
 

 

 

Abstract—Studies have been conducted to understand how 

mild but frequent tremors affect the integrity of built structures. 

These have been done through the analysis of data gathered 

using tremor sensors. However, to be able to interpret the 

generated seismic graphs, current tools that are used to analyze 

such sensor data usually require in-depth knowledge of seismic 

data and expertise in structural engineering. Not only are the 

data difficult to interpret, the systems being used to gather and 

process these data also tend to be very expensive and rely on 

major seismic activities. This study presents a novel approach to 

monitoring and analyzing the structural integrity of buildings 

through the use of a mesh of sensors that are sensitive even to 

small movements of buildings. Data collected from these sensors 

are analyzed to identify specific areas of built structures that may 

have some structural defect. These identified anomalies may then 

be the subject of a more thorough investigation of the structure. 

Anomaly detection in the structures is done through the use of 

unsupervised machine learning techniques that estimate the 

expected movement readings of each areas as provided by the 

mesh of tremor sensors. By employing statistical tests, specifically 

the Kruskal-Wallis test based on the chi-square statistic, specific 

locations in a building are assessed as to whether there is likely to 

be a structural anomaly. Experiments were conducted using the 

actual 2013 earthquake from Bohol, Philippines, which were 

applied on simulated healthy and damaged buildings that were 

constructed using the ETABS simulation software. 
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I. INTRODUCTION 

EVERAL studies were conducted in the past to help mitigate 

damages caused by earthquakes. However, the current 

earthquake detection methods do not predict the occurrences 

of earthquakes [1] and are designed only to detect and record 

moderate to large earthquakes [2]. Low magnitude tremors are 

often masked as seismic noise [3], [4]. However, although 

these low magnitude tremors may not have immediate impact 

on structures, the accumulated stress and strain over the years 

tend to weaken the structures [5].  

There are two approaches of mitigating seismic risk. One is 

by predicting the occurrence and possible effects of 

earthquakes using previous historical data on present 

structures so as to prevent similar destruction, and another is 

by assessing the structural health prior to occurrences of 

earthquakes.  The first approach of mitigating seismic risk is 

to understand the causes of tremors (natural or human-

induced) by properly detecting and cataloguing earthquakes 

[2] with the use of the Geographical Information System (GIS) 

analysis [6] or with the use of waveform autocorrelation [2]. 

This approach aims to predict the occurrence of earthquakes 

by estimating the earthquake intensity, simulating several 

scenarios with different magnitudes, and identifying possible 

sources of earthquakes such as locating fault lines near the 

area of study [7]–[9].  

After inspecting the geographical data about the area of 

study, the gathering previous seismic data in the area and 

identifying repeating earthquake patterns can be done to create 

a dataset of signal patterns to look out for in a full length 

continuous time series data [10], [11]. However, the detection 

capability of pattern matching using waveforms is restricted to 

the available data [12]. Numerous studies have been made to 

improve earthquake detection and location such as using 

clustering [13], artificial neural networks (ANN) [14]–[17], 

autoencoders [18], various deep learning methodologies [19]–

[21], and convolutional neural networks [2]. 

The second approach is done by assessing the structural 

health of built structures prior to any occurrence of major 

earthquakes with the use of Internet of Things (IoT) sensors 

that provide real-time seismic health monitoring. Previous 

studies have explored the use of global positioning system 
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(GPS) [22] along with accelerometers [23] to keep track of 

displacement of floor segments during an earthquake. The data 

from the sensors are then used for computing the drift ratios 

which are the relative distances between two consecutive 

floors divided by the elevation of the two floors [24]. After 

computing for the drift ratios, the values are correlated to a 

force-deformation curve to estimate the state of damage of a 

structure. This approach could be adjusted to record ambient 

vibrations or micro-tremors instead of strong magnitude 

earthquakes. 

In 2015, the Department of Public Works and Highways 

(DPWH) of the Philippines implemented guidelines and 

implementing rules on earthquake-recording instrumentation 

for buildings [25] which require all buildings included in the 

categories listed to install a number of sensors. This is to 

monitor significant changes in building response especially 

after a major event such as the ―Big One‖. These guidelines 

along with several researches being conducted by civil and 

structural engineers are aimed to ensure the safety of building 

occupants by determining the conditions of buildings, and by 

collecting earthquake related-data during major seismic 

activities. 

This paper describes the design and implementation of a 

tool for the structural health monitoring (SHM) of vertical and 

horizontal structures based on visualization and statistical tests 

of the signals recorded by a mesh of motion sensors. The full 

blown system entails deployment of a huge number (organized 

as a mesh) of small and cheap tremor sensors covering a 

structure. For now, while awaiting the deployment of such a 

mesh of sensors, the data are extracted from an earthquake 

simulator that is also used to create building scenarios, i.e. 

healthy and damaged buildings. The data are visualized to 

track even the minute structural movements under different 

magnitudes of stress. These time-series data are then analyzed 

using a combination of autoencoders (machine learning 

models) and statistical tests to identify probable anomalies in 

the structure that may need to be further investigated. 

II. STRUCTURAL HEALTH MONITORING 

Several studies have been made with regard to monitoring 

the structural integrity of built structure such as of buildings, 

bridges, and flyovers [26]–[29]. These studies have made use 

of earthquake sensors and different methods have been used to 

collect and interpret information from these sensors. Most of 

the previous studies made use of combinations of 

accelerometers, temperature sensors, humidity sensors, and 

piezoelectric sensors for analyzing structural health [30]–[33]. 

There were also several studies which explored wireless 

methodologies to assess structural health such as using 

acoustic emission monitors which make use of sound waves, 

and using IoT sensors. 

