
 

 

Abstract— in this work, we present an advanced interpolation 

method via the Vandermonde matrix for solving weakly 

singular Volterra integral equations of the second kind. The 

optimal rules for the node distributions of the two kernel 

variables were created to guarantee that the kernel's singularity 

was isolated. The unknown function is interpolated using three 

matrices: one of which is the monomial matrix, based on the 

Vandermonde matrix and Chebyshev nodes; the second is the 

known square Vandermyde matrix, and the third is the 

unknown coefficient matrix. The singular kernel is interpolated 

twice and transformed into a double-interpolated non-singular 

function through five matrices, two of which are monomials. A 

linear algebraic system can be obtained without using the 

collocation points by inserting the interpolated unknown 

function on the left and right sides of the integral equation. The 

solution of the obtained system yields the unknown coefficients 

matrix and thereby finds the interpolated solution. The obtained 

results from solving six examples are faster to converge to the 

exact ones using the lowest degree of interpolants and are better 

than those achieved by the other indicated method, which 

confirms the novelty and efficiency of the presented method. 

 
Index Terms— Singular integral equation; barycentric 

interpolation; weakly singular kernels; computational methods; 

Chebyshev nodes; Vandermonde matrix; scattering; radiation; 

image processing; genetic engineering. 

  

I. INTRODUCTION 

Singular integral equations appear in many scientific 

applications in the fields of scattering theory, potential 

theory, radiation theory, radar, and the effects of magnetic 

fields on viruses, artificial intelligence, genetic engineering, 

nanotechnology, thermodynamics, virology, and 

epidemiology, among others. The Dirichlet or Niemann 

conditions are commonly imposed when solving initial, 

boundary, or mixed value problems of Laplace equations,  

 
Manuscript received November 10, 2021; revised July 13, 2022.  

E. S. Shoukralla is a Professor of Engineering Mathematics, Faculty of 

Electronic Engineering, Menofia University, Egypt. (e-mail: shoukralla@el-

eng.menofia.edu.eg). 

B. M. Ahmed is a Lecturer Assistant of Engineering Mathematics, Faculty 

of Engineering and Technology, Future University in Egypt, Cairo, Egypt. 

(corresponding author, phone: +201152157861; e-mail: 

Basma.magdy@fue.edu.eg). 

Ahmed Saeed is an Assistant Professor in the Electrical Engineering 
Department, Future University in Egypt, Cairo, Egypt. (e-mail: 

asaeed@fue.edu.eg). 

M. Sayed is a Professor of Engineering Mathematics and Head of 
Department of Physics and Engineering Mathematics, Faculty of Electronic 

Engineering, Menofia University, Egypt. (e-mail: Mohamed.abdelkader@el-

eng.menofia.edu.eg). 

 

energy equations, electromagnetic wave equations, 

Helmholtz equations, and other problems using the integral 

equation method, resulting in equivalent singular boundary 

integral equations [1-7]. The unknown function's singularity 

near the integration domain, the kernel's singularity when one 

of its variables approaches the other variable, or both 

singularities induce the singularity of integral equations. 

Shoukralla et al. [8-13] proposed several methods for solving 

the weakly singular Fredholm integral equations of the first 

kind, as well as techniques for dealing with the singularities 

of the unknown functions and kernels. There were used a 

variety of strategies with orthogonal functions, including 

monic and economized monic Chebyshev polynomials, as 

well as other special functions. 

  However, because of the different features of the Volterra 

equation's weakly singular kernel, as well as the fact that the 

endpoint of the limit of integration is a variable rather than a 

constant, it is difficult to apply these techniques to the 

Volterra equation. The proposed method in this work 

employs Lagrange interpolation via the Vandermonde 

matrix, together with an analytical analysis of the kernel 

singularity. We established and used one criterion to regulate 

the strategy of selecting the variable distribution nodes in 

such a way that no negative or zero values emerge under the 

square root sign; the kernel singularity was entirely isolated. 

Many methods for computing the numerical solutions to 

weakly singular Volterra integral equations of the second 

kind have recently been developed [14–22]. Zhao et al. [14] 

created super implicit multistep collocation methods for 

solving weakly singular Volterra integral equations. Karimi 

Vanani et al. [15] used the Tau approach to solve weakly 

singular Volterra integral equations and Abel's integral 

equations numerically. Kapil Kant et al. [16] used projection 

methods to attain the convergence rates for weakly singular 

Volterra integral equations. They used Galerkin and multi-

Galerkin methods to solve weakly singular Volterra integral 

equations. Hou et al. [17] utilized a fractional Jacobi-

collocation spectral method to solve the Volterra integral 

equations of the second kind with a weakly singular kernel. 

