
 

 

Abstract— State of Charge (SOC) is the ratio of current 

versus total capacity of the battery. In the context of Battery 

Management System (BMS), the SOC is estimated by using a 

battery model. In this research, three battery models were 

presented, including (1) Thevenin battery model, (2) modified 

Thevenin battery model, and (3) simple battery model. Then, 

the SOC of those battery models was estimated using 

Coulomb Counting, Open Circuit Voltage (OCV), and 

Kalman Filter method. The simulation evaluated the 

performance of the SOC estimation methods, including the 

correctability of SOC initialization error. The simulation 

results showed that the proposed battery models could 

accurately estimate SOC. In terms of SOC initialization error, 

the Coulomb Counting, OCV Model 1, and OCV Model 2 

could not correct the initialization error of SOC. However, the 

application of OCV Model 3 and Kalman Filter could provide 

an accurate SOC estimation with excellent correction of SOC 

initialization error. Compared to OCV model 3, the error 

correction in the Kalman Filter method was performed 25 

minutes faster. Therefore, this finding suggests that Kalman 

Filter is the most suitable estimation method for BMS due to 

the high accuracy of SOC estimation (RMSE = 0.0014) and 

fast correction of SOC initialization error (time < 20 seconds). 

 

Index Terms—State of Charge, Battery Management 

System, Battery Modelling, Kalman Filter, Coulomb 

Counting, Open Circuit Voltage. 

I. INTRODUCTION 

ECHNOLOGY in transportation is rapidly developed in 

several countries. The ultimate goal of the 

transportation technology development is to reduce the 

usage of fossil fuels, i.e., gas and diesel in vehicle since it 

contributes to the increase of global warming [1]. By 2050, 

it is predicted that electric vehicles (EV) can potentially 

reduce CO2 up to 21%. Thus, research about the electrical 

vehicle is important to be done. One of the pivotal 

component in electric vehicle development is the battery, 

which is the energy storage that enable the whole 

operations of an electric vehicle [2],[3]. 

 A battery is an instrument to collect and generate 

electricity that can act as energy storage and source. 
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Nowadays, batteries are widely applied from simple 

devices, such as mobile phones and portable computers, to 

essential and robust devices, such as the Uninterruptible 

Power Supply (UPS) [4]. Due to the shift from internal 

combustion engine to the electrical engine, the automotive 

world has started to use batteries as in hybrid EVs or even 

fully EV [5]. 

 As the battery has been used over time, the galvanic 

cells in the battery experience degradation, leading to the 

reduction of battery capacity. Proper battery conditioning 

can reduce the occurrence of such degradation in a battery 

[6]. This conditioning process, which may include battery 

state monitoring, battery protection, or battery balancing, 

can be done using a battery management system (BMS) - a 

system to manage the battery not merely limited to 

electronics systems and mechanical systems [7]. By doing 

the battery conditioning, the BMS can ensure the optimum 

energy usage of the battery and keep the battery from 

failure risk, thus preserving the battery capacity of an EV. 

 The BMS includes the algorithm of battery state 

estimation. The battery modelling, in this case, plays a vital 

role in the algorithm used in the BMS to predict the voltage 

response of the battery [8],[9]. Several studies have been 

done related to battery modellings, such as mathematical 

models, electrochemical models, and equivalent circuit 

models (ECM) [10].  

 Mathematical models can be analytical or stochastic 

[11],[12]. Meanwhile, battery properties are explained as 

several formula combinations of different physical concepts 

in analytical models. For the stochastic one, the probability 

of the battery properties is forecasted based on the current 

state of the battery. In electrochemical models, the battery is 

modelled using the battery's chemical properties in which 

this model can provide complete information in an 

exchange of complex calculations [13],[14]. In ECM, the 

battery is modelled as a combination of electronic 

components such as a resistor, capacitor, and voltage 

source. Compared to mathematical and electrochemical 

models, the ECM explains the battery properties with the 

necessary of accuracy and simplicity [15]. Therefore, the 

ECM is more suitable to be used in microprocessors and 

real-time applications such as the EV. 

