
 

  
Abstract—The chaotic nature of wind speed will damage 

power system seriously, and cause economic losses. Therefore, 
timely wind prediction is crucial for the safety of power system. 
However, the traditional prediction method is hard to fully 
learn the characteristic of wind speed. This paper proposes an 
optimal component IGSCV-SVR ensemble model to predict 
ultra-short-term wind speed. It changes the traditional single 
parameter optimization method of time series prediction. 
Firstly, the VMD based component correlation is applied to 
decomposing the original wind speed dataset to obtain multiple 
subsequences. Our model can find the dissimilarity of each 
subsequence, and then the model fully learns the feature of each 
subsequence. It can help improve the overall efficiency of 
ultra-short-term wind speed prediction accuracy. Finally, 
estimates are obtained by summing the prediction of all 
components. The case study proves the feasibility of our method 
through the comparative experiments with some previous 
prediction models in MSE, MAE, MAPE and running time in 
the experimental part of this paper. 
 

Index Terms—ultra-short-term wind speed prediction, 
Decomposition, Improved grid search cross-validation, Support 
vector regression, component correlation 

I. INTRODUCTION 
ODAY, the shortage of fossil fuels and environmental 
problems are on a mounting crisis. To reduce the 

consumption of fossil fuels, there is an upsurge of advocating 
clean energy around the world. Such as wind energy. Wind 
power generation is developing rapidly in the world [1-2]. 
According to the website of Forbes magazine in 2021, 
China's offshore wind power installed capacity exceeds that 
of any other country in five years. The data of China's 
national energy administration shows, China's offshore wind 
power installed capacity was nearly 17,000,000 kW in 2021, 
which expresses that China has nearly half of the world's 
offshore wind power installed capacity currently. We can see 
that wind energy will be considerable in the future. 
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In pace with the expansion of wind power grid connection 
scale, the defects of wind power generation are sticking out. 

A. Brief Introduction of Prediction Model of Wind Speed 
The nonlinear characteristic of ultra-short-term wind speed 

has a great destructive effect on the security of the power 
system [3-5]. The quality of wind energy directly determines 
the power quality of wind power generation, which leads to 
the research on wind power has been carried out all over the 
world. Some scholars have implemented the machine 
learning algorithm to predict wind speed [6-7]. Generally, 
wind speed prediction can be divided into three categories: 
physical model, statistical model [8] and intelligent model [9]. 
The physical method uses the meteorological elements such 
as wind speed and wind direction to predict [10], yet the 
statistical law realizes it through the statistical analysis of the 
historical data. The statistical method regards the wind speed 
to be predicted as a time series and predicts it by discovering 
the potential law of the time series. Owing to the low 
accuracy of the statistical prediction model, we adopt the 
intelligent model normally. SVR, ANN, ELM are the 
common intelligent models.  

Although the above model is easy to implement, the single 
model shows low accuracy in prediction universally [11]. 
Some models depend on the selection of parameters, such as 
SVR. For SVR, different parameter selection may lead to 
great differences and affect the training results of the model. 
In view of this, researchers begin to study the mixed model 
[12-13]. In a nutshell, there are two methods in raising a 
single traditional prediction accuracy: processing the original 
data or applying algorithm to optimizing the parameters of 
prediction model. The first method is used for signal 
denoising through the decomposition and reconstruction of 
the signal. EMD and wavelet decomposition methods are 
commonly used in signal processing [14-18].  

The decomposition method mentioned above can be able 
to improve the prediction accuracy to some extent. However, 
EMD is easy to produce mode aliasing, while WPD is greatly 
affected by the threshold and has weak applicability. In order 
to solve the above aporias, VMD is proposed, which is a 
non-recursive decomposition method in raw signal 
decomposition [19-21].  

