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Decoupled CNLF Modular Grad-Div Stabilized
Scheme for the Fluid-Fluid Interaction Problems

Haigiang Xiao, Chunya Wu, Feng Xue, Lingzhi Qian* and Huiping Cai *

Abstract—In this paper, we present a Crank-Nicolson
leapfrog (CNLF) time stepping decoupled scheme for the
fluid-fluid interaction problems. The scheme is based on the
modular grad-div stabilized (MGDS) method which is very
efficient for the fluid-fluid interaction problems. The algorithm
is very simple to implement and retain the benefits of grad-
div stabilization. The unconditional stability of the proposed
scheme is proven rigorously. Numerical tests are given to verify
the efficiency and robustness of the proposed scheme.

Index Terms—Fluid-fluid interaction problems, Nonlinear
interface condition, Crank-Nicolson leap-frog, Modular Grad-
Div stabilization, Stability analysis.

I. INTRODUCTION

HERE are many problems in which different physi-

cal models, different parameter regimes, or different
solution behaviors are coupled across interfaces. A model
of two incompressible Newtonian fluids coupled across a
common interface is studied in [13], [14]. Fig. 1 illustrates
the subdomains, and the domain consists of two subdomains
Q, and Q, coupled across an interface I = 9Q; N9Q,, where
Q;, ¢ R (d = 2,3) is a bounded domain with piecewise
smooth boundary 9€);. We set I'; = 0Q;\I, for i = 1,2. The
problem studied in this paper is: given f; : [0,T] = H'(Q))
(i=1,2), find w; : Q; X [0,T] » R and p; : Q; X [0,T] > R
satisfying

Uiy — pidu; + wi - Vui + Vp = fi in Q;,
—Hini - V- 7 = kg — wl(u - wj) - 7

onl, i,j=12i#j, 1=1,2,

’U,,"Tl,izo onI,i=1,2, (1)
\x u; = 0 in Ql‘,
u; (x,0) =ul(x) inQ,
u; =0 on I,
where u;; = ‘?{qu Leap-frog scheme is widely used in the

calculation of the atmosphere and oceans, since it preserves
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Fig. 1: Example of adjoining subdomains

the wave energy conservation. The fully implicit Crank-
Nicolson scheme is a popular second-order accurate for-
mat for the nonstationary Navier-Stokes equations. Recently,
more and more scholars focus on this research topic, such
as in the references [3], [4], [5], [7], [9], [10], [12], [14],
[15]. Numerous works are also devoted to promoting the
CNLF scheme to solve the geophysical flow, uncoupling
groundwater-surface water flows [7], [8].

The grad-div stabilization method is an effective nu-
merical method for improving the approximate quality of
the fluid flow problems [2], [11]. Furthermore, the grad-
div stabilization increases coupling, decreases sparsity, and
makes preconditioning more difficult. Most aspects have been
addressed, but the full resolution is still an open problem.

In this paper, the CNLF-MGDS scheme is presented and
studied for the fluid-fluid interaction problems. The proposed
scheme has the obvious advantage for computing the fluid-
fluid interaction problems. The algorithm is very simple
to implement, retain the benefits of grad-div stabilization.
The unconditional stability is proven and ample numerical
experiments are performed to illustrate the efficiency of the
proposed scheme.

II. PRELIMINARIES

To write the variational form of problem, we introduce
the Sobolev spaces W™'(Q) for all non-negative integers m
and r equipped with the standard Sobolev norms || - ||, . In
particular, we write H™(Q) for W™2(Q) when r = 2.

Let

X; = {vi e H'(Q)? :v; =0 on T; = 0Q:\I, v;-m; =0 on I}

Q= {qi €L (Q): f qidQ; = o}.
Q;

Define X = X; x X5, 0 = Q1 X 0>, and L*(Q) = L*(Q;) X
L*(Q,). For u,v € X with u = [u,u,]” and v = [v;, v12]7,
define the L? inner product

(u,v) = Zf w;vdx,
Q;

i=12
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and the H' inner product

(u,v)y = Z (f u,-'v,-dx+f Vu; - Vv,-dx),
ot ;

i=1,2

and the induced norms ||v|| = ('u,'v)%, and ||v|lx = ('v,v);%(,
respectively.