A. Data Collection Methodologies 

A study by Syafrudin et al. [34] discusses the use of IoT 

sensors for providing real-time information for better 

understanding and performance of environment condition 

monitoring, smart buildings, and healthcare applications. In 

addition, Qing et al. [30] discusses different methods of 

implementing structural health monitoring on aircrafts and 

have used piezoelectric materials for their SHM system. The 

said SHM system consists of both mounted and embedded 

sensors which monitors the structural state of the materials or 

the member of the structure where the sensors are attached by 

retrieving information such as load and temperature data. As 

with most IoT implementations, the numbers and types of 

sensors, and the sensor positioning critically affects the 

sensitivity and performance of the SHM system. One way of 

minimizing this issue is applying the Stanford Multi-Actuator-

Receiver Transduction (SMART) layer technology [35] 

developed at Stanford University. The SMART layer 

technology is a simple and efficient way of integrating large 

sensor networks onto structures with high reliability and lasts 

throughout the service life of the structure. 

Saoudi et al. [31] demonstrates the use of different data 

mining techniques that could be applied to wireless sensor 

networks (WSN) for early damage detection specifically for 

forest fire detection. The system involves a clustered WSN 

where each sensor node individually decides on detecting fire 

using a classifier of data mining techniques. The system 

makes use of a simulation software called CupCarbon 

Simulator to design, visualize, debug, collect data, simulate 

various scenarios, and validate the different algorithms. The 

simulator is commonly used for conducting studies about 

Smart Cities and IoT WSN. The system is based on measuring 

and combining real data from different sensors and using the 

Naïve Bayes classifier applied to the dataset for fire detection. 

A node detects fire locally by itself, discards normal data, and 

transmits only abnormal or out of the ordinary (OOTO) values 

to a central node for further analysis. Based on their results, 

the different data mining techniques are able to reduce data 

size, delete redundancy, improve WSN speed, and decrease 

network traffic. 

B. Existing Structural Health Monitoring Approaches 

Cai, Cheng, and Liu [27] compares the traditional ultrasonic 

testing methods and the proposed nonlinear electromagnetic 

acoustic testing method for tensile damage evaluation. The 

traditional ultrasonic testing methods make use of linear 

theory and depend on measuring several parameters such as 

size, orientation, location of cracks, acoustic velocity, 

attenuation, transmission, and reflection of ultrasonic waves to 

detect damage. However, this approach is not sensitive to 

early stage degradation and microcrack of materials. The 

previous nonlinear approach to this problem would make use 

of nonlinear piezoelectric methods which are wired 

connections of sensors, while the proposed approach by the 

researchers makes use of nonlinear electromagnetic acoustic 

waves. This provides a wireless approach to the problem 

which is also not susceptible to varying surface conditions. 

Both approaches are used to assess the relative nonlinearity 

parameters of the damage. The nonlinear method which make 

use of acoustic waves is considered to be more robust as 

compared to the traditional ultrasonic method as it can match 

the performance of the traditional method as well as 

characterize microstructural features in materials; and 

quantifies them with the measured acoustic nonlinearity 

parameter (ANP) which are caused by the interaction of 

Engineering Letters, 30:2, EL_30_2_47

Volume 30, Issue 2: June 2022

 
______________________________________________________________________________________ 



 

 

sinusoidal waves and microstructural features like 

microcracks. 

Ding, Shen, and Du [28] analyzed the strain data from 

various sensors to study the stress and fatigue experienced by 

a structure across its operational lifespan. Based on their 

study, temperature-induced strain contributes little to the 

overall stress of a structure. However, conventional sensors 

cannot differentiate which data are of lesser significance than 

others which is why the researchers proposed an empirical 

mode decomposition method to remove noise and 

temperature-induced strain from the dataset, thus leaving only 

the dynamic strain response needed for strain analysis. Based 

on the gathered data, the frequency characteristic is obtained 

from the dynamic and raw strain data, and a statistical analysis 

of the data is performed with the prior assumption that the 

extracted dynamic stress peaks and valleys are normally 

distributed. The results from their experiments show that the 

expected maximum values from the statistical analysis are 

near the measured maximum values at different heights. As 

such, the proposed method of Ding, Shen, and Du [28] has 

significant advantages over traditional parametric-based 

methods and wavelength-based methods as it is adaptive; and 

timescale-based decomposition properties can be incorporated 

in the analysis and can be used for nonlinear and nonstationary 

applications. 

As far as tremor sensors are concerned, Kong et al. [32] 

used a low-cost sensor network approach in monitoring 

structural health by making use of off-the-shelf smartphones 

as substitute for accelerographs. The smartphones were used 

to collect movement data during a simulated earthquake and 

were compared to the data collected by Episensor, which is a 

commercial data logger for earthquake tremors that sends data 

to the Southern California Seismic Network. The results from 

their experiments demonstrate that the proposed system is able 

to collect similar data as compared to those gathered by 

Episensor. The proposed system may not have as accurately 

recorded low power readings as those of Episensor, but the 

system was able to match accurately the modal peak readings. 

Another study on the design of a system of tremor sensors, 

Uy et al. [36] developed a system for structural health 

recording system called Universal Structural Health 

Evaluation and Recording (USHER) system. The system is 

intended for buildings to comply with the local regulations in 

the Philippines prior to issuance of a occupancy permit [25]. 

The proposed system is composed of an accelerograph sensor 

and web-portal system, displaying the real-time readings of 

the sensors in a structure through its web-portal. However, the 

system lacks the necessary analysis and feedback to users. 

Instead, analysis and feedback are done by partner structural 

engineers by manually interpreting the data gathered by each 

sensor. 

C. Machine Learning for Structural Health Monitoring 

According to the study of Chang and Lin [37], advancement 

in IoT web technologies, and wireless integrated sensor 

devices paved the way for real-time monitoring on various 

structural behaviors which can be used for damage warning. 

Their study explores the use of a visualization tool where 

users can create a three dimensional (3D) model of a structure 

where sensors would be placed so as to visualize the dynamic 

movement of the columns under different magnitudes of 

ground shaking. The 3D displacement values are measured at 

every timestamp by the sensors, which are located at each 

node of the structure. The sensor positions on the 3D model 

are then updated depending on the translational values from 

the sensors. The assumption is that columns of the structure 

are rigid bodies (there are no deformation during rotation and 

translation), and the floors or beams can extend along with the 

moving direction without lateral deformation or bending. 

