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Abstract—In this paper, a numerical study of time-fractional
based Burgers’ equation (TFBE) by using Caputo frac-
tional derivatives (CFD), Caputo-Fabrizio fractional derivatives
(CFFD), and Atangana-Baleanu fractional derivatives (ABFD)
is carried out. The TFBE is solved using an implicit upwind
scheme based on the finite difference method (IFDM). After ver-
ifying the IFDM scheme against the stability and convergence,
the numerical solutions that are derived and validated with the
exact solution and also compared with the CFD, CFFD, and
ABFD models.

Index Terms—Caputo, Caputo-Fabrizio, Atangana-Baleanu,
time fractional, Burgers’ equation.

I. INTRODUCTION

THE time-fractional based Burgers’ equations (TFBE)
play an important role in fluid mechanics research as

a model of subdiffusive convection equations. Such mod-
els are useful in describing and better understanding the
flow systems such as shock propagation, electromagnetic
waves, turbulence, porous media flows, contaminant flow,
temperature and pressure waves, medical sciences, etc [1],
[2], [3], [4]. Numerical solutions for ordinary Burgers’
equation are achieved by various techniques such as explicit,
implicit, and Crank-Nicolson (C-N) schemes respectively
[5], [6], [7]. Moreover, numerical solutions still provide
an advantage in solving the complicated problems based
on fractional derivatives such as time-fractional diffusion
equation [8], [9], space fractional equations using C-N
method [10], convection-diffusion equation with space and
time-fractional equations [11], [12]. For instance, Xu and
Agrawal [13] discussed the finite difference method (FDM)
based solutions for TFBE equations and found that the
FDM solution is simple and stable. Likewise, Esen and
Tasbozan [14] were involved in studying the Galerkin-based
finite element schemes for TFBE. Li et al. [15] proposed
a linear IFDM based solution for Burgers’ equation with
time-fractional derivative and concluded that the proposed
scheme is convergent and globally stable. Yokus and Kaya
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[16] analyzed solutions of Caputo-based TFBE by using the
FDM, Cole-Hopf transformation, and expansion method. In
addition, they analyzed the Fourier-von Neumann stability.
From the study, it is concluded that the FDM method
was stable. Also, Sungnul et al. [17] analyzed the forward
time central space scheme based on FDM for a modified
Burgers’ equation. The analysis signifies that the implicit-
based scheme is convergent to the exact solutions.

In a recent study, Alsaedi et al. [18] discussed the TFBE
with Caputo and Riemann-Liouville fractional derivatives.
They approached the blow-up solutions for TFBE based
on the suggestion by Mitidieri et al. [19]. Zhang et al.
[20] investigated the residual power series (RPS) method
of solutions for the TFBE. They considered the Caputo-
based time derivatives and found that the RPS solutions are
closer to the exact solutions when a fractional derivative is
closer to the value 1. Hassani and Naraghirad [21] proposed
a new technique by Lagrange multipliers for achieving the
solutions for variable-TFBE. Lili and Li [22] investigated and
compared the solutions of TFBE by using the separation of
variables (Exact solution) and by Legendre-Galerkin spectral
with combining L1-scheme on graded meshes (Numerical
method). It is clearly noticed that the numerical scheme
is more accurate on the higher number of spatial meshes.
Yadav and Pandey [23] studied the Atangana-Baleanu based
fractional derivative for the TFBE and solved using FDM and
included its stability and convergence. Similarly, Onal and
Esen [24] considered Caputo sensed TFBE equation, which
is solved using the C-N based FDM and also validated with
the exact solution. Guesmia and Dail [25] used finite volume
technique (method of lines) to obtain the solutions for space
fractional Burgers’ equation (SFBE) with Caputo derivative.
The study suggests the finite volume techniques for solving
fractional Burgers’ equations to the non-regular domains.
Verma et al. [26] obtained a numerical solution for the TFBE
with delay using a non-standard FDM-Haar wavelet scheme.
Li and Wu [27] explored the solutions of TFBE via FDM
with artificial boundary conditions. In addition, the study
illustrates FDM-based schemes’ boundedness, convergence,
accuracy, and feasibility.