Let 7; be a triangulation of Q; and 7, = 77 U 75, h be
the mesh parameter of 77, i.e. h is the largest diameter of a
simplex in either 77 or 7,. We construct globally continuous
conforming finite element spaces X;, for velocity and Q;;
for pressure on the meshes 7;,i = 1, 2. Denote X, = X X
X»4. As a consequence, X;, C X;, Oip € Q; and X, C X,
respectively.

A natural subdomain variational formulation for problem
(1) is to find (for i,j = 1,2,i # j ) u; : [0,T] — X; and
pi - [0,T] — Q; satisfying

(Wi, Vi) + pi(Vug, Voo, + (w; - Vuy, v)o, — (pi, V - vi)g,
+ f, klu; — uwjl(u; — uj)vids = (f;,v)a, Yv;€X;,
(V-u;,q)0, =0, Vg€ Q.
(2)
The natural monolithic variational formulation for problem
(1) is to find w : [0,7] — X and p : [0,T] — Q satisfying

(us, v) + u(Vu, Vo) + (u - Vu,v) — (p, V - u)
+ [ Klull[ulvds = (f,v), YveX, 3)
V-u,q) =0, VqeO.

where [-] denotes the jump across the interface I, (-, ) is the
L*(Q; U Qy) inner product and u = y;, f = fi,v = v; in Q;.

III. CNLF-MGDS scHEME

We consider the fully discrete CNLF-MGDS scheme for
the problem (1).

Algorithm 3.1 (CNLF-MGDS scheme) Let Ar > 0, f €

H™'(Q). Given u’fy‘hl,u’f’h € X, ne{l,2,---,N—1}, find

wis! € Xy, and piil € Oy satisfying

n+l n—1 n+l n— 1
Wy — Uy, Uy, T U
— = U +/~11 V—,V'Ul
2At 2
Q Q

n+l
Uy, +u1h

Q

un+1+un—l un+1 unl
Lh 1Lh Lh Lh
v 22U g 4|V Yy,
o 2At
1

2
1/2 12 Wy, UG,
—kfl[ A | — 5 vids
= (fl(r"“xvl)gl . Vv € Xip, )
ug’;ll € X, and pgjll € Oy satisfying

un+1 +ul 1
2.h 2,h
o ) e,
Q
un+l +un—1 un+l un 1
2,h 2,h 2.h 2.h
+|lv. = +B8|lv. =21 y.
( 2 ’qz] B ( A
Q
! + )
+7 V 2 s (%)
n+1 + n—1
2,h 2,h
+kf|[ug]| ——vads
at w2
K f ] a2 e
= (A v), o Yo exz,h. 5)

where 8 and y are the positive grad-div stabilization param-
eters.

It should be noted that this algorithm requires three initial
values ug, uh and u} The implicit solution at the first
and second time step and the initial data are used to start
Algorithm 3.1. The implicit solution can be obtained from
the semi-implicit scheme.

Algorithm 3.2 (Semi-implicit scheme [1]) Let Az > 0, f €
H'(Q). Given uy € Xp, n€{0,1,---,N—1}, find 'u,Z“ €X,
and p’“rl € O, satisfying

un+1 un n+1 +u
[um)w[vu w)

n+1 +uh ”+1 +uh 1
+[ 2 v 2 J_(pth’V'”)
un+l
+(V h )+kf|[u 1| w ' Tvdss
5q h
n+1 1
%M,ﬁ, Vo e XuVge On  (6)

IV. STABILITY ANALYSIS

Theorem 4.1: Let u’{*h1 € X;;, and u2 h € Xy, satisfy (4)

and (5), respectively. Then

nu,:ln e +ﬁ(nv T S

]+l j-1 2

lh

L

t f e g+ P
kAl‘ka j+1
kAlka é—;l +u2h

< lealF+aflf+55° st
+B(|v- il +||v-uh|)

(At .
D A T
j=2

+ u’

+ Iugzl +uy hll )ds

]\2‘
]\2‘

|u1h +u1h| + |“2h +“2h| )

)|

U’Zh +u2, |

)|t

prul) |

At :
P ||fz(rf)||f,l(gz>) : @)
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1P N CARE