 There are several ECM-based models, such as the 

Thevenin-battery model and the Rint battery model. The 

Thevenin battery model consists of a parallel RC circuit 

with one ladder or several ladders. The complex differential 

equation of the parallel RC circuit is transformed into a 

discrete form to simplify the analysis of the battery 
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parameter [16]. Then, the RLS method is used to obtain the 

battery parameters by giving current and voltage to the 

battery [17]. The Thevenin model is more accurate than the 

Rint battery model, with only one resistor for system load 

calculation [18],[9]. Hence, many researchers prefer to use 

this model to estimate the battery parameter and monitor 

the change of a parameter.  

 The effect of different battery state estimation methods 

on each model has not been investigated yet. The battery 

state estimation in BMS may include the State of Charge 

(SOC), State of Health (SOH), Fault Detection, Cell 

Balancing, and Current Sensorless [19]. The first thing to 

be noticed in preserving the battery capacity is the SOC 

which is the most important part in the battery problem 

[20],[21]. This paper will focus the discussion on the SOC 

estimation as a representation of the battery capacity. SOC 

is a ratio between the remaining charge and the battery's 

total charge, which commonly expressed in percentages 

from 0% to 100%. The SOC cannot be measured directly by 

using a sensor; hence, an algorithm is needed to estimate it.  

 SOC estimation can be divided into soft computing and 

hard computing categories. Soft computing such as neural 

networks and fuzzy inference systems may estimate the 

battery's state accurately with the addition of tuning ability 

[22]. However, it is difficult to implement the soft 

computing method to a dynamic battery system model [23]. 

Large computations might be required to tune the 

estimation parameter, i.e., neural network weight and fuzzy 

membership functions. In this case, hard computing 

methods, such as Coulomb Counting, Open Circuit Voltage 

(OCV), and Kalman Filter, are preferable rather than the 

soft one for simplifying the computation process [24].  

 The Coulomb Counting method can be used to estimate 

the SOC as an integration of current over time [25],[26]. 

However, it also has some weaknesses: high accuracy is 

needed, and there is a high possibility of error accumulation 

during estimation. Meanwhile, the OCV method calculates 

the steady voltage of an open circuit in the model related to 

charging and discharging history [27]. This method can 

estimate the SOC accurately, but the battery takes long 

adequate resting before estimation. Besides, the OCV can 

only be used in an open circuit situation, which is unlikely 

to occur during EV operation [28],[29].  

 Other SOC estimation research based on ECM have 

been conducted using Kalman Filter, which estimates a 

system measurement using the system's state. It has been 

used to solve problems of filtering discrete data such as the 

battery model [21]. There are several variations of KF such 

as extended KF (EKF), Adaptive Extended KF (AEKF), 

and Square Root Unscented KF using Spherical Transform 

(Sqrt-UKFST). The KF method does not require any circuit 

to be an open circuit; thus, it can be implemented in EV 

[30]. Moreover, it can correct the SOC initialization error 

that occurs during the operation of an EV. The more 

advanced the KF is, the more accurate the SOC estimation. 

However, the amount of computation may increase [31]. 

 The combination of battery models and estimation 

method determines the estimation accuracy. Therefore, this 

research compared the estimation performance based on a 

combination of battery models and SOC estimation 

methods. Three battery models were used, including (1) 

Thevenin battery model, (2) modified Thevenin battery 

model, and (3) Rint simple battery model. Then, 

simulations of the SOC estimation methods mentioned 

above were conducted on each model. Pulse test and 

Dynamic Stress Test (DST) were also used for further 

analysis. Then, the accuracy for each SOC estimation 

method was determined by calculating the error percentage, 

mean-square error (MSE), and root means square error 

(RMSE). 