Boykov et al. [18] solved weakly singular Volterra integral 

equations of various types and determined the orders of 

Babenko and Kolmogorov n-widths of compact sets from 

certain classes of functions. Yang [19] proposed pseudo-

spectral Jacobi Galerkin for solving weakly singular Volterra 

integral equation. Zhang et al. [20] rewrote the equation as a 

new Volterra integral equation with pantograph delays and 

offered a convergence analysis for the second-kind Volterra 

integral equation with a weakly singular kernel. Araghi et al. 
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[21] utilized Navot-Simpson's Quadrature for solving the 

singular Abel integral equation of the second kind. 
Convergence properties for splines and iterated collocation 

for weakly singular Volterra integral equations relevant to 

heat conduction problems were introduced by Diogo [22]. 

Using the least-squares method, Xu  et al. [23] presented a 

novel method for solving all sorts and classes of integral 

equations. They looked at the stability and uniform 

convergence in great detail. The hp-form of the discontinuous 

Galerkin time-stepping approach for weakly singular 

Volterra integral equations of the second kind was developed 

by Wang  et al. [24]. In [25], Talaei proposed a new method 

for solving weakly singular Volterra integral equations using 

an operational matrix based on Chelyshkov polynomials; the 

integral equation is transformed into a system of algebraic 

equations. Hashmi  et al. [26] obtained the approximate 

solutions for weakly singular Volterra integral equations 

using the optimal homotopy asymptotic method (OHAM). 

For the first time, Shoukralla et al. [27–32] used matrices to 

upgrade the barycentric Lagrange interpolation formula to 

solve non-singular linear second-kind Volterra equations. 

Depending on the smoothness of the kernel and the provided 

data functions, exact solutions are obtained and proven to be 

highly convergent. These methods may be sufficient for 

solving singular Volterra equations, but the most crucial 

question is how to eliminate the kernel singularity when 

utilizing the proposed method. The main goal of this research 

is to use an enhanced Chebyshev node in a barycentric 

Lagrange interpolation formula and the Vandermonde matrix 

to interpolate both unknown and provided data functions. On 

the other hand, the kernel is interpolated twice using the best 

node distributions for the two variables to isolate its 

singularity. As a result, the functional values matrix, the 

known Vandermonde matrix, and the monomial matrix of the 

primary argument are all represented by three matrices for 

each one-variable function. We improved the method for 

interpolating the weakly singular kernel described in [13] and 

established an original procedure for determining the best 

node distribution for the two sets of nodes corresponding to 

the two kernel variables. 

As a result, it has been ensured that the kernel's 

denominator never approaches 0 or becomes imaginary for 

any value of the nodes. Therefore, a double interpolated non-

singular kernel is obtained using five matrices: two monomial 

matrices related with the two kernel variables, two 

Vandermonde matrices subjected to the two kernel variables, 

and a square known coefficient matrix.  

The required solution is turned into a system of equations 

by using some matrix abbreviations. The unknown 

coefficient matrix and, as a result, the unknown function can 

be found by solving them directly. Section II presents an 

interpolation method based on an enhanced barycentric 

interpolation formula via the Vandermonde matrix with 

Chebyshev nodes for solving weakly singular Volterra 

integral equations of the second kind. Six examples were 

presented and solved in section III, one of which being a non-

singular equation. For 5n = , the interpolated solutions are 

identical to the precise ones and superior to the solution 

presented in [33]. The remaining four examples are solved 

for various upper integration limit values and lowest 

interpolation degrees. As shown in the tables and figures, the 

obtained results, including absolute errors, significantly 

converge to the exact solutions and are superior to those 

presented in [26]. This emphasizes the proposed method's 

uniqueness and its ability to produce accurate results with 

minimal interpolation degree. 

