
 

  
Abstract—This paper studies the problem of visual odometry 

based on a deep recurrent convolutional neural network. A new 
visual odometry algorithm based on dual-stream convolutional 
neural networks with long short-term memory is proposed. The 
color stream of the convolutional neural network acquires the 
color features in the RGB image. The depth stream acquires the 
contour features in the depth image, generates fusion features 
through the feature fusion unit, and finally predicts the pose at 
the current moment through autonomous sequential modeling 
using recurrent neural networks. Experimental validation on 
the TUM dataset showed that the method introduces contour 
features into the system through a dual-stream architecture of 
neural networks, which provides higher accuracy and robust-
ness compared to other convolutional neural network-based 
visual odometry systems, especially in the presence of motion 
blur and poor lighting. 
 

Index Terms—mobile robot, position estimation, visual 
odometry, LSTM 
 

I. INTRODUCTION 
N the 5G era, robotics has been rapidly developed and is 
widely used in military, medical, service, aerospace and 

other fields [1]-[3]. Vision odometry is the core technology 
of robotics and is divided into two main categories: geome-
try-based and deep learning-based. There are three imple-
mentation methods for geometry-based visual odometry. The 
first is the direct method [4]-[6], which builds and optimizes a 
photometric error function to estimate the interframe motion 
based on the assumption of a constant grayscale. The second 
is the feature point method [7]-[9], which builds and opti-
mizes the reprojection error function to estimate the inter-
frame motion by extracting and matching the feature points 
of neighboring frames. The third is the fusion of the direct 
method and the feature point method, also known as the 
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semidirect method [10], which extracts and matches the 
features of neighboring frames and builds and optimizes the 
photometric error function for the feature points to estimate 
the interframe motion.  

Deep learning has been a major study topic in recent years 
and has taken the lead in computer vision research. However, 
most existing deep learning architectures are applied to ob-
ject recognition and classification, and relatively little re-
search has been done to accomplish pose estimation using 
deep learning. Compared to geometric visual odometry, 
deep-learning-based visual odometry does not require pro-
cesses such as storing keyframes, matching features between 
frames, and global optimization. When exploring and build-
ing large-scale maps, the computation and storage of neural 
networks do not increase. This solves the problem of high 
computational pressure and storage pressure when geome-
try-based visual odometry is applied to large-scale maps. In 
addition, we introduce contour features from the depth image 
frames into the system through a dual-stream convolutional 
neural network (CNN) architecture, which gives the system 
better performance in challenging environments.  

 
We propose new pose estimation methods based on du-

al-stream CNN with long short-term memory (LSTM). A 
flow-chart is shown in Figure 1. To extract contour features, 
the depth image is preprocessed and sent into a separate 
convolutional stream. The depth stream's contour feature 
maps and the color stream's color feature maps are created 
using the contour features of the depth stream as a compli-
ment. This data is combined and sent into an LSTM for se-
quential modeling to estimate the current moment pose. This 
system has high accuracy and robustness. The main contri-
butions of this paper are as follows. First, a new feature ex-
traction method based on a dual-stream CNN is proposed to 
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Fig. 1.  Flow-chart of our proposed visual odometry. Color image sequences 
and depth image sequences are preprocessed and input to corresponding 
convolutional neural network stream to extract features for LSTM's se-
quential modeling to estimate pose. Image sequences are obtained from 
TUM dataset. 
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improve the accuracy and robustness of the system with 
regard to the color features of the color stream. Second, 
LSTM is used to autonomously model the anterior-posterior 
correlation and motion model of the image sequence. This 
effectively improves the accuracy of the system's positional 
estimation. Third, a dual-stream CNN and LSTM recurrent 
neural network are combined into a new pose estimation 
system with generalization capability to unknown environ-
ments. 

II. RELATED WORK 

A. Geometry-Based Pose Estimation Methods 
In 2007, Klein et al. proposed the parallel tracking and 

mapping (PTAM) system [11], which was the first simulta-
neous localization and mapping (SLAM) system to run lo-
calization and mapping in parallel and was the design stand-
ard for subsequent SLAM systems. PTAM introduces a 
keyframe mechanism in visual odometry. This requires only 
processing and storing keyframes from which keyframes are 
used for positional estimation to optimize the estimated path 
and map. 

