorﬂg‘;lu(l) = M
we get

+c1

u(o),

fo p(s) I§+ (s))ds + c1T(a) =
Targ y 9T e T hls)ds
L@ ate—1
+c1 F(a+5) ,
it further follows that
_ P(a+e) /1 s
a7 F(Of)(ll\(aJre) Agote— 1)( ) Pp(s) Lo+ ()
dS — m (0’ — S)Oé+6 lwp_(l)(Iﬁ h( ))ds)

Put¢; into the upper form

u(t):fﬁfg(t, )1y p( )(
toz—lr(a +8) 1 5
['(a)(T(a +J€) — Agate—1) (/0 p(s)(10+h( s))ds

(0= 51 (1) ).

1% h(s))ds

“Ta+e) Jo Pp0s

This impliesthat (3) stands. |
Lemma 2.9 Supposel < Ao®*~! < T'(a + ¢). The

from this relation, we can deduce th@ft, s) is a positive
function. In other cases, the same is true.

(i1)
(a— 1)t 2T (a +¢)
P(a)(T(a+¢e) — Aogote—1
Ma —1)t2"2(0 — s)atet
CD(a)(D(a+ée) — Agote—1
(a=D(t—s)**(T(a+e) —Ao*+"1)
I(a)(T(a+¢e) — Aoxte—1) ’
0<s<t<1, s<oa,
(a— 1)t 2T (a +¢)
P(a)(T(a+¢e) — Aogate—1
0G(t, s) _ ) Ma —1)t2=2(0 — s)atet
ot I'(a)(T(a+e) — Agate—1)’
0<t<s<o<1,
(a— Dt 2I(a +e)
I'a)(T(a+¢g) — Agate=1)’
(a—D)(t - 8)*2(T(a +¢e) — AooTe )
P(a)(T(a+¢e) — Aog@te—1)
0<o<s<t<l,
(a— Dt 2I(a +¢)
I'(a)(T(a+¢) — Aoate—1)’
0<t<s<1l,0<s.

Fromthe expression ow, we can easily derive

8G(t, S) (Oé _ 1)ta—2r<a + E)
o I'(a)(D(a+¢g) — Agote1)’ Vs,t € (0,1).
[ |
IIl. THEOREMS

The Banach spac€’[0, 1] is recorded as{. The norm is
defined as follows

properties of the functions defined by formul@ are like |lw|| = max{ max |w(7)|, max |w'(7)|}. (11)
following: Osr<i Osr=t
N0 < Gt (o +e) Vs. t We give the expression of corfé ¢ X by
0 < 609 < Fayiat e —omie) 70 €
©, )BG(t N (@ — 1)t*T(at ) P={ueX:ult)>0, 0<t<1}, (12
(44) 9 < () (T(a +2) = roore—1)’ Vs, t €
0.1). a)LlaTe g The operator expression looks like
Proof: (i) The expression with respect to the upper form 1
G(t,s), su(t) = [ Glts)opty (als.uls). ol ()ds. (1)
t* T(a+e
G(t,s) < I'(c)(D(a + 5() _ )\U)a-l-e—l)’ vs,t € (0,1). The fixed point of the integral transfor§thappens to satisfy
Moreover if0 < s <t < 1. s< o. denote the equation (1) and the boundary condition(2).
oo e Lemma 3.1 The operatorS : P — P is continuous and
k(t,s) =t*"'"T(a+e) = Mo —s)*t ! it is compact.
—(t =) N (T(a+e) = Ao*t=T1). Proof: The expressioti(t, s), ¢ i, (-) andg are contin-
We can see that uous which directly causes the operatbto be continuous.
k(t,s) >t 1T(a+e) — Mo—lgate—] We choose an arbitrarily bounded open sul§$§1om P. We
—(t — $)* L (D(a + &) — Ao+ can choosé\/ > 0 to make the following relation hold true
=11 T(a+e) — Ao 1) s )
—(t—8)* 1 (a+e) — AovteTl) |<Pp(t) (Io+q(t,u(t),u N <M
> (t - 5)* " (Dla+e) - Ao
—(t—s)* Y[ (a+¢) — Ao™te1) =0, because of the continuity af (t)( ) and g. The following
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relationship holdfor u € Q,

|(5w)(®)]

< fo (t,) ‘99 S)( +‘I(S u( (s)))|ds

e 1F (a+¢)
= F( )(F(a+g Nogate—1 / Mds
INa+e)
_F(a)(F(a+g) Noate—1 / Mds
N MT(«a +¢)
" I(a)(T(a+e) — Agote1y’
|(SU1)'(t)|
< fy 25D oo L (1, g, u(s), o (5)))|ds