Proof. Let j € {2,--,N — 1} and consider (4) with n = J. f [uft! +u

Jj+l1
Jj+

j-1
Taking (vy,q;) = (u”’—;u”’ P 1) in (4) to get

__f|“2h+“2h| ‘[u ‘
il I 1
up, —up, U ul +u{h Hi o
, + — V ul +u” )
2At 2 4 oh '
Q

2
]+1 N 172
Q “1h “h
j+1

w4 ! The remaining two interface integrals are treated analogously
+k f {%J '[uh]' ds and the expressions are inserted into (9), we get
I

12
(“2/1 + uzh |[u ‘

_kfu2h+u’ 2 ’” +u |[ | ' j |1/ J AA7 (” ]H ” W) |Ql H 511 H Us 2)
1 2 s ~1 ]+1 #2 J+1 j-1 2
w4 +4HV 'u,lh+u]h “91 ) V( 2h+uM)Q
- fl(tj),u] B 1 2 L1l
o =55, S S
ul i tul, My P
ol S B o )+% v ot
2
j+1 j-1 ]+l j-1
+)/{V~ Ui ;Uu, ’ ;"Uq h ] ) f‘um A_l‘z'[ui] gs E f‘uzh +u2h| ‘[u '
+ 4+ - f(u’+]+ | ]| u +u |[u] 1]|1/ zds
Similarly, taking (v, q2) = M—uM Pﬂl in (5). Applying 8 J, [\ LA Wi )| R
formula for the difference of squares to the first terms on the 4 K f‘ué*hl + u2 h '[“h]' ds — f‘“l Lt ul . ‘ ‘[uhfl]' ds
left-hand sides of the above relations and adding together, it 8 Ji
follows that + ]_C f (uﬂl +u2h1 | “h]| u” +u’ 2)|[u£_1]|1/ zds
. : 8 h
( _]+1 _ uj—l u}+l 2 _ uj—l 2 ) ] 1 ' .
4A[ H H HQI H Q H 2,h Q 5 < — ”.fl([])“H—l(Q ) + — ”.fZ(tJ)“H_](QZ)
j+1 j+1 j-1 H2
* Z HV +u”‘ H HV el +u2h) @ HV J+1 ‘_1)“2 HV ]+1 j—l)“2 10
UJH +u’ ! L /g, uz’h Q (10)
+k f [MT] ‘[uh]'ds Multiply through (10) by 4At, and summing over j =
! 2,---,n, then we have
j+1 j 1
x f[—] I s = o+ s o
! n 2 2 nli2 2
ul, +ul, uj+1+u 1/2 +ﬁ(”V' H” _”V' 2” +“V' h“ —||Vu},|”)
2,h 2h Lk 1Lh 1
_kﬁ 3 |[uh]‘ ' ' ds kAtf| h]||u;11-+}-ll +u 1hl| ds +kAtf| h]Hu;-;ll +u2hl| ds
r u1 nt “{ I uﬂ] + “éhl A 111" g kAt At
k| = 2 )| e ]j 5 S [ Trehilh + ) ds——f|[uh Nz, + ), ds
B 2 kA 1
Lo (R I R LR o | S C R R C R R
2 J+1 +ul! kA A 2P
_Hv, é,hl Q2)+%’ - 1.h 4 tzf’ /+1 —h '[ulj‘l] (u +u’ 2>|[u£—1]| ds
i (fl ) s ] " [fz(’j )s Al hlJ ©) “ﬂl + “{ " ’
(o8 2 Q
The following two interface integrals may be dealt with the
; At 2
following way < Z (,u_1 Hfl(l])||H4(Ql) + i ||f2(lj)||H1(Qz))- 1D
j+1 142 =2
f (#] |['u,£]| ds Then, we can complete the proof.
I
L uih + ué h2 uffhl + u{‘hl PRI . V. NUMERICAL EXPERIMENTS
B I 2 2 |[uh] |[uh | § In this section, we present some numerical experiments

k 1 - 1 12 to illustrate the theoretical results obtained in the previous
=1 f (ulh Ty, ’uh]’ : section and show the efficiency of the proposed scheme.
- Assume Q; = [0,1] x[0,1], and ©Q, = [0,1] x [-1,0], so 1
(( ot ulh '[uh]' u2h + u2h ’[“ ‘ )ds is the portion of the x-axis from O to 1. Then n; = [0, -1]7
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TABLE I: max||u;,‘||(2) of the CNLF-MGDS scheme
n