Saad et al. [28] described the TFBE using various frac-
tional operators such as Mittag-Leffler, Liouville-Caputo, and
Caputo-Fabrizio respectively. In addition, the solutions for
the TFBE are achieved using the Homotopy Analysis Trans-
form scheme and quoted that the applied scheme is effective
and accurate. Sulaima et al. [29] used the Laplace homotopy
perturbation scheme to solve the TFBE of different fractional
operators such as Atangana-Baleanu, Liouville-Caputo, and
Yang-Srivastava-Machado respectively. The study also incor-
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porated the existence and uniqueness of the solution. It is
noted that the Atangana-Baleanu based fractional operators
are effective over the other fractional operators. Further,
Malyk et al. [30] derived the analytical solution for the
TFBE with fractional operators such as Atangana-Baleanu,
Liouville-Caputo, Caputo-Fabrizio, and Yang-Abdel-Cattani.
They also compared the solutions with various fractional
operators. Recently, Doley et al. [31] discussed the Lax-
Friedrichs-based implicit scheme to solve the SFBE and
compared it with the normal implicit scheme. It is found that
the implicit-Lax-Friedrichs based solutions are more accurate
than the normal implicit scheme. Kamran et al. [32] carried
out the numerically simulated results for fractional-based
BBM-Burgers’ equation. The study considers function based
on B-Spline to solve the Caputo fractional equation. Chen
and Lu [33] illustrated the FDM-based time approximation
and Fourier spectral-spatial approximation to solve the TFBE
equation. The results indicate that the hybrid scheme is
efficient by comparing numerical solution against the exact
solution.

II. TIME FRACTIONAL BURGERS’ EQUATION IN CAPUTO
SENSE

The Burgers’ equation is an important nonlinear partial
differential equation for fluid mechanics and various other
phenomena such as a mathematical model of turbulence.
Moreover, Burges’ equation has been used in many
applications such as science and engineering including
sound waves in multiple media, magnetohydrodynamic
waves, shock waves, gas dynamics and other waves in fluid
dynamics.

In this paper, we consider the following non-linear frac-
tional partial differential equation

∂αu

∂tα
+u

∂u

∂x
= D

∂2u

∂x2
+f(x, t), x ∈ [0, 1] and t ∈ [0, T ],

(1)
with initial condition

u(x, 0) = U0(x), (2)

and boundary condition

u(0, t) = B1, u(L, t) = B2, (3)

where D > 0 is the kinetic viscosity, U0(x) is the smooth
function, B1 and B2 are the known functions and u(x, t) is
the unknown function. This equation appears in many areas
of applied mathematics such as modeling of fluid dynamics,
boundary layer behavior, and turbulence formulations. More-
over, many researchers have worked on various problems
through Burgers’ equation and have obtained key insight
through their investigations.

In this study, the solutions of TFBE are achieved by
using an implicit upwind scheme (IFDM) with the fractional
derivatives of CFD, CFFD, and ABFD models respectively.
The study also discusses the stability of an implicit upwind
scheme using the induction method. The derived solutions
using FDM-based implicit upwind solutions with various
fractional derivatives are compared with the exact solution
by estimating the numerical errors for different fractional
models.

III. PRELIMINARIES

In this section, we provide three types of basic definitions
and mathematical preliminaries of fractional derivatives that
are required to establish our results [34].

A. Definition

The Caputo fractional derivative of order α ∈ R is of a
function f is given by,

C
aD

α
t f(tn) =

1

Γ(n− α)

∫ tn

0

d

ds
f ′(s)(tn − s)−αds

where Γ(.) is a Gamma function.

B. Definition

The function f(t) is stated as Caputo-Fabrizio’s fractional
derivative in Caputo sense for time derivative term in the
order α ∈ R.