II. BATTERY MODELLING 

Identification of battery parameters requires appropriate 

battery modelling. Battery modelling is important before 

simulating an Electric Vehicle and developing the Battery 

Management System [6]. It is necessary to apply the SOC 

estimation algorithm accurately to produce an optimal 

function of the BMS [32]. Battery modelling in this paper 

was carried out using Thevenin equivalent circuit model 

(model 1), Thevenin modification (model 2), and simple 

battery modelling (model 3), considering their 

complexities, modelling accuracies, and reliabilities while 

representing the dynamic properties of the battery. 

 

A. Thevenin Model (Model 1) 

 

Fig. 1.  Thevenin Battery Model (Model 1) 

 

As an analytical tool, Thevenin model a complex circuit 

into a simple one by making a circuit replacement in the 

form of a voltage source made in series with an equivalent 

resistance. Thus, it is excellent to be applied to analyze 

battery circuit systems. The most commonly used Thevenin 

battery model uses a parallel RC circuit, as shown in Figure 

1. In Figure 1, UL is the terminal voltage, Uoc is the open-

circuit voltage, R0 is the internal resistance, C1 is the 

polarization capacitance, and R1 is the polarization 

resistance. They represent the transient response 

characteristics during the charging and discharging 

process. U1 is the voltage on C1. Based on the Thevenin 

model as shown in Figure. 1, some equations can be 

derived. 

 

 

 

(1) 

 

where EL=UL-UOC. Then, the transfer function G(s) based 

on (1) can be written as follows, 
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(2) 

 

Equation (2) is discretized using Bilinear Transformation 

as in (3) 

 

 

 

(3) 

 

where z is a discrete operator so that the following equation 

can be obtained 

 

 

 

(4) 

Based on (4), some variables can be assumed as follows,  

 

 

 

 

(5) 

 

(6) 

 

(7) 

Therefore, the values of the Thevenin model parameters 

can be calculated using the following equations 

 

 

 

 (8) 

 

 

 (9) 

 

 

(10) 

After discretization, Equation (1) can be written as in 

the equation below, where k=1,2,3,…. 

 

 (11) 

 

The potential difference of the open-circuit is affected by 

a function of time (t), which can be defined as the open-

circuit voltage function. It can be described as a function of 

SOC, Tem, and H as written in the following Equation, 

 

 (12) 

 

Then, the UOC in Equation (12) is derived into the equation 

below 

 

 

(13) 

 

Equation (13) can be simplified to (14) after considering 

several assumptions: dSOC⁄dt≈0 for low-energy batteries; 

the cooling/heating that BMS is experiencing is 

insignificant for normal operation dTem⁄dt≈0, and dH⁄dt≈0 

for the battery is assumed to be new. 

 

 

(14) 

 (15) 

 

Then, Equation (11) can be written as, 

 

 

      

 

(16) 

with,  

, 

 

 

 

(17) 

 

(18) 

 

(19) 

The values of UL(k) and IL(k) were sampled using a constant 

period for an online application. Meanwhile, vector 1 was 

identified using the RLS (Recursive Least Square) 

algorithm according to (19), and the model parameters can 

be found using (9). 

According to Thevenin's model shown in Figure. 1, the 

open-circuit voltage can also be written as 

  (20) 

The current on the parallel RC circuit can be written as 

follows, 

 
 

(21) 

 

Therefore, the first derivation of voltage at the capacitance 

(U1) can be expressed by 

 
 

(22) 

 

According to the Coulomb Counting method, the SOC 

equation is expressed as follows, 

 

 

  
(23) 

and its first derivation is expressed by  

 
 

(24) 

 

The voltage at the capacitance and the SOC are taken as the 

states of the battery. Referring to (22) and (24), the state-

space model can be mathematically written as the following 

equation. 

 

 

(25) 

Thus, the battery model needs two input parameters. 
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B. Modified Thevenin Model (Model 2) 

Similar to the previous modelling, Model 2 used the 

Thevenin battery model. However, a capacitance load is 

used in this model rather than a voltage source. If UOC was 

used in the first model, model 2 modified it as UC. 

Therefore, some parameters used in this model are C, R0, 

R1, and C1, as shown in Figure 2. 