N 26 25 04 23 22
1
[
24 10.004251 | 0.004116 | 0.003864 | 0.003389 | 0.002613
23 0.004458 | 0.004318 | 0.004040 | 0.003567 | 0.002763
26 10.004711 | 0.004565 | 0.004282 | 0.003779 | 0.002936
27 0.005034 | 0.004879 | 0.004582 | 0.004043 | 0.003147

TABLE II: max||VuZ||§ of the CNLF-MGDS scheme
n

N 26 25 04 23 22
1
[
24 10.340311 | 0.333486 | 0.320475 | 0.296828 | 0.257739
23 0.232813 | 0.225833 | 0.212516 | 0.188284 | 0.148125
26 10.229010 | 0.221924 | 0.208402 | 0.183782 | 0.144392
27 0.231230 | 0.224084 | 0.210445 | 0.185603 | 0.144359

and n, = [0, 1]7. For q, Ui, M2, and k all arbitrary positive
constants, the right-hand side function f; is chosen to ensure
that

ur1 (1, x,y) = ax*(1 — x)*(1 — y) exp(-1),
uy2(t, x,y) = axy(=2 +y + 6x — 3xy — 4x% + 2x%y) exp(—1),
Pi(t,%,y) = cos(rx) sin(ry) exp(—1).

Similarly, the right-hand side function f, is chosen to ensure
that

21 (1, x,y) = ax*(1 — x)*(1 + y) exp(-1),
ux2(t, x,y) = axy(=2 —y + 6x + 3xy — 4x2 — 2x2y) exp(-1),

pa(t, x,y) = cos(mx) sin(my) exp(—1).

The spatial discretization is accomplished using the MINI-
element. The parameter values are chosen a = 1, u; =
1.0 x 1073, y, = 1.0, k = 100, T = 1. In order to
validate Theorem 4.1 with higher density ratio, we compute
the maximum values of ||MZ||2, and ||VuZ|I(2), respectively with
different time steps in Tables I-II, and compare the values
with different space meshes under the same time step. When
one fixes a time step, the norms increase monotonically
but the increased values reduce quickly. This phenomenon
indicates that the CNLF-MGDS scheme is unconditional
stable on time step size At. Furthermore, the numerical test
results, including errors and convergence orders of velocity
and pressure, obtained by the proposed scheme at ¢, = 1
when At = h, are shown in Table III and Table IV.

VI. CoNCLUSION

In this work, we present a CNLF time stepping decoupled
scheme for the fluid-fluid interaction problems based on the
modular grad-div stabilized method. The proposed scheme
is very efficient for the fluid-fluid interaction problems. The
proposed scheme has the obvious advantage for computing
the fluid-fluid interaction problems. The unconditional sta-
bility of the proposed scheme is proven. Numerical tests
are proposed to verify the efficiency and robustness of the

TABLE III: The convergence of velocity of CNLF-MGDS
scheme

h=At Err(u,) Rate Err(u,) Rate
h= % 1.27e-2 - 1.25e-2 -
h= é 8.43e-3 0.60 8.45e-3 0.56
= 1—16 2.85e-3 1.57 2.85e-3 1.57
h= 3—12 5.96e-4 2.26 5.96e-4 2.26
= 6—14 7.48e-5 3.00 7.48e-5 3.00

TABLE IV: The convergence of pressure of CNLF-MGDS
scheme

h=At Err(py) Rate Err(py) Rate
=1 2.31e-1 - 2.52¢-1 -
h=4 1.18e-1 0.97 1.22¢-1 1.04
h=1 5.14e-2 1.20 5.10e-2 1.26
h=% 2.35e-2 113 2.26e-2 118
h=2 1.12¢-2 1.07 1.05¢-2 1.11

proposed method. Moreover, the modular grad-div stabiliza-
tion and higher order time marching methods for fluid-fluid
interaction are need to further study.
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