Their approach also has the capability to zoom in and out, and 

rotate the structure to further inspect the effects of the 

movements on the structure. 

 SHM indeed involves 1) continuous monitoring of a 

structure over time based on sensor data that represent 

dynamic structural responses, 2) signal or data processing and 

analysis, and 3) proper decision making to infer the current 

health state of the structure [38]. Vibration-based SHM is one 

of the popular approaches to understanding SHM because 

vibration is naturally available, be it naturally occurring or 

human induced. The assumption with most vibration-based 

SHM is that small changes in a structure cause corresponding 

changes in the structural dynamics which may indicate 

possible damage.  

To interpret the vibration data gathered by the sensors, 

statistical time series methods are usually applied to the 

dataset. Statistical time series methods present themselves as 

data-based models rather than physics-based. This offers 

several advantages compared to other forms of analysis [39], 

[40] such as: a) no need for analytical models such as finite 

element (FE), b) not needing structural models as some 

applications may just need a single pair of excitation and 

vibration response signals for creating the statistical model, c) 

inherent accounting for uncertainties (measurement, 

environmental, operation, etc.) through statistical tools, d) 

statistical decision making with specified performance 

characteristics, e) effective operation even in low frequency 

range, and most importantly f) effective use of natural 

obtained random vibration signals which does not disrupt the 

structure’s normal operation. 

Statistical time series methods, however, do have some 

limitations which include being able to detect only the damage 

to the extent allowed by the model used, and would require 

more training data to cover as much behavior as possible for a 

―normal‖ or healthy building state. 

There are multiple studies conducted related to the use of 

low cost accelerometers and machine learning for structural 

health monitoring. A report by Acevedo [41] discusses an 

implementation of Feedforward Neural Networks (FFNN) and 

Recurrent Neural Networks (RNN) in detecting residual 

displacement using displacement sensors and accelerometers. 

Experiments show that FFNN and RNN are able to predict 

ground motions for low magnitude tremors (magnitude 1 to 6) 

but fail for higher magnitudes (greater than magnitude 7). 

 Meanwhile, Kusumo et al. [42] studied about differentiating 

human activities and earthquake vibrations from smartphone 

accelerometers using Long Short-Term Memory (LSTM). 

Their experiments focused on collecting accelerometer data 

from both human activities and earthquakes, then using LSTM 

to be able to classify and identify the kind of activity or if an 

actual earthquake is occurring. Although their data is quite 
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imbalanced due to the small amount of earthquake data 

available, their results show that the system is able to 

recognize every kind of vibration with an accuracy of 97% on 

the 20% test data. The findings are significant as it implies 

that human activities and natural earthquakes have different 

signatures and that they are distinguishable using only 

smartphone accelerometers. 

 Kong et al. [32] also used machine learning in seismology, 

having implemented various machine learning techniques 

(classification, regression, and clustering) in the different areas 

of seismology which includes earthquake detection and phase 

picking, early warning, and ground-motion prediction. Their 

study also made use of the accelerometers in smartphones then 

applied the different machine learning techniques to the 

generated dataset. They concluded that a hybrid approach 

which combines machine learning methodologies and 

traditional physical modeling would be viable for assessing 

SHM as machine learning alone may have difficulties due to 

poor sampling, and noisy and incomplete geophysical data. 

 The research by Liu et al. [43] implemented a generative 

adversarial active learning for unsupervised outlier detection. 

The study focused on being able to determine outliers from a 

dataset, without any prior knowledge or information. The 

study demonstrates the possibility of differentiating out-of-

the-ordinary situations, such as seismic activities, from natural 

occurring vibrations. A similar study was conducted by 

Mousavi et al. [44] which implemented an earthquake detector 

using both convolutional neural networks (CNN) and recurrent 

neural networks (RNN). The detector consisted of a 

combination of convolutional layers and LSTM trained with 

seismograph data which recorded 3D movements for a 

specified duration. 

III. DESIGN CONSIDERATIONS 

Due to the absence of open access data that can be used for 

the study, we opted to generate own synthetic but realistic data 

using real recorded earthquake data from the Philippine 

Institute of Volcanology and Seismology (PHIVOLCS). The 

earthquake data is from the October 15, 2013 Bohol 

earthquake which was a 7.2 magnitude earthquake on the 

Richter scale and an intensity VII earthquake based on the 

PHIVOLCS Earthquake Intensity Scale. The earthquake 

resulted in the damage of over 79,000 structures which 

included homes, roads, churches, schools, and public 

buildings. 14,500 of the said damaged structures were 

completely destroyed. The earthquake recording lasted for 400 

seconds. The earthquake was parallel to the x-axis of the 

building thus had the greatest effect on the said values and 

would be the focus for the experiments. 

 The sample structure is created using Extended Three-

dimensional Analysis of Building Systems (ETABS), a civil 

engineering simulation software commonly used to design, 

model, and test structures according to different building 

codes [45]. ETABS has been used by several studies [46]–[50] 

to simulate various scenarios and building designs and has 

been comparable to real world setting. The structure that was 

configured using ETABS is a 20-floor regularly shaped 

building created with waffle slabs (reinforced concrete) made 

to resemble modern buildings. Each floor is assumed to have 

eight sensor locations from where the tri-axial displacements 

are extracted.  Fig. 1a shows the 3D building plan of the 

sample structure and Fig. 1b shows the floor plan of the 

structure. 

 

 
Fig. 1.  a) Building three-dimensional plan. b) Building floor plan. 

 

For the experiments and visualization discussed in this 

paper, three sample buildings were constructed using ETABS. 

One healthy building was constructed with uniform materials 

all throughout the floors, and two damaged buildings were 

configured that had some weakened columns to simulate the 

weakening or damage of materials either due to faulty design 

or to the effect of natural phenomena leading to building 

damage such as tremors, as well as weather elements like rain, 

wind, and sun. Damage is simulated by lessening the column 

stiffness of some portion of the building to 25% of the normal 

stiffness value, thus making them more vulnerable to tremors. 