(oz - l)to‘ QF(a +e) !
< F(a)(P(Oé+E) _ )\Ua+e—1> [)1 Mds
< (a— 1T (a+e)
~ Tla)I(a+¢g) = Aootet) Jo
M(a—1DN(a+e)
+¢e) — Agote—1)’

 T(a)(T(a

So weget the boundedness 6f(2). Take a functioru € 2
and two pointsty, to on [0,1] and it requirest; < ta, let's
do the calculation

|[Su(ts) — Su(ty)|

O] Jo (b2 — S)Q_l@;(ls) (I a(s,u(s), w/'(s)))ds

ey Jo (= 9)2 Yo L (I8 (s, u(s),u'(s)))ds
i85~ =10 T (a + &)
Fa)(T(a+¢e) — Aog>te1)

Jo enly Ul als,u(s), u'(s)))ds

_ A UO__Sa+5—1
F(a+6)/o( )

ety UL a(s. uls). w (5)))ds

' (s

INa+e)
(@) (T + o) = hoote 1)

AMoote
M ta l_ta 1
( +r(a+s+1))| ;

+

Let's continue with the calculations
(Su)'(t)

o (Ioals, U(S) '(s)))lds
(a — 1)t 2T (a + )
T(a)(T(a+¢e) — Aogotel)

Jo @y (I als,uls), ' (s)))ds

>‘ 7 a+e—1
_F(a+€)/o (0 =)™
ot s () (9) s ).

SO,

(Su)'(t2) — (Su)'(t1)]
< 1

t —
“tan Jo (2 = 9)*7

(), () s
+ (a 1) (tl ) -2

Pp(s )(I Jra(s,u(s),u (S)))ds‘
t572 — 197 2|(a — 1)[ (e + €)
I(a )(F( +¢e) — Agate—l)

Jo @y (I als,uls), ' (s))ds

—7/\ ’ o — s)otel
I‘(a+z—:)/0 ( )

%éﬁfﬁw(s,u(s),u’<s>>>d8’

LM (gt
“T(a-1) a—1

(a— DI (a+e)
F(a)(Fg\ojzw—&- i)+€— Agate—1)
(M+ Taterd) 1)) [ty — 72|

We get results||(Su)(t2) — (Su)(t1)]| — 0 whent; —
to, u € . The conclusion whichS : P — P is
continuous and compact can be deduced from the Arzela-
Ascoli theorem. ]
Theorem 3.2 Suppose we can find a positive numlaer
(Hy) q(t,m1,n1) < q(t,ma,ng) forany 0 <t <
L, 0<m; <mg < (a—1)c, 0<|ng| < |ng| < (a—1)g
1
) —

(Ho) fo (max q(1, (@ — Ve, (a0 — l)c)> o 1ds <

L(@)I(B+1)(I(a+e) — Ao+t
I(a+e) ’

(H3) ¢(t,0,0)#0 for VO<t <1

We can calculate that there is a positive functidne P
satisfying0 < 6* < (a —1)¢, 0 < [(6*)'| < (e — 1)c and
11110105 = hm Sy = 0%, 1111010(5”60)' = (6*)’, in this
Blaceéo( t) = o 1) 0 <t < 1. And this positive function
0* satisfying fractlonal order equations and integral boundary
conditions (1), (2).

Proof: We are going to write

_|_

Pia—1ye ={u € P| |lu|| < (a—1)c},

thus

Pia—1ye ={u € P| |lul| < (a—1)c}.

So lets try to figure out mapping P _1). 10 Po_1)c. Let

u € Po_1)., We can see the following relationship

< < < < —
0 < u(t) < max fu(®) < [lu] < (= e

! < / < <(a—1)c.
W' (t)] < Jnax, W' (@) < Jull < (@=1)c
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From thecondition (H;) and (H») and Lemma 2.9,

(su)()
= |fo G(t 5)50;(15)(1(')6+Q(57u(5)au
t* 10 (a +¢)

"(s)))ds|

: F(a)(F(a +¢e)— )\aa+5 1)
Jo 36 )rw) fo Yq(7,u(r),w'(7))drds
(a+ E)
F@) T+ 2~ Aomr=1)
Jo €ptey 1y Jo (s = 17 2q(7, (@ = 1)e, (@ = 1)e)drds
< Pla+e)
~ INa )(I‘(a +¢e) — doate—1)
jO %( )F(ﬂ+1) 0eeX) q(7, (@ = 1)e, (a — 1)c)ds
F(a +e¢)
T T(@TB+ DT (ate) - /\aa+€1
< max, q(1, (e — )¢, (a — 1)c) e ds
(a+e)
= T(a)I(3 1)( (a+¢) — hoo+e-1)
L(a)T(B+1)(T(a+e) — Aote )
I'(a+e¢)
=c< (a—1)c,
(S0 )
1o aG(t g 712(—70#1(3 ,u(s),u'(s)))ds|
< _ (o 1)ta I'(a+e)
= F( )(F(a +’5) _ )\o-a+a—1)
Iy Yoy T3 Jo (5 = 7P a(r u(r), o/ (1))drds