CF
a Dα

t f(t) =
M(α)

(1− α)

∫ t

a

f ′(r)exp
(−α(t− r)

1− α

)
dr

in which t > α, 0 < α < 1 and M(α) is called the
normalization function and it satisfies M(0) = M(1) = 1.

C. Definition

Also, the new Atanagana Beleanu fractional derivatives is
defined based on Caputo sense [35] as follows:

AB
a Dα

t f(t) =
AB(α)

(1− α)

∫ t

a

f ′(x)Eα

[
− α (t− x)α

1− α

]
dx

IV. NUMERICAL APPROXIMATIONS OF FRACTIONAL
UPWIND SCHEME

With the above three fractional derivatives, the numerical
approximations of TFBE are carried out using an implicit
upwind scheme via finite difference approximations. The
numerical computation uses the upwind scheme for non-
linear terms with first-order spatial derivative and central dif-
ference for the second-order spatial derivatives respectively.
The implemented implicit scheme for TFBE is investigated
for stability as well as convergence. Thus, the non-linear term

u
∂u

∂x
is discretized as follows

u
∂u

∂x
≈
un+1
j

2

(unj − unj−1
δx

)
+
unj
2

(un+1
j − un+1

j−1

δx

)
, (4)

and diffusive term as

∂2u

∂x2
=

(un+1
j−1 − 2un+1

j + un+1
j+1 )

δx2
. (5)

Engineering Letters, 30:3, EL_30_3_12

Volume 30, Issue 3: September 2022

 
______________________________________________________________________________________ 



A. Discretization of Upwind Caputo time fractional deriva-
tives

The Caputo based time derivatives
∂αu

∂tα
in the order less

than one are approximated numerically as [14],

∂αu

∂tα

∣∣∣
tn
≈ (δt)−α

Γ(2− α)

m−1∑
k=0

bαk
[
un−kj − un−k−1j

]
, (6)

where bαk = (k + 1)1−α − k1−α.

Also, the IFDM based TFBE is given by using Eq.(4),(5)
and (6) in (1), we get the following system of an algebraic
equation,

(δt)−α

Γ(2− α)

m−1∑
k=0

bαk

(
un+1−k
j − un−kj

)
+
un+1
j

2

(unj − unj−1
δx

)
+

unj
2

(un+1
j − un+1

j−1

δx

)
=

D

δx2
(un+1
j−1 − 2un+1

j + un+1
j+1 ) + fn+1

i

(7)

where S = (δt)αΓ(2− α), bα0 = 1, when k ≥ 1,

(
1 +

2DS

(δx)2
+

S

2(δx)
(unj − unj−1) +

S

2δx
uuj

)
un+1
j

=
( SD

(δx)2
+
S

2

unj
(δx)

)
un+1
j−1 +

( DS

(δx)2

)
un+1
j+1

+unj −
m−1∑
k=1

bαk

(
un+1−k
j − un−ki

)
+ Sfn+1

i .

(8)

B. Discretization of Upwind Caputo Fabrizio’s in time frac-
tional derivative

The Caputo Fabrizio’s derivatives on TFBE is used be-
cause of the availability of the exponential decay [36]. Also,
the CFFD based implicit method is given as,

CF
0 Dα

t u(t)
∣∣∣
t=tn

=
M(α)

1− α

∫ tn

0

u′(r)exp
(−α(tn − r)

1− α

)
dr

≈ M(α)

1− α

n−1∑
k=0

[uk+1 − uk
δt

+O(δt)
] ∫ tk+1

tk

exp
(−α(tn − r)

1− α

)
dr

=
M(α)

δt(1− α)

1− α
(α)

n−1∑
k=0

(
uk+1 − uk +O(δt)

)
exp
[−α(tn − r)

1− α

]∣∣∣tk+1

tk

=
M(α)

(δt(1− α)

1− α
(α)

n−1∑
k=0

(
uk+1 − uk

)
∗
[
exp
(−α(tn − tk+1)

1− α

)
− exp

(−α(tn − tk)

1− α

)] (9)

where δt =
T

n
, tn = nδt.