The second method consists of a variety of techniques, 
which can be used to optimize the parameters of a single 
prediction model, and the weight parameters of a 
combination forecasting model. Due to its strong adaptability, 
this kind of method has been widely concerned by scholars at 
home and abroad. Common optimization algorithms include 
PSO algorithm, GA, CS, ABC algorithm and so on [22-27]. 
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Most of the above literatures only use one of the two 
methods, which improves the prediction results of the model 
to a certain extent. On this basis, some scholars combine two 
methods to improve the fitting effect of the model [28-29]. 
Above all, we propose the optimal on the hybrid optimization 
algorithm IGSCV and the component correlation based VMD. 
The optimal component ensemble model aims at balancing 
the information and variance of the multiple subsequences. 
What is more, a novel hybrid optimization algorithm is 
proposed for fully learn the characteristic of wind speed. 

B. The Main Arrangements for This Article 
On the limitations of some current models, we propose an 

optimal component IGSCV-SVR ensemble model based 
VMD to forecast ultra-short-term wind speed. To verify the 
reliability of the model, three groups of comparative 
experiments are carried out in our experiment. There are 
comparisons among undecomposed models, comparisons 
among decomposed models, and comparisons between 
decomposed models and undecomposed models. In general, 
the main content of this paper is summarized as six parts: 
The first part introduces the related research on wind speed 
prediction. The second part introduces the basic principles of 
some models and algorithms involved in this paper. VMD 
and IGSCV are introduced in detail. The third part is our 
experiment, which briefly introduces the content of our 
experiment. The fourth part summarizes the experimental 
results. The part of reference describes literature reference, 
lists all the literature cited in this paper, and we introduce all 
authors’ information at the end of the paper. 

II. THE THEORETICAL BASIS OF THE MODEL 

A. Variational Modal Decomposition (VMD) 
VMD differs from recursive decomposition mode, pertains 

to a kind of variational mode decomposition problems. The 
key to realize VMD is to determine the modal decomposition 
times K [20], which is introduced in four parts below: 
a. Model bandwidth evaluation 

Firstly, the basic data can be decomposed into k parts. we 
call each component ( )ks t . We can obtain the unilateral 

frequency spectrum through convoluted ( )ks t  with the 
Hilbert transform. 

 
( ) ( )k

jt s t
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δ
π

 + ∗     (1) 
Then, we can transfer the spectrum to its baseband, in this 

process, we require estimating the center frequency kjw te−  of 
each mode firstly. The operation formula is as in (2). 
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Finally, (3) is obtained by Gaussian smoothing from (2). 

We can also get the model bandwidth from (3). Under the 
constraints of ( )k

k
s S t= , ( )S t  is the original signal, the 

model bandwidth takes the minimum value of the sum of the 
estimated bandwidth of each mode. 
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  (3)     
In the equation, ( )tδ represents Dirac distribution. ( )S t  

represents the raw signal. ( ) jt
t

δ
π

 +  
 represents Hilbert 

transform function. ,k ks w  represent the assemble of modes 
and the center frequency. 
b.  Solutions for Variational Problem 

Generally, compared with solving constrained variational 
problems directly, we are more used to transforming it into 
unconstrained variational problems by introducing Lagrange 
penalty factor ρ  and multiplication factor η , as shown in 
(4). 
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   In which, ρ  is used to reduce Gaussian signal interference. 
The above problem can be solved by Alternate Direction 
Method of Multipliers. We can minimize the extended 
Lagrangian expression by iteratively updating the , ,k ks w λ . 
The iterative update formulas of , ,k ks w λ  are as in (5-7): 
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In the above formula, ς  is noise tolerance, meeting the 

signal fidelity requirements. ( )1ˆn
ks w+ , ( )f̂ w , ( )ˆn

is w  and 

( )ˆn wλ  represent Fourier transform of ( )1n
ks w+ , ( )f w , 

( )n
is w , ( )n wλ  respectively. 

c.  The process of VMD 
The result is output at the end of the whole iterative period, 

and K narrowband IMFs components can be obtained. 
d. Determination of modal decomposition times K 

The number of modal components in this paper is acquired 
based component correlation, which is also known as Pearson 
correlation [30], the judgment principle as follows: 

There are two modal components X  and Y , and the 
component correlation of X and Y  can be defined in (8). 
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In the above formula, iX  and iY  represent two modal 
components. iX  and iY  represent the mean value of two 
modal components respectively,

i iX Yr  is component 

correlation. The calculation results are in Table Ⅰ. It shows the 
selection of modal decomposition number K by component 
correlation. It can be seen from Table Ⅰ that there is a very 
weak correlation between any two modal components when 

1  2  3, 4  5K = , , , . However, 6K =  shows weak correlation. 
Thus, we come to the conclusion that  5K =  is the best 
modal decomposition number of this experiment [31]. 