In 2014, J. Engle et al. proposed the Large Scale Direct 
Monocular SLAM (LSD-SLAM) system [12], which was the 
first SLAM system that used the direct method. LSD-SLAM 
acquires five points at equal distances on the polar line, 
measures its sum of squared distance (SSD) without compu-
ting feature points, and constructs a semidense map based on 
the assumption of constant grayscale. 

In 2017, R. Mur-Artal et al. proposed the ORB-SLAM2 
system [13], which is an upgraded version of ORB-SLAM 
and supports systems with RGB-D and binocular cameras. 
This system uses the same architecture as PTAM and is a 
relatively easy-to-use and well-designed modern SLAM 
system. This team then proposed ORB-SLAM3 [14] to im-
prove the accuracy and robustness of the entire system by 
means of multisensor fusion. 

B. Deep Learning Based Pose Estimation Methods 
In 2015, Alex et al. proposed PoseNet [15] as a typical 

representative of early supervised learning methods. PoseNet 
batches the acquired images by structure from motion (SFM) 
and calculates the corresponding poses as the labels of the 

dataset. Then the network structure and parameters are de-
signed based on GoogLeNet, and a regression model of 
6-DOF poses is built by training. PoseNet obtains the esti-
mated pose with high accuracy and without the support of a 
large number of labeled datasets by the migration learning 
method. 

In 2017, DeepVO [16] proposed by Sen et al. directly 
mapped its corresponding pose from the original image se-
quence. It is able to learn not only the features of images by 
convolutional neural networks but also the dynamic rela-
tionships and intrinsic connections between images implic-
itly by recurrent neural networks.  

In 2019, Almalioglu et al. proposed a generative adver-
sarial-network-based model to learn image features by un-
supervised learning to obtain a monocular VO system called 
GANVO [17]. The model does not require a large amount of 
calibration data compared to supervised learning and exhib-
ited better performance than most traditional methods at that 
time. 

III. FRAMEWORK OF ALGORITHM 
Our proposed pose estimation system consists of a du-

al-stream convolutional neural network, feature fusion unit, 
and LSTM. The architecture of our proposed dual-stream VO 
system is shown in Figure 2. The dual-stream convolutional 
neural network consists of a color stream and a depth stream. 
The color stream extracts the color features in RGB image 
frames, and the depth stream extracts the contour features in 
depth image frames. The extracted color features and contour 
features are input to the feature fusion unit for feature fusion. 
Finally, the fused features are input to the LSTM for se-
quential modeling to estimate the pose at the current moment. 

A. Feature Extraction Based on Dual-Stream CNN  
Artificial intelligence and neural networks are the current 

research hotspots. Most existing convolutional neural net-
work architectures are designed for object recognition, clas-
sification and tracking, so the features extracted by their 
convolutional neural networks are prepared for subsequent 
object recognition, classification, etc. To extract effective 
features applicable to visual odometry, we designed a color 
stream based on the VGGNet [18] architecture to extract 
color features of RGB image frames using the original RGB 
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Fig. 2.  Architecture of proposed dual-stream VO system. CNN should vary according to size of input image. RGB and depth images are from TUM dataset. 
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image frames as input. We also designed the depth stream 
with the same structure and configuration as the color stream. 
The contour features of the depth image frames are intro-
duced into the pose estimation system through the du-
al-stream neural network architecture as a complement to the 
color features, which improves the accuracy and robustness 
of the system. Since visual odometry should have the ability 
to generalize in an unknown environment, the effective fea-
tures of visual odometry should be based on several combi-
nations of information about the object rather than relying on 
environmental information. 

We designed a dual-stream CNN with the same structure 
and configuration for the color and depth streams. The de-
tailed configuration of each convolutional and pooling layer 
is shown in Table I. The individual convolutional stream 
consists of nine convolutional layers and six maximum 
pooling layers. Each layer except Conv6 is followed by 
ReLU linear rectification function activation. To fully extract 
features at various levels in the image, the size of the con-
volution kernel of the method is reduced from  to  
and finally to . Since this network is trained to learn 
effective features applicable to visual odometry, prepro-
cessed completed color and depth images are processed by 
this network to compress high-dimensional image infor-
mation into compact feature maps. The feature maps output 
from the two convolutional streams are fused by a feature 
fusion unit to generate fused features. The fused features are 
the basis for the subsequent LSTM for sequential modeling to 
estimate the pose. 