By using above equation (4),(5) and (9) in Eq.(1)
We get as follows:

M(α)

αδt

(
e
αδt
1−α − 1

) n∑
k=0

(
un−k+1
j − un−kj

)
∗ e−

αkδt
1−α

+
un+1
j

2

(unj − unj−1
δx

)
+
unj
2

(un+1
j − un+1

j−1

δx

)
=

D

δx2
(un+1
j−1 − 2un+1

j + un+1
j+1 ) + fn+1

i

(10)

Suppose, R′ =
αδt

M(α)(e
α∗δt
1−α − 1)

, then, when k ≥ 1

(
1 +

2DR′

δx2
+

R′

2δx
(unj − unj−1) +

R′

2δx
unj

)
un+1
j

=
(R′D
δx2

+
R′unj
2δx

)
un+1
j−1 +

(R′D
δx2

)
un+1
j+1 + unj

−
n∑
k=1

(
un+1−k
j − un−ki

)
∗ e

αkδt
1−α +R′fn+1

i

(11)

C. Discretization of upwind Atangana-Baleanu in time-
fractional derivative

In this study, the ABFD is incorporated for the TFBE be-
cause of a nonlocal fractional derivative/non-singular kernel
[23], [37]. The ABFD based on Caputo sense is discretized
as

AB
a Dα

t u(x, t) ≈ AB(α)

1− α

n−1∑
k=0

∫ tk

tk−1

[uk+1 − uk
δt

]
∗

Eα(
−α

1− α
(tn − s)α]ds

(12)

where Eα(z) =
∑∞
n=0

zn

Γ(nα+ 1)

∂αu(x, tn)

∂tα
=
AB(α)

1− α

n−1∑
k=0

[uk+1 − uk
δt

]
∗

∫ tj

tj−1

∞∑
n=0

( −α
1− α

)n (tn − s)αn

Γ(nα+ 1)
ds

=
AB(α)

(1− α)

n−1∑
k=0

[uk+1 − uk
δt

] ∞∑
n=0

( −α
1− α

)n
Γ(nα+ 1)

∗∫ tj

tj−1

(tn − s)αnds

=
AB(α)

1− α

n−1∑
k=0

(uk+1 − uk
δt

)[
(tn − tj−1)∗

Eα,2

(( −α
1− α

)n
(tn − tj−1)α

)
−(tn − tj)Eα,2

(( −α
1− α

)n
(tn − tj)α

)]
=

AB(α)

δt(1− α)

n∑
k=0

(
uk+1 − uk

)
δαn,k,

(13)

where δαn,k =
[
(n− k)Eα,2{− αδt

(1−α) (n− k)}

− (n− k − 1)Eα,2{− αδt
(1−α) (n− k − 1)}

]
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Fig. 1: comparison of numerical solution and exact solution (example 1)

Thus, the discretized equations for TFBE Eq.(1) using
above approximation for ABFD and by using Eq. (4) and
(5), we get

AB(α)

δt(1− α)

n∑
k=0

(
uk+1
j − ukj

)
δαn,k

=
D

δx2

(
un+1
j+1 − 2un+1

j + un+1
j−1

)
−
[un+1

j

2

(unj − unj−1
δx

)
+
unj
2

(un+1
j − un+1

j−1

δx

)]
+f(xj , tn).

(14)

AB(α)

δt(1− α)

(
un+1
j − unj

)
δαn,n

+
AB(α)

δt(1− α)

n−1∑
k=0

(
uk+1
j − ukj

)
δαn,k

=
D

δx2

(
un+1
j+1 − 2un+1

j + un+1
j−1

)
−
[un+1

j

2

(unj − unj−1
δx

)
+
unj
2

(un+1
j − un+1

j−1

δx

)]
+ f(xj , tn).