For this research, the damaged portions on the two damaged 

buildings are located at the southwest corner of the building 

with one located at the 10th floor and the other at the 5th
 
floor. 

Indeed, the possibility of experimenting with different design 

and structural defect scenarios is an important advantage of 

using a simulator like ETABS. 

IV. CIVIL ENGINEERING ANALYSIS 

Using the built-in analysis module of ETABS, it can be seen 

from Fig. 2 that the maximum storey-drifts of the two 

damaged structures show anomalies at the damaged floor 

marked by the green circles. These anomalies are manifested 

as discontinuities in the drift readings going from the ground 

floor all the way to the top-most floor of the building. 

The discontinuities in the storey-drift reading at the bottom 

floor of all three buildings, including the healthy building, is 

due to how the buildings were modeled and how ETABS 

interprets them. Drift readings are indeed a good basis for 

detecting possible structural anomalies, but for the rest of the 

experiments discussed in this paper, the focus will be on the 

actual x, y, and z-axis displacements of the different parts of 

the building, at a more granular level to include the different 

points in a given floor of the building; instead of just the drift 

readings of the entire floor. This is so that whenever possible 

anomalies are detected, the actual location of the likely source 

of the structural anomaly can be clearly identified. 

Engineering Letters, 30:2, EL_30_2_47

Volume 30, Issue 2: June 2022

 
______________________________________________________________________________________ 



 

 

 
Fig. 2.  a) Maximum storey drift of the healthy building. The blue plot is the x-direction drift and the red plot is the y-direction drift. b) Maximum storey drift of 
the damaged building where damage is located at the tenth floor. c) Maximum storey drift of the damaged building where damage is located at the fifth floor. 

 

V. PRELIMINARY DATA VISUALIZATION 

For this study, the proxy used for the health of buildings is 

the smoothness of the displacement curves or absence of 

discontinuities in the movements of the numerous location 

points of a solid structure. Since the ETABS configuration 

was implemented in such a way that the earthquake was 

positioned parallel to the x-axis of the building, most of the 

analyses are conducted on the x-displacement values. Fig. 3 

shows the x-displacements plotted against the different floors 

of each of the buildings at a certain time instance. Looking 

closely at the plots, one would notice that a healthy building 

shows a relatively smooth curve as compared to the damaged 

buildings. The damaged buildings have a hardly noticeable 

deviation happening somewhere at the tenth floor for the 

orange plot, and somewhere at the fifth floor for the green 

plot. 

Fig. 4 shows the zoomed-in view at the tenth floor which 

reveals that there is indeed a slight deviation that can be seen 

occurring at the tenth floor mark for the damaged building as 

highlighted by the widening gap from the floors below the 

damaged portion. Similarly, Fig. 5 shows the zoomed-in view 

at the fifth floor which reveals that there is also indeed a slight 

deviation at the fifth floor mark for the damaged building. 

To better observe the lateral and vertical displacements, we 

plot the values in a 3D chart with the x and y displacements on 

the x and y-axis, and showing the different floors of the 

building on the z-axis of the chart (cf. Fig. 18). 

To see how vibrations propagate from the ground floor up 

to the top floor, Fig. 19 displays the x-displacements of the 

different floors (signified by the shifting colors: violet for the 

first floor, red for the 19th floor) during the early stages of the 

earthquake. From the plots, all three buildings exhibit 

expected behavior of low displacement values for the lower 

floors that gradually increase as the floor level increases. 

 However, the plots of Fig. 20, for the time instance right 

after the highest peak of the tremor, reveal that the movements 

of damaged structures’ tremors last for a longer period 

(signified by the wider wavelengths) as compared to the 

healthy building. The red vertical lines show the arbitrary 

marks indicating the position of the healthy building. We then 

investigated whether troughs or amplitudes are actually longer 

for damaged buildings. Longer amplitudes reflect the larger 

displacement values as seen in previous plots. 

Fig. 21 shows that, indeed, amplitudes are longer for 

damaged buildings. It can be seen from Fig. 21a that the peak 

of the highest floor has a value of around negative 1.9 

millimeters. While looking at Fig. 21b and 21c, it can be seen 

that two and three floors respectively were yet to complete 

their peak values. The red vertical lines are the same as the 

ones found in Fig 20. These show that the damage on the 

structures (5th floor or 10th floor) affected the wavelengths 

and amplitudes of the building’s response to the tremor. 

We then take the first derivative (i.e. to compute for the 

velocity) of the displacements as this emphasizes the 

difference between the buildings, compared to simply plotting 

the raw displacements over time. Fig. 22 highlights the 

densities of the velocities of each building. Highlighted by the 

blue rectangles in the figure, it can be seen that the damaged 

buildings (Fig. 22b and Fig. 22c) have denser clusters 

compared to the healthy building (Fig. 22a). A dense cluster 

indicates a long period without a change in displacement 

values. This supports the previous explanation of damaged 

buildings having wider displacement wavelengths. 

Fig. 23 highlights the comparison between the peak 

velocities of each building. Highlighted by the blue circles in 

the figure, it can be seen that the highest floor (signified by the 

red plot from the rainbow colored plots) of the healthy 

building (Fig. 23a) already peaks at a value of negative 2.5 

millimeters per second which is slower compared to the 

damaged buildings (Fig. 23b and Fig. 23c) that have yet to 

reach their peak velocities. The peak velocities reflect the 

maximum displacement amplitudes because the greater the 

displacement over a period of time, the faster or larger the 

velocities. Looking closer at Fig. 23b and Fig. 23c, it can be 

seen that there are still light colors (shades of yellow and 

orange) near the peak values of the healthy building. This 

supports the previous explanation of several floors in the 
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damaged buildings that were yet to reach their peak 

amplitudes. 

 

 
Fig. 3.  X-displacements plotted against the different floors of each of the 
buildings at earthquake timestamp of 50th second. 

 

 

 

 

 
Fig. 4.  Zoomed view of the tenth floor and neighboring floors. 