II. MATRIX-VECTOR VANDERMONDE INTERPOLATION 

METHOD 

Consider weakly singular Volterra integral equations of the 

second kind 

( ) ( ) ( ) ( )  ,  ; ,

x

a

x x k x t t dt x I a b  = +  =   (1) 

where ( )x  is the unknown solution, ( )x  is a given 

function, and ( ) ( ),k x t x t
−

= − is the given kernel defined on 

the domain ( ) , :x t a x t b =     with b  is a real positive 

number and 0 1  . Forming ( )x  in the tabulated form 

function ( )i ix =  for    
0

,
n

i i
x a b

=
 is the Chebyshev 

nodes defined by 

( )
( )

( )( )2 1
1 ; cos ; 0,

2 2 1
i j j

n jb
x j n

n
  

− +
= + = =

+
                                  (2) 

Let ( )n x  be the interpolated polynomial that interpolates 

( )x  at  
0

n
i i

x
=

 under the interpolation condition 

( ) ( )n i i ix x  = =  for each 0,i n= . Then, it can be 

obtained in the matrix form 

( ) ( )n x x =                                    (3) 

Here, 
0

=
n

j j
a

=
     is the ( )1 1n +  unknown coefficients 

matrix and ( )
0

n
j

j
x x

=

  =
 

 is the ( )1 1n+   monomial basis 

matrix. The unknown coefficients  
0

n

j j
a

=
 are determined by 

solving the system 

V U =  (4) 

where ( )
0

U
n

i i
u x

=
 =    is a column matrix, whereas the 

Vandermonde square matrix V  is given by 

, 0
V= ; ,  1

n j
ij ij ijii j

x x x x
=

  = =   for 0j =  (5) 

The solution of the algebraic system (4) yields A , and hence, 

it results in  

( ) ( ) ( )1U V
T

T
n x x −=   (6) 

Similarly, the matrix-vector single interpolant ( )n x  can be 

obtained by interpolating the given data function ( )x  to get 

( ) ( ) ( )1F V
T

T
n x x −=   (7) 
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where ( )
0

F
nT

i i
x

=
 =    is the data functional values row 

matrix. The kernel ( ),k x t  will be interpolated twice, one for 

each variable x  and one for each variable t . To interpolate 

the kernel, its denominator singularities must be first isolated, 

ensuring that the denominator never becomes zero or 

imaginary. The implementation of this strategy led to design 

a rule that allows overcoming any kernel singularity when 

x t→  and 0x → . 

Let ( )/2c b a= − , the two sets of nodes  
0

n
i i

x
=

 and  
0

n
i i

t
=

 

are then chosen so that they are associated with the two 

variables  x  and t  as follows 

( ) ( )

( ) ( )

 ;   ;

2 1  ; ; 0

i jx c ih t a jh

b
h c n

n

 

  


= + + = + +

= − − = /
 (8) 

Analogous to (7), the matrix-vector single interpolate kernel 

( ),nk x t  of degree n is obtained, which corresponds to the 

nodes  
0

n
i i

x
=

 in the form  

( ) ( ) ( )1, V , .T
n ik x t x x t−=    (9) 

where ( ),ix t  is a column matrix defined by 

( ) ( )
0

, ,
n

i i i
x t k x t

=
  =    (10) 

Similarly, according to the nodes 
0

n
i i

t
=

, each entry in the set 

( ) 
0

,
n

i i
k x t

=
 will be interpolated appropriately to the variable 

t . As a result, the matrix-vector double interpolate kernel 

( ), ,n nk x t is obtained  

( ) ( ) ( ) ( )1 1
, , V V

T
T

n nk x t x t− −=     (11) 

where V  is the Vandermonde matrix associated with the 

variable t  such that 

, 0
V= ; ,  1

n j
ij ij ijii j

t t t t
=

  = =   for 0j =  (12) 

From (6) and (11), the following equation is obtained 

( ) ( ) ( ) ( ) ( )1 1 1
, , V V V U

T
T

n n nk x t t x t − − −=     (13) 

where 
, 0

n
ij i j

k
=

  =
 

 is a square known matrix such that 

( ),   , 0 :  ij i jk k x t i j n=  = , and ( ) ( ) ( )= Tt t t    or 

( )
, 0

n
i j

i j
t t +

=

  =
 

. Furthermore, ( )n x  is determined using 

(13) and replacing the ( )n x  supplied by (6) with ( )t  on 

the right-hand side of (1). Thus, 

( ) ( ) ( ) ( ) ( )1 1 1V V V U
T

T
n x x x x  − − −= +     (14) 

where ( ) ( )
0

x

x t dt =  .  