(15)

( AB(α)

δt(1− α)
δαn,n +

2D

δx2
+

unj
2δx

+
1

2

(unj − unj−1
δx

))
un+1
j

+
(−D
δx2
−

unj
2δx

)
un+1
j−1 −

D

δx2
un+1
j+1

=
AB(α)

δt(1− α)
δαn,nu

n
j −

AB(α)

δt(1− α)
n−1∑
k=0

(
uk+1
j − ukj

)
δαn,k + f(xj , tn).

(16)

V. NUMERICAL RESULTS

The implicit upwind numerical schemes were developed
for the time-fractional Burgers’ equation in Eq. (1) by various

time-fractional derivatives: Caputo fractional (CFD), Caputo-
Fabrizo’s in Caputo sense (CFFD), and Atangana-Baleno in
Caputo sense (ABFD) fractional derivatives.

For the above TFBE with the time fractional terms such
as CFD, CFFD and ABFD, an accuracy of the presented
implicit upwind methods are examined by using the error
norm L2 and L∞

Ł2 = ‖Uexact − (uN )j‖

=

√√√√δx
m∑
j−0

(
Uexactj − (uN )

)2
(17)

And also the maximum error norm as L∞

L∞ = ‖UExact − (uN )j‖∞
= Maxj |UExact − (uN )j | (18)

A. Example.1

Consider the fractional Burgers’ equation (1) with initial
conditions is as follows:

u(x, 0) = 0, 0 ≤ x ≤ 1 (19)

and the boundary conditions as

u(0, t) = t2, u(1, t) = −t2, t ≥ 0 (20)

The source term f(x, t) can be found from [14] in the form
given by below:

f(x, t) =
2t2−αcos(πx)

Γ(3− α)
− πt4sin(πx)cos(πx)

+Dπ2t2cos(πx)

(21)

and analytical solution of the fractional Burgers’ equation is
given by

u(x, t) = t2cos(πx) (22)

The comparison is done for exact results available and
numerical results for TFBE by implicit upwind based FDA.
It is noted that the computed results are in good agreement
with the analytical results which can be observed in Fig. 1.
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TABLE I: The error norms of Example 1 at α = 0.9, D =
1, δt = 0.00125, δx = 0.05 and tmax = 0.05.

Distance (X) CFD CFFD ABFD
0.1 0.00000797 0.00025464 0.00018407
0.2 0.00001110 0.00034507 0.00024919
0.3 0.00001029 0.00031233 0.00022578
0.4 0.00000665 0.00019841 0.00014364
0.5 0.00000140 0.00004144 0.00003002
0.6 0.00000417 0.00012391 0.00008977
0.7 0.00000876 0.00026377 0.00019085
0.8 0.00001110 0.00034200 0.00024709
0.9 0.00001001 0.00031838 0.00022998
L2 0.00000080 0.00024850 0.00001796
L∞ 0.00000111 0.00034559 0.00024958

TABLE II: The error norms of Example 1 at α = 0.5, D =
1, δt = 0.00125, δx = 0.05 and tmax = 0.05.

Distance (X) CFD CFFD ABFD
0.1 0.00000088 0.00118032 0.00042754
0.2 0.00000123 0.00144828 0.00058873
0.3 0.00000115 0.00122525 0.00054146
0.4 0.00000077 0.00074790 0.00034805
0.5 0.00000021 0.00015382 0.00007297
0.6 0.00000039 0.00046171 0.00021842
0.7 0.00000087 0.00101067 0.00046061
0.8 0.00000109 0.00138206 0.00058860
0.9 0.00000092 0.00139774 0.00053882
L2 0.00000083 0.00103383 0.00004263
L∞ 0.00000123 0.00144986 0.00058980

The numerical error for the space length 0.1 ≤ x ≤ 0.9
are listed and the errors are compared with various order
of time derivatives (α = 0.9, 0.5 and 0.1) as shown in
Tables. I-III. Along with the spatial errors, the accuracy of
derivatives/scheme is shown using L2 and maximum error
as L∞.