 

 
Fig. 5.  Zoomed view of the fifth floor and neighboring floors. 

VI. ROBUST DATA VISUALIZATION 

It must be emphasized that visual evidence is not sufficient 

to conclude anything about the general structural health of a 

building. A statistical analysis is needed to quantify the 

findings, and indeed, would also be able to ascertain whether 

any noted deviations are statistically significant (or may just 

be attributable to chance).  

The preliminary visualizations were useful for visualizing 

the nature of the data. However, making use of expected 

values to which the observed values could be compared using 

statistical tests would give a more solid basis for determining 

the health of a built structure. This robust data visualization 

(i.e. guided by statistical tests) makes use of expected values, 

mesh inferred values, and statistical tests to quantify the 

observations. 

A. Naïve Expected Value 

Since the health of a building is manifested by the 

smoothness of transitions from floor to floor, we proceed by 

computing for the deviations between the observed 

displacement values and the expected values based on the 

observed values of the neighboring points in the mesh. Note 

that the tremor sensors are systematically positioned all 

throughout the building and are regularly placed. The 

assumption is that if the observed value differs significantly 

from the expected value, then there is a probable problem at 

that location of the building. Since we are dealing with rigid, 

physical structures, it is reasonable to assume that the 

displacement readings of a given floor can be expected to lie 

in between those of the floors below and above a given floor. 

The floor boxed in red in Fig. 6a is the target floor for which 

the expected value is being computed using the readings of its 

neighboring floors. The simplest way of computing an 

expected value of a target floor is by getting the average 
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reading from floor above and floor below. This expected value 

is referred to as the naïve expected value. 

However, upon looking at the plots on Fig. 18, it can be 

seen that floors tend to move in groups of three as highlighted 

by the red circle. So computing the naïve expected value could 

then be expanded into getting the average of averages of three 

floors above and below a target floor as shown in Fig. 6b. 

 

 

 
Fig. 6.  A visual representation of computing an expected value for a target 

floor using the observed values of its neighboring floors. The red box 

highlights the target floor for which the expected value is computed for. 
 

A general equation of computing the naïve expected value is 

shown in (1) where 𝑛 is the number of floors above and below 

to be considered, 𝐸𝑖  is the expected value of the target floor 𝑖, 
𝑂𝑖−𝑘  is the observed or raw sensor reading of 𝑘 floors below 

the target floor, and 𝑂𝑖+𝑘  is the observed or raw sensor reading 

of 𝑘 floors below the target floor. 

 

𝐸𝑖 =  
1

𝑛
 

𝑂𝑖−𝑘 + 𝑂𝑖+𝑘

2

𝑛

𝑘=1

                           (1) 

 

We then plot the naïve expected values with the observed 

raw values to see if the naïve expected values can truly be the 

basis for identifying damaged portions of buildings. Fig. 24 

shows the different naïve expected values computed for the 

different buildings. We superimpose the observed values over 

the expected values computed with two different 𝑛 values 

using (1). As can be seen from the plots, the damaged portions 

of the buildings are not identifiable just by getting the 

averages of the readings from neighboring floors. 

Because of the limitation of the naïve expected value to 

indicate the presence of structural anomalies, we then 

formulate another method that makes use of autoencoders to 

generate a more detailed expected value – still based on the 

notion of a mesh of tremors wrapped around a structure. 

B. Autoencoder 

An autoencoder is a type of neural network used to learn 

data codings in an unsupervised manner that aims to reproduce 

an output as close as possible to its input. An autoencoder has 

three main parts, encoder, latent code, and decoder. The 

encoder takes in inputs and encodes them into a reduced 

dimension, referred to as the latent code. The latent code is a 

lower dimensional representation of the input for which the 

decoder tries to decode from to get back the original input. 

The main use for autoencoders is to minimize 

reconstruction errors between the input and output for the 

autoencoder to learn important features in the dataset. Fig. 7 

shows a basic block diagram of an autoencoder. 

 

 
Fig. 7.  Basic Autoencoder Block Diagram. 
 

In this study, the autoencoder is used as an associative 

memory where the autoencoder interpolates information from 

the input data based on the closest pattern that the model is 

aware of. To do this, the model is trained with all the 

―healthy‖ building data that are currently available so that the 

machine can learn key features from the healthy dataset. It is 

important to train the model with only healthy data so that 

when the autoencoder evaluates the inputs, it will be able to 

produce an output based on what it expects the values to be if 

the inputs were from a healthy building. Fig 8 shows the block 

diagram of the autoencoder being used as an associative 

memory. The expected value generated by the autoencoder is 

referred to as the mesh inferred value (MIV). 

 

 
Fig. 8.  Block diagram of the trained autoencoder (enclosed with the green 

dashed rectangle) used as an associative memory. MIV or mesh inferred value 

refers to the expected value generated by the autoencoder.  
 

For this study, a finer distribution of sensors on a building 

forming a mesh is envisioned to help localize the problem on a 

structure. However, due to the limitations of the simulation 

software used to generate the dataset, we are only able to 

generate values gathered on a floor and not on the walls of the 

structure. This implies that we need to interpolate some of the 

neighboring data of a target sensor. 

It is assumed that getting the reading on the walls of the 

structure forming a mesh is better rather than getting readings 

from corner-to-corner or floor-to-floor as they may be too far 

apart and values may differ by a greater magnitude. Fig. 9 

shows the naming convention used to label data points and 

how the mesh of sensors is envisioned to wrap around a 

structure. 

 Since we are using a simulator to generate data from real 

earthquake signals for training our model, we are limited by 

the capabilities of the tool. The ETABS simulator returns the 

triaxial readings of each floor at each labeled point as listed in 

Fig. 9a. However, since the building is a rigid structure, it can 

be assumed that the point between two floors should follow 

the same behavior as the floor above and below it. By getting 
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the midpoint between the readings of the floor above and the 

floor below the target point will result in a hypothetical value 

which we could use to estimate the possible readings as if they 

were also extracted from the simulator. An example would be 

getting the point between Floor 1 and 2 from Fig. 9b. The 

midpoint value can be calculated by getting the values from a 

certain axis (x-, y-, and z-axis) one at a time from Floor 1 and 

2 and getting their average. This process is repeated for the 

other two axes to complete the interpolation. This problem is 

eliminated once actual sensors are deployed on existing 

structures to periodically gather data as we will be using real 

mesh data to train the autoencoder. 