 

Fig. 2.  Thevenin Modified Battery Model (Model 2) 

 

Based on Model 2, the voltage at the capacitance C can 

be expressed as the following equation. 

 

 
 

(26) 

 

Since the first differential equation of (26) can be 

expressed as 

 
 

(27) 

 

Due to the similarity, the voltage at capacitance C1 and 

its first derivation are the same as the previous model. 

Thus, the state-space model for Model 2 can be established 

by rewriting equations (24) and (27) as in the equation 

below.  

 

 

 

 

(28) 

 

C. Rint Model (Model 3) 

The Rint mathematical circuit model is shown in Figure 

3, consisting of resistance R, capacitance C, capacitance-

voltage VC, and the voltage barriers VR. The relationship of 

terminal voltage Vt with the voltage on the capacitor VC; 

terminal voltage Vt with the voltage barriers VR, can be 

represented by Laplace equations below. 

 

 

Fig. 3.  Simple Model (Model 3) 

 

 

 

(29) 

 

 

(30) 

 

Next, Equation (29) is returned to the time domain. 

Equation (31) is the differential equation of VC, which 

requires sampling time Ts.  

 

 

 

(31) 

Therefore, Equation (29) can be rewritten into (32), and 

its coefficient was simplified using the formulation in 

Equation (33). 

 (32) 

 

 
 

(33) 

Based on the relationship between voltage and current at 

the resistance (Ohm's Law), then Equation (30) can be 

transformed into (34).  

           

 

 

 

(34) 

If the same method for estimating the capacitance-

voltage is applied to Equation (34), then the estimated 

current equation can be obtained as follows, 
 

 

 

(35) 

 

III. STATE OF CHARGE ESTIMATION 

One of the battery modelling applications in BMS is 

SOC estimation. SOC represents battery capacity and 

cannot be measured directly using a sensor. One method for 

measuring SOC is to use Coulomb Counting, i.e., the 

integration of current over time [33]. Meanwhile, Kalman 

Filter is a method to estimate a problem using the system 

states and make a minimum variance in the search process 

for optimal estimates in a system and a solution used to 

solve linear discrete data filtering problems [14]. The 

method is profoundly suitable for SOC estimation to obtain 

an effective and efficient BMS. Another estimation method, 

i.e., Open Circuit Voltage (OCV), can also be used. 

 

A. State of Charge (SOC) 

According to Equation (11), the estimated OCV and 

current can be obtained. Meanwhile, according to Equation 

(15) and the differential form equation of SOC in Equation 

(37), the relationship between capacitance C, battery 

capacity Cn, and the OCV-SOC relationship can be 

expressed as Equation (38), because the capacitance-voltage 

can be considered as OCV. Thus, the capacitor in the RC 

battery model shown in Figure 3 can be written as follows, 
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(36) 

 

(37) 

 

(38) 

 

The initial SOC is critically important. It can be 

obtained from the OCV-SOC relationship, by providing the 

initial terminal voltage as the initial OCV from the SOC 

information and Equation (37). Then, the battery SOC can 

be calculated using the Coulomb Counting method. 

The coulomb Counting is the most widely used method 

to estimate SOC. It can measure the battery capacity by 

observing the changes of the remaining charge based on 

electrical current into or outro the battery cells [34]. This 

method can be formulated into: 

 

(39) 

 

(40) 

where Columbic coefficient η is a constant value of 1 

during discharging and 0.98 in charging. SOC0 is the initial 

value of SOC that indicates the value of SOC shortly before 

Ibatt flows into or out of the battery cells. Ccap capacity 

indicates the maximum capacity of new battery cells. 

 

B. Kalman Filter 

Kalman Filter is one method to estimate a problem using 

the system's state; the core of this theory is how to make the 

minimum variance in finding the optimal estimates on a 

system [35]. It is a recursive process that is effective when 

dealing with measurement data that have noises; either by 

combining it with other sensor measurement data or by 

filtering the noise itself [36].  