B. Example.2

Consider the fractional Burgers’ equation (1) with initial
conditions as follows,

u(x, 0) = 0, 0 ≤ x ≤ 1 (23)

and the boundary conditions as

u(0, t) = t2, u(1, t) = et2, t ≥ 0 (24)

TABLE III: The error norms of Example 1 at α = 0.1, D =
1, δt = 0.00125, δx = 0.05 and tmax = 0.05.

Distance (X) CFD CFFD ABFD
0.1 0.00000068 0.00204968 0.00009175
0.2 0.00000097 0.00200022 0.00012976
0.3 0.00000093 0.00152608 0.00012174
0.4 0.00000065 0.00089434 0.00007920
0.5 0.00000023 0.00018166 0.00001653
0.6 0.00000022 0.00054723 0.00005023
0.7 0.00000058 0.00122714 0.00010470
0.8 0.00000075 0.00179216 0.0001315
0.9 0.00000062 0.00212104 0.00011759
L2 0.00000062 0.00148794 0.00094648
L∞ 0.00000098 0.00212104 0.00013150

TABLE IV: The error norms of Example 2 at α = 0.9, D =
1, δt = 0.00125, δx = 0.05 and tmax = 0.05.

Distance (X) CFD CFFD ABFD
0.1 0.00001746 0.00043555 0.00032392
0.2 0.00003089 0.00073151 0.00054628
0.3 0.00004116 0.00093817 0.00070373
0.4 0.00004881 0.00109240 0.00082157
0.5 0.00005403 0.00121372 0.00091251
0.6 0.00005656 0.00130275 0.00097607
0.7 0.00005564 0.00133797 0.00099660
0.8 0.00004998 0.00126960 0.00093926
0.9 0.00003777 0.00101243 0.00074481
L2 0.00004224 0.00100426 0.00074920
L∞ 0.00005659 0.00133797 0.00099659

TABLE V: The error norms of Example 2 at α = 0.5, D =
1, δt = 0.00125, δx = 0.05 and tmax = 0.05.

Distance (X) CFD CFFD ABFD
0.1 0.00000106 0.00164851 0.00089125
0.2 0.00000195 0.00249946 0.00155058
0.3 0.00000267 0.00300811 0.00204323
0.4 0.00000323 0.00339530 0.00241115
0.5 0.00000363 0.00375287 0.00267142
0.6 0.00000384 0.00410127 0.00281407
0.7 0.00000384 0.00410127 0.00281407
0.8 0.00000367 0.00449021 0.00254826
0.9 0.00000322 0.00398502 0.00194481
L2 0.00000299 0.00337734 0.00211604
L∞ 0.00000388 0.00449020 0.00282992

The source term f(x, t) can be found from [14] in the form
given by below,

f(x, t) =
2t2−αex

Γ(3− α)
+ t4e2x −Dt2ex (25)

and analytical solution of the fractional Burgers’ equation is
given by

u(x, t) = t2ex (26)

In example 2, a good comparison of the numerical results
and exact solutions for TFBE are illustrated in Fig. 2. More-
over, it is noted that the plots are in good agreement with
the computed results are comparable to the analytical results.
The spatial error, L2 and L∞ are compared with the CFD,
CFFD and ABFD based time fraction derivatives. The errors
are determined for time-fractional order α = 0.9, 0.5, 0.1
as listed in the Table. IV-VI.

TABLE VI: The error norms of Example 2 at α = 0.1, D =
1, δt = 0.00125, δx = 0.05 and tmax = 0.05.