 

 
Fig. 9.  Naming convention used to label the data points. a) Floor view of the 
structure. Each number represents a sensor location that data could be 

extracted from. b) Floor numbers. The base of the building was given the floor 

number of zero. c) Mesh covering a wall where the center node is the target 
node. d) Mesh covering a wall where the center node is located at the corner 

of the structure. 

 

The PyTorch library is used for implementing the 

autoencoder [51]. The implementation is straightforward 

where inputs to the model are mapped according to the 

features of the dataset. The most important component in the 

implementation is determining the size of the latent code 

(bottleneck). Several architectures were considered based on 

the size of the latent code and number of input features. 

Architectures considered based on the size of the latent code 

includes undercomplete and overcomplete autoencoders. An 

undercomplete autoencoder is an autoencoder where the latent 

code dimension is less than the input dimension which 

captures the most features of the training data. The 

overcomplete autoencoder on the other hand has a larger latent 

code dimension compared to the input dimension which can 

be useful for uncovering key information for some 

applications. However, overcomplete autoencoders have the 

tendency of copying and memorizing the inputs without 

actually learning. 

Architectures considered based on the size of the input 

dimension includes the use of input size ranging from 3 up to 

27. The autoencoder which made use of three inputs only had 

the three raw triaxial displacement values. The autoencoder 

which made use of nine inputs had the triaxial values of the 

target floor, the floor above it and floor below it. The 

autoencoder which made use of 27 inputs had the triaxial 

values of eight neighboring sensors and the triaxial values of 

the middle or target sensor node. In other words, the 

autoencoder with an input size of 27 contains the interpolated 

values of the wall area between two corners of a given floor, 

in anticipation of real-data that would come from a mesh of 

tremor sensors once they are fully deployed. 

The mean squared error (MSE) losses from training the 

models are calculated to evaluate the different autoencoder 

architectures. The mean squared error is defined as the 

average of the square of the difference between actual and 

estimated values. Fig. 10 shows the MSE loss plots of the 

different autoencoder architectures considered. The closer the 

MSE loss value is to zero, the better the performance as it has 

the best success in reproducing the input training set. As it can 

be seen from the plots, the 27-7-27 autoencoder performed the 

worst among the different architectures, and the 27-14-27 

autoencoder performed the best. However, as mentioned 

earlier that autoencoders have a tendency to memorize 

information and not learn useful features from the training 

dataset when the latent code is still big, the 27-14-27 

autoencoder may be performing better as it may have been 

simply outputting what it had previously known from training. 

With these said, it seems that only the 27-3-27 or the 27-14-7-

3-7-14-27 autoencoders are the viable models. Fig. 11 shows 

the MSE losses of the two architectures considered. As can be 

seen from the plots, the autoencoder with more hidden layers 

did not offer much improvement in performance. As such, the 

simpler 27-3-27 autoencoder is used for the succeeding 

experiments discussed in this paper. 

 

 
Fig. 10.  Mean square error losses of the different autoencoder architectures 

considered for the study with only a single hidden layer. 
 

 
Fig. 11.  Mean square error losses of the last two autoencoders considered for 

the study with varying number of hidden layers. 
 

The use of mesh inferred value seeks to pinpoint possible 

locations of structural anomaly, if any, by comparing the 

actual observed reading of a given target location to its MIV, 
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which in turn is based on the actual observed readings of the 

specific points surrounding the target location.  

Fig. 25 shows the results of the autoencoder compared to 

the observed values. We superimpose the observed values 

over the mesh inferred values. As can be seen, the mesh 

inferred values are able to identify the damaged part of the 

buildings as the discontinuity is more conspicuous compared 

to those of the naïve expected values discussed earlier. Given 

that the use of the MIV is able to locate possible anomalies in 

the structure, the mesh inferred values are then used for the 

succeeding experiments discussed in this paper which involve 

the use of more stringent statistical tests that will give some 

basis for the confidence in tagging a specific location as 

probably defective due to some structural defect that is not 

present in the areas surrounding this tagged spot. 

C. Statistical Tests 

Nonparametric tests are the preferred statistical approach 

used in this study as they do not assume a normal distribution 

or a Gaussian distribution for the samples. This is important as 

the nature of the data is not fixed and varies depending on the 

disturbances that a building experiences during the data 

collection period [52].  

Several statistical tests are considered for the study, such as 

the chi-square statistic, Mann-Whitney test, Wilcoxon signed 

rank test, Kruskal-Wallis test, and the Kolmogorov-Smirnov 

test. 

The test statistics are computed for each floor comparing 

the observed and mesh inferred values. The test statistics are 

then plotted to see if they are able to isolate the damaged 

portion of the building by measuring how near or far the 

computed statistic is from the mean of the group. For the 

succeeding figures, the ―blue‖ vertical line indicates the mean 

of the test statistic values, the ―green‖ vertical lines indicate 

half standard deviation away from the mean, and the ―red‖ 

vertical lines indicate one standard deviation away from the 

mean. 

The first statistic used is the chi-statistic. The chi-square 

statistic is used to quantify the difference between a set of 

observed values and a set of expected values. A low value 

statistic indicated a high correlation between the two sets of 

data. Equation (2) shows the general formula in computing the 

chi-square statistic. In the equation, 𝑋2 refers to the chi 

statistic, 𝑂𝑖  refers to the 𝑖𝑡ℎ observed value in the sample, and 

𝐸𝑖  refers to the 𝑖𝑡ℎ expected value in the sample. 