 
B. Sequential Modeling Based on LSTM 
Most existing neural network architectures are designed 

for object recognition, classification and tracking. They 

generally use fully connected layers to generate probabilities 
of possible objects after feature extraction to recognize ob-
jects. However, this architecture does not apply to the pose 
estimation problem. We employ recurrent neural networks 
for autonomous sequential modeling of the motion relation-
ship between image frames to estimate the pose information 
after feature extraction and fusion. 

A recurrent neural network (RNN) processes sequential 
data. It differs from a convolutional neural network in its 
ability to process sequentially varying data. For example, the 
meaning of a word may be different depending on what is 
mentioned above, so to know the meaning of the word in 
context, you need to relate it to the previous context. The 
mathematical expression of RNN is as follows: 
  (1) 
  (2) 
The above equation,  represents the state of the hidden 
layer at moment ,  is the activation function,  is the 
weight coefficient of the input,  is the weight coefficient 
of the previous hidden state,  is the bias vector,  is the 
output at moment ,  is the weight coefficient of the 
hidden state and  is the bias vector. From the formula, it 
can be observed that RNN is theoretically capable of pre-
serving the relationship between all items in the sequence. 
However, experiments have demonstrated that short-term 
memory has a large effect on the RNN, but long-term 
memory has little effect, which is the classical short-term 
memory problem of the RNN. To solve this problem, im-
proved algorithms for RNNs have been derived. One of these 
algorithms is the LSTM [19]. 

 
The long short-term memory neural network is an ad-

vancement of the recurrent neural network based on the gate 
circuit concept, which was originally designed to solve the 
problem of motion model and image sequence. Visual 
odometry, as a classical image sequence problem, fits very 
well with LSTM. The pose estimation network was built 
using two stacked LSTM layers, with the output of the pre-
vious LSTM layer as the input to the following LSTM layer 
and each LSTM layer having 1000 hidden states. After re-
ceiving the fused feature maps from the feature fusion unit, 
the pose information at the current moment is estimated and 
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Fig. 3.  Architecture of LSTM neural network unit. Source of data for LSTM 
neural network is fused feature maps output by feature fusion unit. 
 

 
TABLE I 

CONFIGURATION OF EACH CONVOLUTIONAL AND POOLING LAYER 

Layer Kernel Padding Stride Cannels 

Convl  3 1 64 

Pooling1  0 2 64 

Conv2  2 1 128 

Pooling2  0 2 128 

Conv3  2 1 256 

Conv3_1  0 1 256 

Pooling3  0 2 256 

Conv4  0 1 512 

Conv4_1  0 1 512 

Pooling4  0 2 512 

Conv5  0 1 512 

Conv5_1  0 1 512 

Pooling5  0 2 512 

Conv6  0 1 1024 

Pooling6  0 2 1024 
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output by the pose estimation model built by the LSTM. As 
the image sequence changes, there is pose information output 
at each moment. The architecture of the LSTM neural net-
work unit is shown in Figure 3.  

The LSTM has a module cell state similar to the RNN 
hidden layer, denoted by , for storing previous and present 
information of high relevance. The previous cell state  
and the current input signal  are processed together by 
LSTM to generate the current cell state . LSTM design 
uses the idea of "gates" to introduce or remove information 
from cell states . A "gate" is a method of processing in-
formation that allows signals to pass, not pass, partially pass 
or pass after being processed by the "gate." LSTM uses this 
principle to obtain the key information in a sequence and 
forget the less relevant information to achieve the purpose of 
long-term memory. An LSTM cell consists of a forget gate, 
input gate and output gate. The role of the forgetting gate is to 
eliminate information that is not very relevant in the cell state 

 at the current moment. The role of the input gate is to 
decide which useful information is added to the cell state  
at the current moment from the new input  and the output 

 of the previous moment. The role of the output gate is to 
generate the current moment's output signal  by integrating 
the previous moment's cell state  after being processed 
by the forgetting gate and the input gate, the previous mo-
ment's output signal  and the current moment's input 
signal . The following mathematical formulas are used to 
express the process of processing a signal by an LSTM layer: 
  (3) 
  (4) 

 .  (5) 

  (6) 
  (7) 
  (8) 

 is the sigmoid activation function, , ,  are the 
weight parameters,  is the output signal at the previous 
moment,  is the input at the current moment, , ,  are 
the bias parameters, and  is the hyperbolic tangent ac-
tivation function. 