 
 

B. Support Vector Regression (SVR) 
Previously, we perform VMD on the original data to obtain 

five modal components. For each component, we use SVR to 
predict separately. SVR is a derivative of SVM, using the 
decision boundary of the optimal hyperplane in support 
vector classification to solve the regression problems [32]. It 
converts the raw space into a higher dimensional feature 
space to solve complex nonlinear problems [33]. Take a 
single input-output system as an example. 

Given a set of data with ( ) ( ) ( ){ }1 1 2 2, , , ,..., ,n nx y x y x y , ix  

is the sample input, iy  is the sample output, n  is the number 
of data points, and ( )ixϕ  denotes high dimensional 
eigenvector corresponding to ix . Its optimal hyperplane 
formula as in (9). 

 ( ) ( )T
i ix xγ α ϕ β= +   (9) 

where α  is a weight vector and β  is the bias. The 
essence of the training process of the SVR model is to find 
the optimal α  and β , and make the ( )ixγ  approach to iy  
steadily. Differs from the general regression problem, SVR 
allows a tolerance deviation between the model output and 
the real value. We introduce relaxation variable as given in 
(10). 

 
( )2

, 1

1min
2

m

i i
i

C
α β

α ξ ξ ∗

=

+ +
  (10) 

 0C >  is the penalty or regularization factor, used to 

balance the interrelation between 21
2

α  and ( )
1

m

i i
i

ξ ξ ∗

=

+ . 

  i iandξ ξ ∗  represent the relaxation variables. Furthermore, 
the constraint conditions are defined as in (11). 

 

( )
( ).

, 0, 1,..,
0

i i i

i i i

i i

x y
y x

s t
i m

C

γ ε ξ
γ ε ξ

ξ ξ

∗

∗

− ≤ +
 − ≤ +
 ≥ =
 >   (11) 

Where ε  is insensitive risk function. Then, Lagrange 
multiplier ia , ia∗  are introduced to handle the convex 
optimization function with constraints. Meanwhile, α  and 
regression function ( )xγ  can be expressed in (12). Kernel 

function ( ), ix xκ  can better solve the nonlinear problem. 
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  (12) 
“Radial Basis Function (RBF)” is generally used as kernel 

function in SVR model. This paper also uses “RBF”. 
When modeling, we ought to determine the penalty 

parameter C  and kernel parameter g . They can balance the 
model complexity. ε  is tolerance error, indicating the 
approximation degree of training data points. g  is the width 
parameter of kernel function, controlling the local 
information of data.  

C.  Improved Particle Swarm Optimization (IPSO) 
PSO is based search optimization technique [34]. It 

updates each candidate solution by velocity and position of 
particle. It both has demonstrated good convergence and 
better performance [35]. The update formula is in (13): 
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ijv  represents the velocity of the particles, 1 i n≤ ≤ , 

( )1 , 1j j m≤ + ≤ . w  is the inertia weight, used to maintain 
the inertia of particle motion, dynamically search for local 
and global optimal solutions. 1 2c c,  is the acceleration 
constant. ( )1 2, 0,1r r ∈ . The limit values of iX  and velocity 

iV  are as in (14). 
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,max max max maxX X V V− −, ,  in (14) are the minimum and 
maximum values of position and velocity respectively.  

For improving the convergence speed and global search 
ability of the algorithm, this section improves w , 1c  and 2c  
of the traditional PSO algorithm. The updated weights and 
learning factors are as in (15-16). 