 

𝑋2 =   
 𝑂𝑖 −  𝐸𝑖 

2

𝐸𝑖

                              (2) 

 

The chi-statistic indicates whether the observed values are 

statistically different from the mesh inferred values from the 

autoencoder. Fig. 26 to 29 shows the results of computing the 

chi-statistic at different time instances of the earthquake. Fig 

26 shows the chi-statistic for the different floors before the 

major peak of the earthquake. Clearly, the healthy building 

(Fig. 26a) has a smoother curve compared to the damaged 

buildings. Fig. 27 shows the chi-statistic for the different 

floors during the peak of the earthquake. As can be seen, the 

curve of the healthy building (Fig. 27a), compared to those of 

the damaged buildings (Fig. 27b and Fig. 27c), is relatively 

smoother compared to the curves with clear discontinuity at 

the 5th and 10th floors of the damaged buildings. Fig. 28 

shows the chi-statistic after the peak of the earthquake. The 

floors would have fully reacted to the tremor of the earthquake 

at this point in time. As with Fig. 26, the healthy building 

exhibits a smooth curve compared to the jagged curve of the 

damaged buildings. A similar pattern is also observed with 

Fig. 29, which is when the tremor is beginning to wane. 

The next statistic considered is the Kruskal-Wallis statistic. 

The Kruskal-Wallis statistic is the nonparametric equivalent of 

the one-way analysis of variance (ANOVA) for comparing 

two or more independent samples and determining whether 

they have the same distributions or at least one sample is 

different from the rest. Like with ANOVA, the test statistic 

only indicates whether medians of the samples are equal or 

not. Locating the samples that lead to the rejection of the null 

hypothesis of the test statistic is done by computing the Mann-

Whitney over two samples at a time. Equation (3) is used to 

compute the test statistic. In the equation, 𝐻 is the test statistic, 

𝑁 is the combined number of values from all the samples, 𝑅𝑖  

is the sum of the ranks from a particular sample, and 𝑛𝑖  is the 

number of values from the corresponding rank sum. 

 

𝐻 =  
12

𝑁(𝑁 + 1)
 

𝑅𝑖
2

𝑛𝑖

−  3 𝑁 + 1                  (3)

𝑘

𝑖=1

 

 

 Similar to the chi-statistic, the aim for this statistic is to see 

if the observed values are statistically different from the mesh 

inferred values from the autoencoder. Fig. 30 to 33 shows the 

results of computing the test statistic at different time 

instances of the earthquake. Fig. 30 shows the statistic before 

the peak of the earthquake. It can be seen from the figure that 

discontinuity on the curve determined the damaged floors in 

the structure. This discontinuity is further highlighted during 

the peak of the earthquake as seen in Fig. 31.  

VII. THREE DIMENSIONAL STRUCTURE VISUALIZATION 

A 3D visualization tool is also developed to understand the 

micro-tremor readings. It incorporates the needed information 

that engineers want to see from the sensor reading, such as the 

acceleration, velocity, and displacement of a given point, and 

a 3D rendering of the sensor nodes in a 3D space. The tool 

allows the user to pan, move, rotate, and zoom around the 

structure for better visualization of the movements. The tool 

was created using Pygame [53] and PyOpenGL [54] libraries 

which are libraries used for game development in Python. 

The tool can be easily modified to accept pre-designed 

buildings or structures from a CSV file containing the sensor’s 

x-, y-, and z-coordinates. For this implementation, we 

developed a function that automatically creates a regular or 

rectangular building with four sensor locations per floor for 

faster prototyping. The function accepts a structure’s height 

and width ratios, the number of floors, the actual floor height 

for the drift ratio computation, and a magnitude multiplier to 

see how the building will move if the sensor readings were a 

magnitude greater than the original values. Fig. 12 shows a 

proportionally designed building where the height and width 

are equal. Fig. 13 shows a tall and slender building where its 
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height is larger than its width similar to buildings with high 

ceilings. Fig. 14 shows a wide building where its width is 

larger than its height. 

 

 
Fig. 12.  Sample proportional building designed using the structure 

visualization tool. 

 

 
Fig. 13.  Sample tall and slender building designed using the structure 

visualization tool. 

 

 
Fig. 14.  Sample small and wide building designed using the structure 

visualization tool. 

 

 A graphical user interface (GUI) is also incorporated which 

allows structural engineers to view the sensor readings (i.e. 

acceleration, velocity, and displacement) within the tool. The 

graphical user interface was created using the Tkinter library 

which is a library that allows the creation of a graphical user 

interface form within the Python environment. The GUI 

allows the selection of the target floor and group with 

dropdown menus for easy navigation. The plots displayed can 

be zoomed in or out as needed as it uses the Matplotlib library 

for plotting the sensor readings. Fig. 17 shows a sample plot of 

Group 1 Floor 1 sensor. 

The visualization tool also allows the visualization of the 

actual movements of the sensor nodes. This is an important 

feature as engineers want to see the modal shape or behavior 

of the building under different kinds of excitation force. This 

is implemented by updating each point of the structure based 

on the individual CSV files of each sensor node containing the 

x, y, and z-displacements per time instance. By pressing down 

on the spacebar on the keyboard, the tool reads and updates 

each point sequentially resulting in a dynamic visual 

representation of the sensor data. Fig. 15 shows how the raw 

data values manifest on the structure, while Fig. 16 uses the 

magnitude multiplier with a value of three which shows what 

happens when movements three times the original movements 

based on a certain were acted on the building. 

 

 
Fig. 15.  Sample dynamic visualization of how the raw values manifest on the 

structure. 

 

 
Fig. 16.  Sample dynamic visualization of how the building moves if the 

displacement values are three times the original raw values. 

 

 The last component to be incorporated within the tool is the 

computation of drift ratios. The drift ratio is the difference of 

displacements of the floor above and below the floor of 

interest and normalized by the height of each floor. The 
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threshold levels used in the implementation was based on 

Table I [23]. The computed drift ratio is outputted on the 

Python console along with the simulation of the moving 

building. A sample run of this is shown in Fig. 34 and Fig. 35. 