The following section presents the investigation of a novel 

method for turning the solution of the integral equation (1) 

into a linear algebraic system of equations that does not 

require the use of the collocation method. The 

implementation of this concept begins by replacing ( )x  in 

the left side of (1) with ( )n x  that was given by (14), 

replacing the kernel ( ),k x t  in equation (1) with ( ), ,n nk x t  

that was given by (11), replacing the ( )t  in the right side 

with ( )n x  given by (14), and finally replacing the given 

data function ( )t  on the right side of (1) with ( )n t . Hence,  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1

1 1 1 1 1

0

1 1 1

0

V V V A

V V V V V U

V V V F

T
T

x
T T

T T

x
T

T T

x x

x t t t dt

x t t dt

− − −

− − − − −

− − −

  

 
−       

 

 =    
 





 

(15) 

Simplifying (15), gives 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1

1 1 1

V V V U

V V V U

V V V F

T
T

T
T

T
T

x x

x x

x x

− − −

− − −

− − −

  

−  

=   

 (16) 

where 

( ) ( ) ( ) ( )

( ) ( )

1 1

0

0

V V  ,

x
T

x

x t t dt

x t dt

− − 
 =    

 

 = 





 (17) 

By using some matrix algebra, the system (16) is obtained in 

the simplified form 

( ) ( )( ) ( )1 1 1V V U V Fx x x− − − − =   (18) 

The coefficient unknown matrix U is obtained from the 

direct solution of (18), which is then substituted into (6) to 

provide the interpolated solution ( )n x  

( ) ( ) ( ) ( )( ) ( )
1 1V FT

n x x x x x
− −=   −   (19) 

III.  COMPUTATIONAL RESULTS 

Six examples were solved using the proposed method in 

section II, one of which was a non-singular Volterra equation 

of the second sort, while the others were weakly singular 

equations. For computing the interpolated numerical 

solutions, we used the MATLAB software package. For 

instances 2, 3, 4, 5 and 6, the interpolated numerical solutions 

to the four singular equations are indicated by ( )b
n x , and 

they are determined for 0.1,0.3b= , and 2,4n= . The absolute 

errors are represented by ( ) ( ) ( )b b
n i i n ix x x  = − , where 
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( )ix  denote the exact solution values while ( )b
n ix  

denote the interpolated numerical solutions of degree n  at the 

integration interval ,
10
b b 

  
. The obtained interpolated 

numerical solutions of degree 2,4n= significantly converge 

to the exact solutions. 

Example 1  

5 2 2

0

7( ) ( ) ( )
12

x
x x x xt x t t dt = + − +  

The exact solution is ( )x x =  [33]. Table 1 shows the exact 

solution values ( )ix , the interpolated numerical solutions

5 ( )x , and the absolute errors ( )5 ix  for any value of b . 

The obtained solution 5 ( )x  is found to be the exact solution. 

The CPU time for this case is 8.11287 seconds.  

 
Table 1. The exact solution values ( )ix , the interpolated 

numerical values 
5 ( )ix  and the absolute errors 

5 ( )ix   

ix  ( )ix  5 ( )ix  5 ( )ix  

0.1 0.1000 0.1000 0 

0.2 0.2000 0.2000 0 

0.3 0.3000 0.3000 0 

0.4 0.4000 0.4000 0 

0.5 0.5000 0.5000 0 

0.6 0.6000 0.6000 0 

0.7 0.7000 0.7000 0 

0.8 0.8000 0.8000 0 

0.9 0.9000 0.9000 0 

1 1.0000 1.0000 0 

 

Example 2  
5

2 2
0

( )16( )
15

x t
x x x dt

x t


 = + −

−
      0,1x  

The exact solution is 2( )x x =  [15]. Tables 2 and 3 show the 

exact solutions ( )ix and the numerical solutions ( )b
n ix  for 

2,4n = ,
 
and

 
0.1,0.3b = . In tables 4 and 5, the absolute 

errors ( )b
n ix

 
for 2,4n = , and 0.1,0.3b =  are shown. The 

graphical representation of the absolute error ( )b
n ix  for 

2,4n = ,
 

and
 

0.1,0.3b = are shown in Figures 1 and 2, 

respectively. The CPU time for 0.1b =  are 2.97405  and 

12.126859  seconds, and for 0.3b =  are 3.17492  and 

13.94830 , respectively. 