 ( ) ( )1 1 2 * / max_w w w w t itera= − −   (15) 

 

( )
( )

max_
max_

1 1 1 1

2 2 2 2

c = c _in+ c _f - c _in * t / itera

c = c _in+ c _f - c _in * t / itera   (16) 

TABLE Ⅰ  
NUMBER K BASED COMPONENT CORRELATION  

K C12 C23 C34 C45 C56 C67 

2 0.0872      

3 0.1274 0.0950     

4 0.1466 0.0920 0.1123    

5 0.1681 0.1073 0.1117 0.0979   

6 0.2170 0.1217 0.1137 0.1127 0.0983  

7 0.2359 0.1205 0.1148 0.1159 0.1186 0.1112 
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where 1 2  0.9,    0.3w w= = , 1 2 0.1c _in c _in= = , 

1 2_ _ 2c f = c f = . t  represents current iterations, 
max_itera represents total iterations. 

D.  Improved Whale Optimization (IWOA) 
WOA is a new heuristic algorithm proposed in 2016. It has 

good global search ability and local search ability. See the 
reference for the detailed process [33]. To improve the 
optimization effect of the algorithm, we adopt the opposite 
number inverse approximation method for initialization in 
the initialization stage, and the solutions can be evenly 
distributed in the range [37]. The mathematical expression is 
in (17). 

( ),o
i i is rand l s=                                 (17) 

where [ ],i i is a b∈ , ( ), / 2i i il a b= , ( )rand   is uniformly 
distributed random number. 

E. K-Fold Cross Validation (CV) 
CV is one of the common optimization algorithms, which 

can reduce the phenomenon of under learning and over 
learning. Generally speaking, the amount of training data is 
inversely proportional to K . The general process of K-fold 
cross validation is as follows:  

Firstly, divide the training data into K equal parts of the 
same size, taking one of them as validation data, and the 
remaining as training data. K is the number of iterations. The 
performance index of regression is the mean value of K 
operation results. when K= 3, the scenario looks like this: 

K=3 is a typical choice in CV, which is also called as 
leave-one-out CV. Let we divide dataset into K copies with 
similar size. Let { } { }1, 2,3,...., 1,2,3,..,N Kχ →：  be an 

indexing function, and ( ) ( )ˆ ,i
if xχ α−  denote thα   model fit 

function with the i-th part of the dataset removed. We can 
define the CV estimate of prediction error from (18): 

 
( ) ( ) ( )( )
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i
i iCV f L y f x

N
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

  (18)           
The key for us is finding the tuning parameter α̂  to 

minimize (18). 

F. Grid Search (GS) 
GS is a method of specifying parameter values, combined 

with CV generally. It divides the grid into a particular range 
and traverses all points in the network with the values of 
parameters. The values of each parameter are accepted, and 
each of possible combined values is called as a "grid" in grid. 
Then the funded optimal value is employed for SVR training. 

  
 

G. Improved Grid Search Cross Validation (IGSCV) 
GS essentially divides the parameters to be searched into 

grid by fixed intervals in a specific space, and each grid point 
represents a set of parameter solutions. When the step size of 
GS is small, the search accuracy is high, but the process is 
quite long. Therefore, GS algorithm occupies a disadvantage 
in large-scale optimization. For this, we propose IGS 
algorithm embedded by IWOA.  

Firstly, we use GS find the optimal solution with large step 
size. Then, carry out GS with IWOA when it is closed to the 
optimal solution, we name it as IGSCV. As shown in Figure 2, 
the red dashed box represents the better interval searched by 
GSCV in part (a), yellow dots indicate evenly distributed 
points in IWOA. The blue triangle indicates the local process 
point of the search, and the red pentagram indicates the best 
point of the search in part (b). 

For the convenience of observation, we only draw the 
values of partial uniform distribution. 

The specific flow chart of this paper is shown in Figure 3. 
Decompose the original wind speed into five sub parts by 
VMD. Raw data are shown in Figure 4 and the decomposed 
subsequences are shown in Figure 5, Figure 6, Figure 7, and 
Figure 8. 

 
 

Then feature transformation is carried out through the time 
series feature transformation matrix. We can get a simplified 
characteristic input matrix by Max-Relevance and 
Min-Redundancy (mRMR). A variety of models designed in 
this paper are used for modeling and prediction. There are 
some prediction models, such as SVR, LSTM, ELM, LSSVR, 
IPSO-SVR, GSCV-SVR, IGSCV-SVR etc. 