Fig. 34 shows a ―low activity‖ drift ratio or normal behavior 

for the building as the floors move in the same direction, while 

Fig. 35 shows a ―medium activity‖ where it can be seen from 

the accompanying simulation that a small bump occurred in a 

corner of the building. 

 
TABLE I 

DRIFT RATIO THRESHOLDS 

Threshold Stage 1 2 3 

Suggested Typical  

Drift Ratios (%) 
0.2 – 0.3 0.6 – 0.8 1.4 – 2.2 

VIII. CONCLUSION 

We present the design and implementation of a set of tools 

for the structural health monitoring (SHM) of vertical and 

horizontal structures based on visualization and statistical tests 

of the signals emitted by a mesh of motion sensors. To 

accomplish this, we implemented a tool that structural 

engineers can use to visualize the individual sensor readings as 

a graph or by looking at the three dimensional rendering of the 

structure. The tool allows the users to visually see how the 

individual readings affect the movement of the structure by 

simulating how a force acts on a structure based on sensor 

readings.  

We also explored the use of multiple sensors placed on each 

floor to be able to localize the problem. This may not be 

possible using the current methods of analyzing structural 

health monitoring data. By combining the readings from 

multiple sensors that are wrapped around a structure, it is 

feasible to locate the damaged portions of the buildings. To 

quantify the findings as a supplement to visualization, 

nonparametric statistical tests are used. The Kruskal-Wallis 

statistical test was able to uncover certain trends between the 

healthy and damaged buildings given that the time series data 

is sampled at different time windows of the live earthquake on 

which the simulation was based. 

Indeed, experiments were conducted using actual 

earthquake data which were applied on sample buildings that 

were constructed using the ETABS simulation software. The 

actual sensors are currently being developed and will be 

deployed on cultural heritage structures (i.e. churches), lifeline 

systems (i.e. flyovers, bridges, and elevated railways), and 

modern structures to periodically gather data for analysis. 

There is a huge potential for this mesh of tremor sensors to 

identify underlying structural damage that would call for 

necessary maintenance or intervention before the condition 

worsens. 

 

 

 
Fig. 17.  Sample data plot for the target floor and group. 
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Fig. 18.  X and Y displacements per floor plotted against the floor values at a certain point in time. The circle highlights the damaged portions of the buildings: a) 
tenth floor, b) fifth floor. 

 

 
 

 

 

 
Fig. 19.  X-displacements of different floors before a major tremor occur. a) Healthy building. b) Damaged at tenth floor. c) Damaged at fifth floor. 
 

 

 

 

 

 

 
Fig. 20.  X-displacements of different floors after a major tremor occurred. The circle highlights the area that shows the difference between the different 
structures. a) Healthy building. b) Damaged at tenth floor. c) Damaged at fifth floor. 
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Fig. 21.  x-displacements of different floors after a major tremor occurred. The plots compare the amplitudes of the displacement values of different floors.  The 

red circle is the same mark from Fig. 9. The blue circle highlights the area that shows the difference in amplitudes between the different structures. a) healthy 

building. b) damaged at tenth floor. c) damaged at fifth floor. 
 

 
Fig. 22.  Velocities along the x-axis of different floors after a major tremor occurred. The rectangle highlights the area that shows the difference between the 

different structures. a) Healthy building. b) Damaged at tenth floor. c) Damaged at fifth floor. 
 

 
Fig. 23.  Comparing the peak velocities along the x-axis of different floors after a major tremor occurred. The circle highlights the area that shows the difference 

between the different structures. a) Healthy building. b) Damaged at tenth floor. c) Damaged at fifth floor. 
 

 
Fig. 24.  Comparison of the naïve expected values with the observed values. a) Healthy building. b) Damaged at tenth floor. c) Damaged at fifth floor. 
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Fig. 25.  Comparison of the mesh inferred values with the observed values. The circle highlights the damaged portions of the buildings. a) Healthy building. b) 

Damaged at tenth floor. c) Damaged at fifth floor. 

 
 

 

 
Fig. 26.  Chi-statistic before the peak of the earthquake occurred (time 20 seconds to 21 seconds). a) Healthy building. b) Damaged at tenth floor. c) Damaged at 

fifth floor. 

 

 

 
Fig. 27.  Chi-statistic during the peak of the earthquake (time 35 seconds to 36 seconds). a) Healthy building. b) Damaged at tenth floor. c) Damaged at fifth 

floor. 
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Fig. 28.  Chi-statistic after the peak of the earthquake (time 49 seconds to 50 seconds). a) Healthy building. b) Damaged at tenth floor. c) Damaged at fifth floor. 

 

 

 

 
Fig. 29.  Chi-statistic during the waning period of the earthquake (time 230 seconds to 231 seconds). a) Healthy building. b) Damaged at tenth floor. c) Damaged 

at fifth floor. 
 

 

 
Fig. 30.  Kruskal-Wallis statistic before the peak of the earthquake occurred (time 20 seconds to 21 seconds). a) Healthy building. b) Damaged at tenth floor. c) 

Damaged at fifth floor. 
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Fig. 31.  Kruskal-Wallis statistic during the peak of the earthquake (time 35 seconds to 36 seconds). a) Healthy building. b) Damaged at tenth floor. c) Damaged 

at fifth floor. 

 

 

 
Fig. 32.  Kruskal-Wallis statistic after the peak of the earthquake (time 50 seconds to 51 seconds). a) Healthy building. b) Damaged at tenth floor. c) Damaged at 

fifth floor. 

 

 
Fig. 33.  Kruskal-Wallis statistic during the waning period of the earthquake (time 230 seconds to 231 seconds). a) Healthy building. b) Damaged at tenth floor. 
c) Damaged at fifth floor. 
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Fig. 34.  Building movement with low activity drift ratio. a) Console output displaying the drift ratio status. b) 3D visualization showing the dynamic movement 

of the building. 

 

 
Fig. 35.  Building movement with medium activity drift ratio. a) Console output displaying the drift ratio status. b) 3D visualization showing the dynamic 

movement of the building. 
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