Table 2. The exact solution ( )ix , the interpolated solution 

( )0.1
n ix

 
for 2,4n= .  

ix  ( )ix  0.1
2 ( )ix  0.1

4 ( )ix  

0.01 0.0001 0.0000 0.0001 

0.02 0.0004 0.0004 0.0004 

0.03 0.0009 0.0009 0.0010 

0.04 0.0016 0.0017 0.0017 

0.05 0.0025 0.0027 0.0026 

0.06 0.0036 0.0040 0.0038 

0.07 0.0049 0.0054 0.0053 

0.08 0.0064 0.0072 0.0070 

0.09 0.0081 0.0091 0.0090 

0.1 0.0100 0.0112 0.0103 

Table 3. The exact solutions ( )ix , the interpolated solutions 

( )0.3
n ix  for 2,4n= .  

ix  ( )ix  0.3
2 ( )ix  0.3

4 ( )ix  

0.03 0.0009 0.0001 0.0010 

0.06 0.0036 0.0031 0.0041 

0.09 0.0081 0.0088 0.0092 

0.12 0.0144 0.0165 0.0160 

0.15 0.0225 0.0262 0.0244 

0.18 0.0324 0.0377 0.0354 

0.21 0.0441 0.0517 0.0500 

0.24 0.0576 0.0686 0.0658 

0.27 0.0729 0.0878 0.0851 

0.30 0.0900 0.1063 0.0925 

 

Table 4. The absolute error 0.1( )n ix   for 2,4n= .  

ix  0.1
2 ( )ix  0.1

4 ( )ix  

0.01 5.49E-05 5.82 E -06 

0.02 3.51E-05 3.28 E -05 

0.03 3.78E-05 7.46 E -05 

0.04 1.38 E-04 1.16 E -04 

0.05 2.46 E-04 1.374 E -04 

0.06 3.68 E-04 2.18 E -04 

0.07 .32 E-04 4.15 E -04 

0.08 7.68 E-04 5.81 E -04 

0.09 1.05 E-03 8.58 E -04 

0.1 1.17 E-03 2.79 E -04 

 

Table 5. The absolute error 0.3 ( )n ix   for 2,4n= .  

ix  0.3
2 ( )ix  0.3

4 ( )ix  

0.03 8.27 E-04 9.02E-05 

0.06 4.82 E-04 4.92 E-04 

0.09 6.51E-04 1.09 E-03 

0.12 2.13 E-03 1.65 E-03 

0.15 3.66E-03 1.89E-03 

0.18 5.33 E-03 3.03 E-03 

0.21 7.61E-03 5.93 E-03 

0.24 1.09 E-02 8.22E-03 

0.27 1.49 E-02 1.22 E-02 

0.30 1.63E-02 2.54E-03 

 

 

 

Fig.1. The absolute errors ( )0.1
n ix  for 2,4n=  

 

1 2 3 4 5 6 7 8 9 10
10
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10
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10
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10
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Absolute error for n=2

Absolute error for n=4
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Fig.2. The absolute errors ( )0.3
n ix  for 2,4n=   

 

Example 3  

 
( )1 1( ) 1  ; 0,1

4 2 0

x t
x x dt x

x t


 = − + 

−
      

The exact solution is ( ) 1x x = +  [16]. In Tables 6 and 7,  the 

exact solutions ( )ix , the interpolated numerical solutions 

( )b
n ix  for 2,4n = ,

 
and 0.1,0.3b =  are shown. Tables 8 and 

9 show the absolute errors ( )b
n ix

 
for 2,4n = ,

 
and 0.1,0.3b =

 
are shown. In figures 3 and 4, the representation of the 

absolute error ( )b
n ix  for 2,4n = , and 0.1,0.3b = are shown. 

The CPU time for 0.1b =  are 3.74901  and 11.83681  

seconds and for 0.3b =  are 3.97130  and 14.87301 , 

respectively. 