Kalman Filter acts as a solution for data-screening 

discrete linear recursive process, which Rudolf E. Kalman 

first introduced in 1960. Also,  Kalman Filter assumed all 

estimated states linear, and all observed variables can be 

represented in Gaussian distribution [37]. It supports the 

estimation of states based on their previous and current 

records, and it can be performed even when the estimated 

model system's nature is unknown. 

Kalman Filter model assumes the estimation based on 

the following equations. 

 (41) 

 

with the measurement process : 

 

  (42) 

where,  

 = process state at time k 

  = transition matrix 

 = input control at time k 

 = constant matrix for  

 = process noise 

 = variable measurement results at time k 

 = measurement matrix 

 = measurement noise 

 

Then, the error covariance matrix can be calculated as: 

 

 (43) 

 

While the Kalman Gain can be defined as follows.  

 

 

          

 

 

 

(44) 

 

Each estimated state will be updated based on the following 

equation. 

 

 (45) 

 

After the state is updated, the error covariance matrix is 

also updated according to the equation below. 

 

 (46) 

 

 

C. SOC Estimation using Coulomb Counting Method 

SOC estimation using Coulomb Counting is done by 

integrating current over time. In the research, the 

application of this method was tested using two loading 

data: pulse current load and variable current. 

 

  

   (47) 

If Equation (47) is converted into an equation in discrete 

form, the equation will become: 

.     (48) 

D. SOC Estimation using OCV Method 

SOC estimation using the OCV method can be done 

using a lookup table or obtained from the OCV function. 

The SOC value as a function of OCV is obtained as in 

Equation (49). It is chosen as a 10-orde polynomial 

function because it provided the smallest Root Mean Square 

Error (RMSE) based on testing results for orders 5 to 11 in 

Table I. 

 
TABLE I 

POLYNOMIAL OCV-SOC ERRORS 

Order RMSE 

5 0.004631 

6 0.003227 

7 0.003205 

8 0.003205 
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9 0.003189 

10 0.003188 

11 0.003189 

 

 

SOC ( )  = 

k1
10 + k2

9 + k3
8+ k4

7 + k5
6 

+ k6
5 + k7

4 + k8
3 + k9

2 + 

k10
 + k11 

 

 

(49) 

where  = OCV, 

 

 

 

 

The values of the constants are presented as follows. 

   

 In Model 1, the estimated value of OCV was obtained 

from the parameter identification process. The 

identification process was carried out using the Recursive 

Least Square method, with one of the estimated weights 

being the OCV value. 

Whereas in Model 2, the OCV (UOC) value was the state 

value in the state-space model such as the following.  

 

 

 

 

(50) 

 

While in Model 3, the OCV value was obtained using the 

recursive Equation (32). After the three OCV estimates 

were obtained, the OCV value was entered into the OCV 

function to get the SOC value. 

 

E. SOC Estimation using Kalman Filter Method 

The SOC estimation using Kalman Filter was applied to 

two different battery models. In Model 1, the states used 

were U1 and SOC. While in Model 2, the states used were 

U1 and UOC. The function of SOC used for estimation using 

Kalman Filter is expressed in the equation below. 

 

 

SOC ( )  = 

ɑ1
10+ ɑ2

9+ ɑ3
8+ ɑ4

7+ ɑ5
6+ 

ɑ6
5+ ɑ7

4+ ɑ8
3+ ɑ9

2+ ɑ10 + ɑ11 

 

(51) 

1) Model 1 

The Kalman Filter model considers noise, so the state-

space model in Equation (28) needs to be added with Wk
 

noise modelling. It also needs to be discretized using 

backward Euler. The final model of Kalman Filter used for 

Model 1 is shown in Equation (52) 

 

 

 

(52) 

where Wk is the process noise. 

 

The measurement output is defined by 

 

+Vk (53) 

 

where the OCV(SOC) is the OCV value obtained from the 

SOC function with the 10th-order polynomial equation 

above.  