(a = )t**T(a+¢)
= I‘( )(F(a—i—a) \oate— 1)
Jo oyt Jo (s = 7)0 2q(r, (a = Ve, (a = 1)c)drds
(a — l)F(a —|— 5)
,11“(01)(1“(04 + ) — Agate—1)
Pp(s) THTT) jnax q(r (o — 1)
(0 =D +2)
B+ 1)(Ma+e) —

F

p(s)—1
( max, q(1, (@ — )¢, (o — 1)c) ds
F
I'(a

,(a—=1)c)ds

)\o-a-i-s—l)
i

(a — Do +e¢)
(T (a+e) — Aogote—1)
/\Ua-i-e—l)

(@)T(5 +

B+ 1)(MNa+e)—

Ia+e)

=(a—1)ec
Thus, we have the following result

|1Sul] < (a—1)e.

From this we can deduc& : P _1). — P—1).. Choose
So(t) =ct*™t, 0<t <1,

We write §; = Sdg, thend; € P(afl)c- Let

6n+1 :S(Sn:Sn+1607 n:071a2a35"'7 (14)

S Pa—1)e = Pa—1)c implies that

5n c SP(afl)c - P(a,1)67 n=20,1,2,3,---.

SinceS : P — P is continuous and compact, the sequence
{6n}22, is compact. Moreover,

B1(t) = S60(t)

= fol G(t s)<p;(ls)(fg+Q(S,5o(5)756(5)))d5

- t* 1l (a +¢)

= r(a)(r(a+s) AaW*l)

B oty oy 5 = 7Pl 8, 87t
- to—1 (a + E)

= F(a)(F(a +\a) — Agote—l)

Iy €t 03y fJ s =) g, (o = 1)e
- t* 0 (o +¢)

= I‘( )(I‘(a +¢€) — Agate—1)

fO sDp(s) F(ﬁJrl) 0<r aX q(m; (@ = De, (@ = 1)e)ds

,(a—1)c)drds

to— 1I‘(a+5)

F ()T(B+ )T (a+e)— )\aa+fl

(max q(1, (a — )¢, (a — 1)c) p(S)_lds
[ 1F(a—|—5)

< TN (7 + DT +2) —AgereT)

L(a)(B+ 1) (T(a+¢e) — Ao
INa+¢)

= ct*~t = §o(t),

107.(8)] = 1(:500)"(2)]

< o 2560y (15 (s, (o), 8 () ds|
(a l)to‘ D(a+e)

PG

fo gap( )1“([3) fo Yg(r,60(7), 80(T)))drds
(o — 1)t>~ 21“(04 +e)

- F( )(I‘(aJrs) Aoate—1)

I e 7057 Jo (5

q(t, (a = 1)¢, (a = 1)c)drds
(a— Dt 2T(a +¢)

=TT +2) — Ao

1
0 P(s) TEFD 22X, (7 (& — De

(o= Dt**T(a +¢)
)\O-aJrefl)

,(a—1)c)ds

T (B+1)T(a+e) —

I

p(s)—1

Jmax q(1,(a = 1)c, (e — 1)c) ds
( — Dt 2T (a +¢)

A

I‘( (B4 1) (T(a+e) — Aoortel)
(@B + (I (a+¢) = Ao@™TH)
Ia+e)
= (o= Det*=2 = |55(t)]-
And thats where we can get the idedy(t) >
51(t), 166()] = 161(t)], 0 <t < 1. Therefore,
01(t) = Sdo(t) > S01(t) = 62(t), 0<t<1,

65 (6)] = [(Sdo)" ()] = [(Sé1)" ()| = 15(2)],
Using recursive thinking,

On(t) = Onta(t), 10,0 = [0, (1), 0<E <1,
(n=0,1,2--).

So, We can calculate that there is a positive functiéne
P(a 1) satisfyingd,, — 0. In (14), let ustaken — oo, the
equatlonTé* = ¢* holds. The fractional order equations

0<t< 1.

Volume 30, Issue 2: June 2022



Engineering Letters, 30:2, EL._ 30 2 43

(1) andintegral boundary condition (2) has not the zero
solution because of the conditidi#s). Therefore, function
0* which is positive satisfying fractional order equations (1)
and integral boundary condition (2). |
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