 

Table 6. The exact solution ( )ix , the interpolated solution 

( )0.1
n ix

 
for 2,4n= . 

ix  ( )ix  0.1
2 ( )ix  

0.1
4 ( )ix  

0.01 1.1000 1.0558 1.0827 

0.02 1.1414 1.1064 1.1387 

0.03 1.1732 1.1520 1.1771 

0.04 1.2000 1.1925 1.2050 

0.05 1.2236 1.2278 1.2278 

0.06 1.2449 1.2582 1.2492 

0.07 1.2646 1.2835 1.2709 

0.08 1.2828 1.3038 1.2929 

0.09 1.3000 1.3191 1.3134 

0.1 1.3162 1.3291 1.3288 

 

Table 7. The exact solution ( )ix , the interpolated solution 

( )0.3
n ix for 2,4n= .  

ix  ( )ix  0.3
2 ( )ix  

0.3
4 ( )ix  

0.03 1.1732 1.0985 1.1449 

0.06 1.2449 1.1890 1.2445 

0.09 1.3000 1.2712 1.3144 

0.12 1.3464 1.3451 1.3668 

0.15 1.3873 1.4109 1.4111 

0.18 1.4243 1.4689 1.4539 

0.21 1.4583 1.5193 1.4981 

0.24 1.4899 1.5620 1.5434 

0.27 1.5196 1.5969 1.5870 

0.30 1.5477 1.6228 1.6214 

Table 8. The absolute error 
0.1( )n ix   for 2,4n= .  

ix  0.1
2 ( )ix  

0.1
4 ( )ix  

0.01 4.42E-02 1.73 E-02 

0.02 3.50 E-02 2.7 E-03 

0.03 2.12 E-02 3.9 E-03 

0.04 7.5 E-03 5.0 E-03 

0.05 4.2 E-03 4.2 E-03 

0.06 1.32 E-02 4.2 E-03 

0.07 1.89 E-02 6.3 E-03 

0.08 2.10 E-02 1.00 E-02 

0.09 1.91 E-02 1.34 E-02 

0.1 1.29 E-02 1.26 E-02 

 

Table 9. The absolute error 
0.3 ( )n ix   for 2,4n= .  

ix  0.3
2 ( )ix  

0.3
4 ( )ix  

0.03 7.47 E-02 2.83 E-02 

0.06 5.59 E-02 4.0 E-04 

0.09 2.88 E-02 1.44 E-02 

0.12 1.3 E-03 2.04 E-02 

0.15 2.36 E-02 2.38 E-02 

0.18 4.46 E-02 2.96 E-02 

0.21 6.10 E-02 3.99 E-02 

0.24 7.21 E-02 5.35 E-02 

0.27 7.72 E-02 6.74 E-02 

0.30 7.51 E-02 7.37 E-02 

 

 

 

 

Fig.3. The absolute errors ( )0.1
n ix  for 2,4n=  

 

 

 

 

Fig.4. The absolute errors ( )0.3
n ix  for 2,4n=
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Example 4  

( )  
0

( )
( ) 1 ( ) ; 0,1

x
x t

x e erf x dt x
x t


 = + − 

−
      

The exact solution is ( ) xx e = [15]. In Tables 10 and 11, the 

exact solution ( )ix the numerical solutions ( )b
n ix  for 

2,4n =
 
and 0.1,0.3b = is shown. In tables 12 and 13, the 

absolute errors ( )b
n ix

 
for 2,4n =

 
and 0.1,0.3b = are shown. 

In figures 5 and 6, the graphical representation of the absolute 

error ( )b
n ix  for 2,4n =

 
and 0.1,0.3b = is presented. The 

CPU time for 0.1b =  are 4.38921  and 14.04929  seconds 

and for 0.3b =  are 5.93870  and 15.918041, respectively. 

 

Table 10. The exact solution ( )ix , the interpolated solution 

( )0.1
n ix

 
for 2,4n= . 

ix  ( )ix  0.1
2 ( )ix  

0.1
4 ( )ix  

0.01 1.0101 1.0106 1.0105 

0.02 1.0202 1.0214 1.0213 

0.03 1.0305 1.0325 1.0323 

0.04 1.0408 1.0437 1.0436 

0.05 1.0513 1.0552 1.0551 

0.06 1.0618 1.0669 1.0669 

0.07 1.0725 1.0790 1.0790 

0.08 1.0833 1.0913 1.0912 

0.09 1.0942 1.1039 1.1037 

0.1 1.1052 1.1166 1.1162 

Table 11. The exact solution ( )ix , the interpolated solution 

( )0.3
n ix for 2,4n= . 