C. Feature Fusion 
To improve the accuracy of visual odometry in challenging 

environments such as motion blur and poor lighting, we 
trained a separate convolutional stream to extract contour 
features from the depth images. Compared to RGB cameras, 
depth cameras are less affected in challenging environments. 
As a result, the contour features extracted from depth image 
frames have higher reliability in relatively complex envi-
ronments. To a certain extent, the contour features are com-
plementary to the color features extracted from RGB image 
frames. We improve the accuracy and robustness of the sys-
tem in challenging environments by fusing colored and 
contour features to generate fused features for input into the 

LSTM for sequence modeling and estimating the current 
moment pose. 

According to the sequence of fusion and prediction, feature 
fusion approaches may be characterized as early fusion 
[20-21] or late fusion [22]. Early fusion involves fusing the 
features of multiple layers and then training the predictor on 
the fused features. This type of method has "concat" and 
"add" operations. Late fusion is the improvement of detection 
performance by combining detection results from different 
layers. We use the "concat" feature fusion method to generate 
a fused feature map group by combining colored features and 
contour features, in preparation for the subsequent LSTM 
sequence modeling. 

Since the structure and configuration of the color convo-
lutional stream and the depth convolutional stream are iden-
tical, the output feature map after Pooling6 has the same 
structure and dimensionality. We use  
to denote the color stream input sequence that has been pre-
processed and  to denote the depth 
stream input sequence that has been preprocessed. The fea-
tures extracted by the convolutional neural network are 

 and . We 

generate fused features by forming a feature map group 

 from  moment color features  and  moment depth 

features . Considering that depth contour features have 
higher reliability under motion blur, poor lighting, etc., we let 
the depth contour feature profiles and the weight coefficient 
matrix be multiplied when fusing color features and depth 
contour features to increase the influence of depth contour 
features on the pose estimation network, and the weight co-
efficient matrix  is updated automatically by network 
back-propagation. The expression of the formula for the 
fusion feature is shown below. 

  (9) 

Finally, the generated groups of fused feature maps are 
transferred to the LSTM for sequence modeling and estima-
tion of the temporal pose. 

D.  Loss Function 
In contrast to neural networks for target detection and 

classification purposes, we modeled the image sequences by 
LSTM recurrent neural networks to estimate the current 
moment pose instead of using a softmax classifier. The loss 
function for the network is the Euclidean loss of the pose. The 
pose information includes the camera position information  
and orientation information  , so the mathematical expres-
sion of the Euclidean loss  of the pose is shown below. 
  (10) 

 is the positional Euclidean loss,  is the directional 
Euclidean loss and  is the equilibrium parameter of both. 
The Euclidean loss function is expressed in terms of the 
Euclidean distance between the true and estimated poses, as 
shown below. 
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 is the estimated position information,  is the estimated 
direction information,  is the true position information,  
is the true direction information and  is the training sample 
capacity. 

IV. EXPERIMENTAL EVALUATION 

A. Experimental Platform 
To evaluate the performance of our proposed LSTM du-

al-stream convolutional-neural-network-based visual odom-
etry system, we implement the network structure based on the 
TensorFlow framework and train the pose estimation model 
on a CPU model Intel Xeon E5-2699 v4 with 2.2 GHz and 
GPU model GTX1080Ti server. To prevent overfitting, we 
also used the Adam optimizer to train the network, where the 
default values of 0.9 and 0.999 were used for both parameters 

 and , and the initial learning rate was set to 0.0002. The 
experiments were conducted using a laptop computer with an 
Intel Core i7-10875H CPU at 2.3 GHz, NVIDIA GeForce 
RTX2060 GPU, and Ubuntu 16.04. 