III. EXPERIMENT 

A. Ultra-Short-Term Wind Speed Prediction Based on VMD 
This paper proposes a novel prediction model combined 

with VMD. Raw data show the large volatility and 
non-determinacy, which is shown in Figure 4. 

We disintegrate the original dataset by VMD firstly, and 
get five components in each season, which is shown in Figure 
5, Figure 6, Figure 7, and Figure 8. Then we use prediction 
models to predict each component partly. 

In Figure 4, the green line represents spring data, the red 
line represents summer data, the yellow line represents 
autumn and the blue line represents winter. 

B. Experimental Design 
This section introduces the experimental part of this article. 

The data come from a wind farm in Penglai, Shandong 

 
(a)                                               (b) 

Fig. 2.  GSCV-IWOA 

 
Fig. 1.  three-fold cross validation  
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Province. Programming language is the python3.6, and the 
simulation software is Anaconda3.  

Considering the dataset of the experiment is large, we 
divide the data into four seasons, and select one month of 
each season for experiment respectively. There are about 
1000 data per season, and the proportion of training set and 
testing set is 3:1. Firstly, the missing values of the dataset are 
processed. The missing values were filled with the median of 
two adjacent points. 

We created four time series characteristic matrices for 
model training. Each matrix dimension is N M× . We use 
mRMR for feature selection, and select the top 20 of most 
relevant features as input features. A variety of optimization 

algorithms are used to optimize the parameters of SVR. Then 
mean square error (MSE), mean absolute error (MAE) and 
mean absolute percentage error (MAPE) of the four months 
are calculated respectively. 

To highlight the effectiveness of the proposed method, the 
parameters are set as follows: in GS search process, the step 
of C  is 5 and the step of gamma is 1, and [1,505]C ∈ , 

[0,10]g ∈ . The step of GS in IGSCV and GSCV-IPSO are 
both 50. The feasibility of our proposed algorithm is further 
verified by controlling the external conditions. 

 

 
 

 

Fig. 3.  Forecast flow chart 
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IV. ANALYSIS OF EXPERIMENTAL RESULTS 

A. Description of Experimental Results 
This article uses the common error measurement method 

like MSE, MAE, MAPE and calculate the running time. The 

experimental results will be given in Table Ⅱ. We rank the 
errors of each quarter from small to large by MSE for 
facilitate observation. 

It can be seen from Table Ⅱ, VMD-IGSCV-SVR has the 
highest prediction accuracy in four seasons. The second is 
VMD-GSCV-IPSO-SVR.  

 
Fig. 7.  VMD decomposition sequence diagram of original wind speed in Autumn 

 
Fig. 6.  VMD decomposition sequence diagram of original wind speed in Summer 

 
Fig. 4.  Map of original wind speed data 

 
Fig. 8.  VMD decomposition sequence diagram of original wind speed in Winter 

 
Fig. 5.  VMD decomposition sequence diagram of original wind speed in Spring 

Training Testing 
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The prediction accuracy of GSCV-SVR is higher than that 
of GSCV-IPSO-SVR. However, the prediction accuracy of 
VMD-GSCV-IPSO-SVR is higher than VMD-GSCV-SVR. 
The model proposed in this paper performs well both in 
decomposition and non-decomposition. At the same time, our 
model can achieve the effect of parameter optimization and 
the dynamic balance of step size by adjusting the step size in 

the early stage to improve the optimization efficiency. 
Next, we make a detailed comparison of the prediction 

errors in four seasons. The prediction accuracy of our first 
ranked model (our model) is compared with that of the 
second ranked model in detail, MSE is reduced by about 76%, 
MAE is reduced by about 51%, for summer, MSE is reduced 
by about 77%, MAE is reduced by about 47%, for autumn, 

 