ix  ( )ix  0.3
2 ( )ix  

0.3
4 ( )ix  

0.03 1.0305 1.0331 1.0328 

0.06 1.0618 1.0681 1.0675 

0.09 1.0942 1.1047 1.1041 

0.12 1.1275 1.1430 1.1425 

0.15 1.1618 1.1832 1.1827 

0.18 1.1972 1.2254 1.2251 

0.21 1.2337 1.2698 1.2695 

0.24 1.2712 1.3165 1.3157 

0.27 1.3100 1.3652 1.3640 

0.30 1.3499 1.4152 1.4132 

 

Table 12. The absolute error 
0.1( )n ix   for 2,4n= .  

ix  0.1
2 ( )ix  

0.1
4 ( )ix  

0.01 5.0 E-04 4.0 E-04 

0.02 1.2 E-03 1.1 E-03 

0.03 2.0 E-02 1.9 E-03 

0.04 2.9 E-03 2.8 E-03 

0.05 3.9 E-03 3.8 E-03 

0.06 5.1 E-03 5.1 E-03 

0.07 6.5 E-03 6.5 E-03 

0.08 8.0 E-03 7.9 E-03 

0.09 9.7 E-03 9.5 E-03 

0.1 1.14 E-02 1.11 E-02 

 

Table 13. The absolute error 
0.3 ( )n ix   for 2,4n= . 

ix  0.3
2 ( )ix  

0.3
4 ( )ix  

0.03 2.6 E-03 2.3 E-03 

0.06 6.2 E-03 5.7 E-03 

0.09 1.06 E-02 9.9 E-03 

0.12 1.55 E-02 1.50 E-02 

0.15 2.13 E-02 2.09 E-02 

0.18 2.82 E-02 2.78 E-02 

0.21 3.61 E-02 3.59 E-02 

0.24 4.53 E-02 4.45 E-02 

0.27 5.53 E-02 5.40 E-02 

0.30 6.53 E-02 6.34 E-02 

      

 

 
 

Fig.5. The absolute errors ( )0.1
n ix  for 2,4n=

 

 

 

 

Fig.6. The absolute errors ( )0.3
n ix  for 2,4n=   

 

Example 5 

 
0

( )
( ) 2 ; 0,1

x t
x x dt x

x t


 = − 

−
      

The exact solution is ( ) 1 xx e erfc x = −  [15]. In tables 14 

and 15, the exact solution ( )ix , the numerical solutions 

( )b
n ix  for 2,4n =

 
and 0.1,0.3b = are presented. In tables 16 

and 17, the absolute errors ( )b
n ix

 
for 2,4n =

 
and 0.1,0.3b =

are shown. In figures 7 and 8, the graphical representation of 

the absolute error ( )b
n ix  for 2,4n = ,

 
and 0.1,0.3b = are 

shown. The CPU time for 0.1b =  are 4.74829  and 

12.04592  seconds, respectively, and for 0.3b =  are 

5.93829  and 14.79281  , respectively.      
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Table 14. The exact solution ( )ix , the interpolated solution 

( )0.1
n ix

 
for 2,4n= . 

ix  ( )ix  0.1
2 ( )ix  

0.1
4 ( )ix  

0.01 0.1723 0.1062 0.1570 

0.02 0.2301 0.1956 0.2494 

0.03 0.2702 0.2676 0.3014 

0.04 0.3014 0.3225 0.3290 

0.05 0.3270 0.3630 0.3441 

0.06 0.3489 0.3940 0.3666 

0.07 0.3680 0.4201 0.3987 

0.08 0.3850 0.4430 0.4222 

0.09 0.4002 0.4582 0.4462 

0.1 0.4141 0.4518 0.4122 

 

Table 15. The exact solution ( )ix , the interpolated solution 

( )0.3
n ix for 2,4n= . 

ix  ( )ix  0.3
2 ( )ix  

0.3
4 ( )ix  

0.03 0.2702 0.1789 0.2630 

0.06 0.3489 0.3215 0.4028 

0.09 0.4002 0.4276 0.4703 

0.12 0.4384 0.4987 0.4954 

0.15 0.4687 0.5436 0.5005 

0.18 0.4938 0.5753 0.5289 

0.21 0.5151 0.6048 0.5797 

0.24 0.5336 0.6351 0.6077 

0.27 0.5498 0.6544 0.6396 

0.30 0.5643 0.6291 0.5393 

 