B. Preprocessing of Image Frames 
Our proposed LSTM-based dual-stream CNN consists of 

color images and depth images acquired by RGB-D cameras 
as inputs. Color images are input to the color stream of the 
dual-stream CNN to extract color features from the original 
RGB images. Therefore, color images do not need to undergo 
preprocessing such as optical flow, grayscale and binariza-
tion. However, to extract features that are more convenient 
for LSTM to build effective motion models and estimate the 
correct positional information, we need to cascade the adja-
cent two frames of the color image to form a deep RCNN 

tensor. The CNN we designed is based on a modified 
VGGNet architecture and therefore requires a fixed input 
image size of . The original image captured from 
Kinect One is , and the original image captured 
from Kinect 360 or Xtion is . In the system we 
designed, the original image is cascaded to  and 
then randomly cropped to a size of . We also tried 
adjusting the original image directly to  but found 
that the pose estimation performance was not as good as 
expected.  

In our proposed dual-stream convolutional neural network, 
depth images from RGB-D cameras are introduced into a 
separate convolutional stream to learn contour features, thus 
enhancing system performance. The convolutional layer of a 
CNN, on the other hand, is intended exclusively for color 
image frames, where the pixel channels primarily convey 
light intensity. The pixel value of a depth image frame indi-
cates the scaled distance between the camera's optical center 
and objects in the surroundings. It is difficult to extract ef-
fective contour features by directly using the original depth 
image as the input to the convolutional neural network. 
Therefore, the necessary preprocessing should be performed 
before feeding the depth image into the CNN. We used the 
minimized normal + depth (MND) method [23] proposed by 
Ruihao Li et al. to recover the depth image to a three-channel 
image. The results of processing depth images by MND are 
shown in Figure 4. It can be seen from the images that the 
image quality is significantly improved after MND encoding. 
The depth images also need to be cascaded adjacent to the 
MND encoding is completed, and then randomly cropped to a 
size of . 

C. Training and Testing 
We designed comparison experiments with the DeepVO 

and PoseNet algorithms to verify the effectiveness of our 
proposed method. The experiments were performed on the 

 

 
(a) 

 
(b) 

Fig. 4.  Result of MND encoding of depth images in challenging environment. (a) RGB image, depth image and MND depth image in poor lighting. (b) RGB 
image, depth image and MND depth image with motion blur. 
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TUM RGB-D dataset provided by the Technical University 
of Munich. Each sequence contains RGB images, depth im-
ages and real trajectories. The dataset is widely used to test 
various SLAM systems and VO algorithms. First, our pro-
posed methods, DeepVO and PoseNet were used to train the 
model on the TUM testing and debugging sequence classes. 
The TUM testing and debugging sequence class contains 
fr1/xyz, fr1/rpy, fr2/xyz and fr2/rpy sequences with a total of 
8473 samples. DeepVO and PoseNet train the model using 
only RGB images of the above sequence. Our proposed 
method, DeepVO and PoseNet were then tested for perfor-
mance on the indoor TUM Robot SLAM sequence class and 
the challenging environment TUM Dynamic Objects se-
quence class, respectively. The TUM Robot SLAM sequence 
class uses the fr2/pioneer_360, fr2/pioneer_slam and 
fr2/pioneer_slam2 sequences, and the TUM Dynamic Ob-
jects sequence class uses the fr3/walking_rpy, 
fr3/walking_static and fr3/walking_xyz sequences.  

D. Evaluation Index 
We used the standard evaluation methods of relative pose 

error (RPE) [24] and absolute trajectory error (ATE) [24] for 
visual odometry to evaluate our proposed dual-stream visual 
odometer.  

The relative pose error is a direct expression of the accu-
racy of the visual odometer by comparing the estimated pose 
and the real pose with a fixed time pose change. Using RPE 
for our proposed method, DeepVO and PoseNet on 
fr2/pioneer_360, fr2/pioneer_slam, fr2/pioneer_slam2, 
fr3/walking_rpy, fr3/walking_static and fr3/walking_xyz 
sequences were used for experiments. The experimental 
results are shown in Table Ⅱ. After analyzing the experi-
mental data, it is observed that our proposed method im-
proves performance by 64% in static environments and 28% 
in challenging environments compared to DeepVO. Relative 
to PoseNet, our proposed method improves performance by 
30% in static environments and 20% in challenging envi-
ronments. 