TABLE Ⅱ 
 COMPARISON TABLE OF MODEL TRAINING ERROR 

 Test error MSE MAE MAPE Runtime(/s) Parameter C Parameter g 

Sp
rin

g 

VMD-IGSCV-SVR 0.015361  0.088338  0.016680  77 \ \ 
VMD-GSCV-IPSO-SVR 0.063590  0.181543  0.034161  20 \ \ 

VMD-GSCV-SVR 0.126107  0.240937  0.046554  170 \ \ 
IGSCV -SVR 0.225964  0.343136  0.062325  35 100.64023 0.000158 
VMD-ELM 0.330780  0.526029  0.319686  \ \ \ 
GSCV-SVR 0.348863  0.429759  0.081857  31 13 0.1 
VMD-LSTM 0.427874  0.467325  0.087073  \ \ \ 

ELM 0.465942  0.500802  0.313111  8 \ \ 
VMD-IPSO-SVR 0.528769  0.494225  0.105795  2 \ \ 

SVR 0.642475  0.585320  0.106551  0 \ \ 
VMD-LSSVR 0.687422  0.669996  0.382713  \ \ \ 

LSTM 0.761093  0.638784  0.116798  3 \ \ 
LSSVR 0.954161  0.773398  0.406592  \ \ \ 

GSCV-IPSO-SVR 2.507992  1.185972  0.268218  8 51.128782 0.512017 
IPSO-SVR 5.562264  1.983545  0.442213  1 251.088208 5.035342 

   
  S

um
m

er
 

VMD-IGSCV-SVR 0.022137  0.117363  0.027807  77 \ \ 
VMD- GSCV-IPSO-SVR 0.098989  0.221926  0.052678  20 \ \ 

VMD-GSCV-SVR 0.220001  0.315339  0.074821  2 \ \ 
VMD-LSTM 0.306177  0.426575  0.096299  32 \ \ 
IGSCV-SVR 0.378352  0.446412  0.103168  34 251.856389 0.001073 
VMD-LSSVR 0.467334  0.544415  0.364410  \ \ \ 

VMD-ELM 0.532074  0.695463  0.400520  \ \ \ 
GSCV-SVR 0.602732  0.588050  0.136953  8 5 0.1 

SVR 0.605088  0.595809  0.138516  792 \ \ 
LSTM 0.668749  0.626650  0.151189  3s \ \ 
ELM 0.713201  0.647450  0.380716  \ \ \ 

VMD-IPSO-SVR 0.735591  0.617533  0.150856  2 \ \ 
LSSVR 0.755397  0.699235  0.409503  \ \ \ 

GSCV-IPSO-SVR 2.210991  1.186094  0.285273  8 51.128782 0.512016 
IPSO-SVR 3.947300  1.684393  0.430644  1 286.080023 4.917442 

   
   