Distance (X) CFD CFFD ABFD
0.1 0.00000022 0.00245059 0.00035110
0.2 0.00000043 0.00299675 0.00064353
0.3 0.00000063 0.00332217 0.00087513
0.4 0.00000083 0.00365577 0.00104231
0.5 0.00000102 0.00402113 0.00113977
0.6 0.00000121 0.00442289 0.00116033
0.7 0.00000139 0.00486391 0.00109472
0.8 0.00000157 0.00533335 0.00093142
0.9 0.00000175 0.00564164 0.00065648
L2 0.00000115 0.00406894 0.00085054
l∞ 0.00000191 0.00564163 0.00116033
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Fig. 2: comparison of numerical solution and exact solution (example 2)
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Fig. 3: comparison of numerical solution and exact solution (example 3)

C. Example.3

Further, consider a fractional Burgers’ equation (1) with
initial condition,

u(x, 0) = 0, 0 ≤ x ≤ 1 (27)

and the boundary conditions as

u(0, t) = 0, u(1, t) = 0, t ≥ 0 (28)

The source term f(x, t) can be found from [14] in the form
given by bellow:

f(x, t) =
2t2−αsin(2πx)

Γ(3− α)
+ 2πt4sin(2πx)cos(2πx)

+4Dπ2t2sin(2πx)

(29)

and analytical solution of the fractional Burgers’ equation is
given by

u(x, t) = t2sin(2πx) (30)

Figure. 3 represents the validation of numerical solutions
of TFBE with the analytical one. The spatial error, L2 and
L∞ are compared with the various time fractional derivatives

such as CFD, CFFD and ABFD respectively. The errors are
determined for time fractional order α = 0.9, 0.5 and 0.1
as listed in the Table. VII-IX.

TABLE VII: The error norms of Example 3 at α = 0.9, D =
1, δt = 0.00125, δx = 0.05 and tmax = 0.05.

Distance (X) CFD CFFD ABFD
0.1 0.00005617 0.00006868 0.00006532
0.2 0.00009281 0.00011349 0.00010793
0.3 0.00009718 0.00011882 0.00011300
0.4 0.00006774 0.00008283 0.00007877
0.5 0.00001475 0.00001802 0.00001714
0.6 0.00004336 0.00005304 0.00005044
0.7 0.00008636 0.00010565 0.00010046
0.8 0.00009929 0.00012147 0.00011551
0.9 0.00007761 0.00009500 0.00009032
L2 0.00007042 0.00008614 0.00008191
L∞ 0.00099414 0.00012151 0.00011567

D. Example 4

Consider the fractional Burgers equation (1) with initial
and boundary as follows:
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Fig. 4: comparison of numerical solution and exact solution (example 4)

TABLE VIII: The error norms of Example 3 at α = 0.5, D =
1, δt = 0.00125, δx = 0.05 and tmax = 0.05.

Distance (X) CFD CFFD ABFD
0.1 0.00008972 0.00012378 0.00010344
0.2 0.00014825 0.00020451 0.00017092
0.3 0.00015524 0.00021412 0.00017896
0.4 0.00010823 0.00014925 0.00012475
0.5 0.00002359 0.00003247 0.00002714
0.6 0.00006923 0.00009560 0.00007989
0.7 0.00013794 0.00019043 0.00015913
0.8 0.00015862 0.00021902 0.00018299
0.9 0.00012409 0.00017141 0.00014318
L2 0.00011252 0.00015529 0.00012976
L∞ 0.00015889 0.00021906 0.00018308

TABLE IX: The error norms of Example 3 at α = 0.1, D =
1, δt = 0.000125, δx = 0.05 and tmax = 0.05.