To compare the performance differences between our 
proposed method, PoseNet and DeepVO, we used graphs to 
present the relative trajectory errors between the three 
methods. The experimental results on fr3/walking_rpy are 
shown in Figure 5, fr3/walking_static in Figure 6, and 
fr3/walking_xyz in Figure 7. We can see that our proposed 

method has the smallest relative trajectory drift and a better 
pose estimation effect. 
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Fig. 6.  Results of trajectory drift comparison for fr3/walking_static. 
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Fig. 5.  Results of trajectory drift comparison for fr3/walking_rpy. 
 

 
TABLE Ⅱ 

RESULTS OF TEST SEQUENCES 

Seq. 
Translational RMSE Drift(％) Rotational RMSE Drift(°/100m) 

DeepVO PoseNet Dual-stramVO DeepVO PoseNet Dual-stramVO 

r2/pioneer_360 7.421 6.014 6.218 5.962 2.524 2.536 

fr2/pioneer_slam 5.267 4.234 1.652 2.876 0.739 0.476 

fr2/pioneer_slam2 5.426 2.355 1.437 3.821 0.687 0.411 

fr3/walking_rpy 22.376 19.691 14.663 9.534 7.681 4.332 

fr3/walking_static 9.989 9.261 8.951 2.337 1.881 1.648 

fr3/walking_xyz 20.115 18.793 14.245 7.452 6.548 5.583 

Translational RMSE drift represents average RMSE drift error over corresponding sequence length. Rotational RMSE drift represents average rotational drift 
error per hundred meters on corresponding sequence. 
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The absolute trajectory error is the difference between 

the estimated and true positional information and may be 
used to visualize the algorithm's correctness and the trajec-
tory's overall consistency. We have evaluated our proposed 
method using the ATE evaluation method. The experimental 
results on fr3/walking_rpy are shown in Figure 8, 
fr3/walking_static in Figure 9, and fr3/walking_xyz in Figure 
10. In the plot of the experimental results, we record in a 
two-dimensional coordinate system the paths estimated by 
our proposed method (marked as estimated), the true paths of 
the sequence (marked as ground truth), and the difference 
between the estimated paths and the true paths (marked as 
difference). To evaluate the performance of our proposed 
method more comprehensively, we also used the ATE eval-
uation method for DeepVO and PoseNet on the sequences 
fr3/walking_rpy, fr3/walking_static, and fr3/walking_xyz, 
and the experimental results are shown in Figure 11. By 
comparing the ATE experimental result plots of our proposed 
method, DeepVO, and PoseNet, it is clear that our proposed 
method has significantly fewer errors in challenging envi-
ronments. 
 

 

 

 

V. CONCLUSIONS 
We proposed a new method for pose estimation. In the 

feature extraction stage, we extract the color features of color 
image frames and the contour features of depth image frames 
with separate convolutional streams to generate the corre-
sponding feature maps. In the feature fusion stage, we com-
bine the color feature maps and depth feature maps into a 
fused feature map group. In the pose estimation stage, we 
estimate the pose by modeling the motion model of the image 
sequence using LSTM. Our experiments on the TUM public 
dataset showed that our proposed method has higher accu-
racy and robustness and performs better than other convolu-
tional-neural-network-based pose estimation methods, espe-
cially in challenging environments.  

When using RGB-D cameras as sensors to acquire color 
and depth images, invalid depth data will inevitably occur. 
This data impacts the accuracy of the system. Future work 
will investigate the processing of invalid depth data gener-
ated during image acquisition by the RGB-D camera to re-
duce the error in the system's pose estimation.  
 
 

 

 
Fig. 10.  ATE evaluation plot of our proposed method on sequences 
fr3/walking_xyz. 
 
 

 
Fig. 9.  ATE evaluation plot of our proposed method on sequences 
fr3/walking_static. 
 

 

 
Fig. 8.  ATE evaluation plot of our proposed method on sequences 
fr3/walking_rpy. 
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Fig. 7.  Results of trajectory drift comparison for fr3/walking_xyz. 
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