Au
tu

m
n 

VMD-IGSCV-SVR 0.018084  0.099414  0.018581  72 \ \ 
VMD-GSCV-IPSO-SVR 0.050020  0.162117  0.030042  19 \ \ 

IGSCV-SVR 0.070011  0.383653  0.502677  164 264.260843 0.000633 
VMD-GSCV-SVR 0.074608  0.190437  0.035211  1 \ \ 

VMD-LSTM 0.219033  0.361725  0.072838  31 \ \ 
VMD-IPSO-SVR 0.316530  0.394118  0.073146  2 \ \ 

VMD-ELM 0.364887  0.537344  0.354806  \ \ \ 
SVR 0.381215  0.462334  0.094436  0 \ \ 

GSCV-SVR 0.464245  0.487045  0.085156  8 5 0.1 
ELM 0.465683  0.516569  0.325013  \ \ \ 

LSTM 0.472137  0.516734  0.107872  3 \ \ 
VMD-LSSVR 0.585295  0.629840  0.380843  \ \ \ 

LSSVR 0.747631  0.706959  0.400140  \ \ \ 
GSCV-IPSO-SVR 3.118461  1.257256  0.222091  8 51.128782 0.512017 

IPSO-SVR 6.420130  2.128546  0.447715  1 246.004159 5.592757 

  W
in

te
r 

VMD-IGSCV-SVR 0.017357  0.103964  0.012500  78 \ \ 
VMD- GSCV-IPSO-SVR 0.050842  0.176892  0.021804  21 \ \ 

VMD-GSCV-SVR 0.099323  0.237621  0.030412  1 \ \ 
VMD-ELM 0.222765  0.430863  0.230331  \ \ \ 

VMD-LSTM 0.336692  0.462563  0.053878  31 \ \ 
IGSCV-SVR 0.414995  0.503628  0.058594  33 82.998774 0.0001 

ELM 0.562748  0.584176  0.262379  \ \ \ 
SVR 0.589371  0.592745  0.070665  0 \ \ 

VMD-LSSVR 0.610243  0.611581  0.297353  \ \ \ 
LSTM 0.657169  0.646589  0.076337  8 \ \ 

GSCV-SVR 0.797666  0.682068  0.080921  3 5 0.1 
VMD-IPSO-SVR 0.838433  0.594826  0.083120  2 \ \ 

LSSVR 0.844353  0.709130  0.318508  \ \ \ 
GSCV-IPSO-SVR 4.430394  1.721483  0.239507  8 51.128782 0.512016 

IPSO-SVR 5.680668  1.939931  0.281138  1 219.745971 5.567753 
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MSE is reduced by about 64%, MAE is reduced by about 
39%, and for winter, MSE is reduced by about 66% and MAE 
is reduced by about 41%. 

From the above, we can see that our model has been 
greatly improved both in MSE and MAE, which is very 
helpful for accurate prediction of wind speed. From the 
running time of the three models with high accuracy, we can 
find that the running time of VMD-GSCV-SVR is the longest, 
and VMD-IPSO-SVR is the shortest. The time of our model 
is medium among them, which is about three times more than 
that of VMD-IPSO-SVR, but this time is also acceptable. 

To be more intuitive, we draw the histogram of MSE and 
MAE. When drawing MSE histogram, we omit the two 
models with the worst errors, as shown in Figure 10. From 
the perspective of MSE, our proposed model performs best in 
all models in this article. The same is true in Figure 11. 

In a word, the prediction effect of IGSCV-SVR is better 
than GSCV-SVR, IPSO-SVR, and GSCV-IPSO-SVR. The 
fitting effect of our model on this dataset is the best, which 
can be seen in the Figure 10 and Figure 11. This also proves 
the accuracy and reliability of the model proposed in this 
paper. 

B. Conclusions 
The random fluctuation of ultra-short-term wind speed has 
inherent uncertainty, and the traditional SVR prediction 
model has the disadvantage of large prediction error. 
Experiments show that use intelligent optimization algorithm 
to optimize the parameters of SVR can reduce the prediction 
error to a certain extent. However, the existing WOA 
algorithms are not so perfect, and there are always some 

problems in the process of parameter optimization, such as 
WOA algorithm falls into local extremum and slow 
convergence easily, and the time of running GSCV is too 
long. In this paper, IWOA algorithm and GS algorithm are 
combined to optimize the super parameters of SVR, 
enhancing their strengths and avoiding their weaknesses. 
Thus, an improved optimization algorithm is proposed, the 
effectiveness of the algorithm is also proved by experiments. 
The experimental results show the prediction effect of the 
IWOA algorithm applied to parameter optimization is better 
in this experiment. 

Taking summer as an example, when the search range is 
large, IPSO is easy to fall into local optimization, resulting in 
poor optimization results. The combination effect of GSCV 
and IPSO is affected by IPSO, the combined prediction 
accuracy is not high. The result of neural network model is 
better in the initial stage. However, if the optimization 
algorithm is used to optimize the neural layer, it will run for a 
very long time, exceeding our set time range. Therefore, we 
do not consider optimizing the neural network algorithm. 

Secondly, by comparing the prediction accuracy between 
the optimization algorithm and the hybrid model of SVR, the 
advantages of IGSCV-SVR are highlighted whether in the 
decomposition process or not. Which can be prove from 
Figure 9. We find that VMD-IGSCV-SVR is closest to black 
true curve in four seasons, which is indicated by red dotted 
line. It shows that the actual fitting effect of our model is 
better. Above all, our model is feasible. 

 

 
 

Fig. 10.  MSE of all models in four seasons 
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