Some initializations need to be made for x0, P0, Q0, and 

R. The initialization value of R = 10. The R-value is the 

initial measurement noise covariance value. It was obtained 

by considering the accuracy of the sensor and the 

estimation results. It was chosen based on measurement 

fluctuations that are far from the actual average obtained by 

measuring the noise variance on the sensor. Furthermore, 

the value of R was determined through experiments which 

resulted in a good accuracy of SOC estimation.  

Meanwhile, Equation (54) is the initial state value of the 

state-space model. The initial value for the first state was 

zero, while the second state, which is SOC, was initialized 

according to the actual SOC value. 

 

 

(54) 

Equation (55) is the initial error covariance value. The 

small value indicates confidence in the small estimation 

error so that the effort made for error correction is small. In 

addition, a small error covariance value is also intended to 

observe changes in the estimated value to the actual value. 

 

 

(55) 

Equation (56) below is the initial value of the process 

error variance. 

 

(56) 

The initialization value was made small because process 

noise could not be calculated. However, model predictions 

were assumed to be good because model validation resulted 

in a small error. 

 

2) Model 2 

Similarly, the state-space model in Equation (28) needs to 

be added with noise and be discretized. The resulting 

Kalman Filter model for Model 2 is expressed as  

 

 

(57) 

 

The measurement output is defined by 

 

 + Vk   (58) 

 

The initialization for x0, P0, Q0, dan R is as follows, 

 

 

(59) 

k1= 0.122471377846543 k7= -17.9445309835419 

k2= -1.72484699277323 k8= 3981.29280161986 

k3= 5.96819898553211 k9= 7837.19843244986 

k4= 11.4868086091382 k10= -72674.9683228613 

k5= -43.3488086640324 k11= 97461.8813096120 

k6= -254.299496750849   
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(60) 

 

(61) 

 

with the value of R = 10. 

 

IV. RESULT AND ANALYSIS 

A. SOC Estimation Results with Pulse Test Data 

The comparison of SOC estimation results from 

different methods will be discussed in the section. 

Generally, the SOC estimation results looked similar for 

each, as seen in Figure 4. However, the SOC final value 

obtained was found different by using similar test data, i.e., 

the pulse test.  

 

 

 

TABLE II 

ERROR IN SOC ESTIMATION WITH PULSE TEST DATA 

Method Final SOC % ERROR MSE 

 

RMSE 

 

CC 1.44% 1.667 8.3 x 10-5 0.0101 

OCV 1 1.32 % 1.49 6.6 x 10-5 0.0081 

OCV 2 -0.11 % 1.013 2.9 x 10-5 0.0054 

OCV 3 1.23 % 2.36 14.5 x 10-5 0.0121 

KF 1 0.00 % 0.76 1.4 x 10-5 0.0038 

KF 2 0.00 % 0.92 2.05 x 10-5 0.0045 

aCC = Coulomb Counting, OCV = Open Circuit Voltage; KF = Kalman 

Filter. 

 

Table II shows more detailed results about quantitative 

data errors. Practically, SOC estimation results frequently 

depend on its initialization; the initialization process 

becomes significant when the method cannot correct the 

initialization error. In this research, two methods could not 

correct the SOC initialization error: Coulomb Counting and 

OCV methods based on Model 2. Meanwhile, the OCV 

Model 3 method, Kalman Filter Model 1, and Kalman 

Filter Model 2 could perform the correction. 

 

Fig. 4.  SOC Estimation with Pulse Test Data 

 

Fig. 5.  Comparison of Correction Capability in SOC Estimation Methods 

 

 

Fig. 6.  SOC Initialization of Coulomb Counting and OCV Model 3 

Meanwhile, Figure 6 shows the estimation results using 

Coulomb Counting and OCV Model 3. Even though the 

initialization error was too far from its actual value, the two 

methods could perform estimation correction. The Coulomb 

Counting method took 1600 seconds, while the OCV Model 

3 only took 60 seconds to correct the SOC value. 