Distance (X) CFD CFFD ABFD
0.1 0.00010157 0.00013823 0.00010344
0.2 0.00016783 0.00022839 0.00017092
0.3 0.00017574 0.00023911 0.00017896
0.4 0.00012253 0.00016667 0.00012475
0.5 0.00002671 0.00003626 0.00002714
0.6 0.00007836 0.00010676 0.00007989
0.7 0.00015615 0.00021266 0.00015913
0.8 0.00017958 0.00024458 0.00018299
0.9 0.00014050 0.00019144 0.00014318
L2 0.00012738 0.00017342 0.00012976
l∞ 0.00017978 0.00024463 0.00018308

u(x, 0) = 0, 0 ≤ x ≤ 1 (31)

and the boundary conditions as

u(0, t) = 0, u(1, t) = t
5
2 , t ≥ 0 (32)

The source term f(x, t) can be found from [21] in the form
given by bellow:

f(x, t) =
( Γ( 7

2 )t
5
2−α(x,t)

Γ( 7
2 − α(x, t))

)
x

7
2 +

7

2
t5x6 − 35

4
t
5
2x

3
2 (33)

and and exact solution is given by

u(x, t) = t5/2x7/2 (34)

The CFD, CFFD, and ABFD based numerical solutions
are compared with the ES and the error values are listed in
the TableX-XII. Also, the graphical representation of TFBE
behavior of numerical solution and exact solution. Both the
solutions are well comparable to each other as shown in Fig.
4.

TABLE X: The error norms of Example 4 at α = 0.9, D =
1, δt = 0.00125, δx = 0.05 and tmax = 0.05.

Distance (X) CFD CFFD ABFD
0.1 0.00000041 0.00000130 0.00000116
0.2 0.00000060 0.00000279 0.00000240
0.3 0.00000036 0.00004649 0.00003785
0.4 0.00000042 0.00000698 0.00000533
0.5 0.00000181 0.00000982 0.00000702
0.6 0.00000369 0.00001295 0.00000870
0.7 0.00000582 0.00001581 0.00001004
0.8 0.00000783 0.00001721 0.00001041
0.9 0.00000936 0.00001522 0.00000885
L2 0.00000518 0.00001056 0.00000675
L∞ 0.00001048 0.00001721 0.00000675

TABLE XI: The error norms of Example 4 at α = 0.5, D =
1, δt = 0.00125, δx = 0.05 and tmax = 0.05.

Distance (X) CFD CFFD ABFD
0.1 0.00000379 0.00000178 0.00000445
0.2 0.00000741 0.00000475 0.00000954
0.3 0.00001065 0.00001009 0.00001575
0.4 0.00001332 0.00001896 0.00002338
0.5 0.00001523 0.00003232 0.00003224
0.6 0.00001613 0.00005068 0.00004153
0.7 0.00001578 0.00007301 0.00004941
0.8 0.00001384 0.00009433 0.00005263
0.9 0.00000994 0.00010040 0.00004600
L2 0.00001157 0.00005487 0.00003304
L∞ 0.00001613 0.00010074 0.00005263

VI. CONCLUSION

The study illustrates the comparison of the CFD, CFFD
and ABFD based time derivatives for the TFBE. The three
types of derivatives are compared in terms of numerical error
and accuracy. All the derivatives are cracked using FDM by
means of an upwind implicit scheme. The stability is checked
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TABLE XII: The error norms of Example 4 at α = 0.1, D =
1, δt = 0.000125, δx = 0.05 and tmax = 0.05.

Distance (X) CFD CFFD ABFD
0.1 0.00000667 0.00000054 0.00000736
0.2 0.00001299 0.00000238 0.00001455
0.3 0.00001863 0.00000680 0.00002134
0.4 0.00002322 0.00001510 0.00002744
0.5 0.00002640 0.00002856 0.00003240
0.6 0.00002778 0.00004849 0.00003563
0.7 0.00002694 0.00007614 0.00003632
0.8 0.00002346 0.00001225 0.00003337
0.9 0.00001686 0.00015092 0.00002539
L2 0.00001993 0.00007491 0.00002578
l∞ 0.00002778 0.000015785 0.00003635

against the proposed numerical scheme for TFBE using the
various form of derivatives based on Caputo sense and found
that the scheme is unconditionally stable. It is noted that
the CFD-upwind-implicit scheme provides better accuracy
of numerical results over the CFFD/ABFD-upwind-implicit
scheme.
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