 

B. SOC Estimation Results with Dynamic Stress Test 

(DST) Data 

Tests were also carried out with varying loads. Figure 7 

shows a comparison of the SOC estimation methods used in 

the Coulomb Counting and OCV Model. Tests were carried 

out until the battery had a capacity of 20%. Table III shows 

the error data for each SOC estimation method. 
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Fig. 7.  Comparison of Variable Load SOC Estimation Methods 

  

 Table 3 presents the Mean Square Error (MSE), which 

is a parameter that shows the average square between the 

actual data and the estimated data. In comparison, the Root 

Mean Square Error (RMSE) is an indicator of error which 

is translated as the square root of the average difference 

between the real data and the estimated data. This 

parameter indicates a fairly high significant effect in the 

estimation results. The accuracy of modelling can be 

measured relatively using the MSE parameter. 

 

 

 

 
TABLE III 

ERROR SOC ESTIMATION WITH DST DATA 

Method  Final SOC % ERROR 

 

MSE 

 

 

RMSE 

CC 21.68% 11.136 24 x 10-5 0.0186 

OCV 1 19.77 % 1.9184  17.55 x 10-5 0.0132 

OCV 2 17.38 % 3.44 27.3 x 10-5 0.0165 

OCV 3 18.20 % 1.86 7.725 x 10-5 0.0088 

KF 1 20.04 % 0.2612 0.19 x 10-5 0.0014 

KF 2 19.42 % 0.6661 12.44 x 10-5 0.0031 

aCC = Coulomb Counting, OCV = Open Circuit Voltage; KF = Kalman 

Filter. 

  

  The smallest error value/MSE was obtained from the 

implementation of the Kalman Filter. The varying load 

used was 0.0011 with a final SOC value of 20.04%; MSE 

was 0.19 x 10-5 with an error percentage of 0.261; and 

RMSE of 0.0014. 

 Meanwhile, the largest error value was shown by the 

OCV algorithm with an MSE of 17.38%; a final SOC value 

of 0.0124; MSE is 27.3 x 10-5 with an error percentage of 

3.44; and RMSE of 0.0165. 
 

 

Fig. 8.  Comparison of The Correction Ability of The SOC Estimation 

Method 

 The OCV estimation results were obtained from model 

3 with the recursive equation obtained from the pulse test 

data. From the OCV value, it is entered into the equation 

function of the relationship between OCV-SOC to get the 

SOC value. 

The initialization error of the SOC value was tested to 

compare the reliability of the SOC estimation methods. 

Figure 8 shows the ability of the two methods to correct 

SOC initialization error; the initialized SOC was 80% 

when the actual value was 100%. The Kalman Filter Model 

1 only required 50 seconds, while the Coulomb Counting 

method took 1600 seconds. 

 

Fig. 9.  Comparison of The Correction Ability of The SOC Estimation 

Method (3600 seconds) 

Initialization error is done by initializing SOC with 0%. 

Figure 9 shows that both methods can correct the SOC 

value but need to be clarified in Figure 10.  
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Fig. 10.  Comparison of The Correction Ability of The SOC Estimation 

Method (2650 seconds) 

An extreme initialization error test was also performed 

by initializing the SOC with 0%. Figure 10 shows that the 

two methods could correct the SOC value. However, the 

Coulomb Counting method needed a longer time (1600 

seconds) than the Kalman Filter Model 2, which only took 

50 seconds. 

 

V. CONCLUSION  

This research has conducted simulations of SOC 

estimation using a combinations of battery model and 

estimation method. The SOC estimation using the Coulomb 

Counting method was highly dependent upon the accuracy 

of the current sensor. Then, the SOC estimation based on 

battery modelling could result in an accurate estimation. 

However, only the Kalman Filter algorithm could produce 

an accurate SOC estimation and quickly correct the 

initialization error of the SOC value with the smallest error 

value: MAE 0.001; MSE 0.19 x 10-5; and RMSE 0.0014. 

Therefore, this research conclude that the SOC estimation 

method of battery in the BMS of an electric vehicle should 

be done by using Kalman Filter algorithm. 
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