Table 16. The absolute error 
0.1( )n ix   for 2,4n= . 

ix  0.1
2 ( )ix  0.1

4 ( )ix  

0.01 6.61 E-02 1.53 E-02 

0.02 3.46 E-02 1.93 E-02 

0.03 2.6 E-03 3.13 E-02 

0.04 2.11 E-02 2.77 E-02 

0.05 3.59 E-02 1.71 E-02 

0.06 4.50 E-02 1.77 E-02 

0.07 5.21 E-02 3.07 E-02 

0.08 5.80 E-02 3.72 E-02 

0.09 5.79 E-02 4.60 E-02 

0.1 3.77 E-02 1.8 E-03 

Table 17. The absolute error 
0.3 ( )n ix   for 2,4n= . 

ix  0.3
2 ( )ix  

0.3
4 ( )ix  

0.03 9.13 E-02 7.2 E-03 

0.06 2.75 E-02 5.38 E-02 

0.09 2.73 E-02 7.00 E-02 

0.12 6.03 E-02 5.70 E-02 

0.15 7.49 E-02 3.18 E-02 

0.18 8.15 E-02 3.51 E-02 

0.21 8.97 E-02 6.46 E-02 

0.24 0.1015 7.42 E-02 

0.27 0.1046 8.97 E-02 

0.30 6.48 E-0.2 2.50 E-02 

  
 

 

Fig.7. The absolute errors ( )0.1
n ix  for 2,4n=  

 

 

Fig.8. The absolute errors ( )0.3
n ix  for 2,4n=   

 

Example 6 

( )  
( )4096( ) 1 ; 0,1

6435
7

0

t
x x x dt x

x t

x 
 = − + 

−  

The exact solution is 7( )x x =  [26]. Tables 18 and 19 show 

the exact solution ( )ix and the numerical solutions ( )b
n ix  

for 2,4n =
 
and 0.1,0.3b = . In tables 20 and 21, the absolute 

errors ( )b
n ix

 
for 2,4n =

 
and 0.1,0.3b = are presented. In 

figures 9 and 10, the graphical representation of the absolute 

error ( )b
n ix  for 2,4n =

 
and 0.1,0.3.b = are presented.

 
The 

CPU time for 0.1b =  are 5.83760  and 11.84902  seconds 

respectively and for 0.3b =  are 6.84083  and 13.48078 , 

respectively. Tables 20 and 21 show the absolute errors  

( )b
n ix   for 0.1,0.3b= and 2,4n=  respectively.      

     

Table 20 shows that the solutions obtained using the 

proposed method converge strongly with the exact solutions 

and that the absolute error 0.1
2 ( ) 2.081 07iE x E= −  is much 

smaller than the absolute error 1.16 02E−  for 0.1x=  and 

2n=  of the same example mentioned in [26], indicating that 

the results obtained based on the proposed solution method 

are superior to those in [26]. 
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Table 18. The exact solution ( )ix , the interpolated solution 

( )0.1
n ix

 
for 2,4n= . 

ix  ( )ix  0.1
2 ( )ix  

0.1
4 ( )ix  

0.01 1.00E-14 7.979E-09 2.174E-09 

0.02 1.28E-12 1.251E-08 1.101E-09 

0.03 2.19E-11 1.345E-08 -3.978E-10 

0.04 1.64E-10 1.053E-08 -8.458E-10 

0.05 7.81E-10 3.277E-09 -2.464E-10 

0.06 2.80E-09 -8.805E-09 -2.635E-10 

0.07 8.24E-09 -2.594E-08 -4.486E-09 

0.08 2.10E-08 -4.799E-08 -1.837E-08 

0.09 4.78E-08 -7.488E-08 -4.896E-08 

0.1 1.00E-07 -1.081E-07 -1.108E-07 

                                      
Table 19. The exact solution ( )ix , the interpolated solution 

( )0.3
n ix for 2,4n= . 

ix  ( )ix  0.3
2 ( )ix  

0.3
4 ( )ix  

0.03 2.187E-11 4.446E-05 1.136E-05 

0.06 2.799E-09 7.212E-05 6.634E-06 

0.09 4.783E-08 8.1815E-05 -7.263E-07 

0.12 3.5832E-07 7.141E-05 -3.411E-06 

0.15 1.7091E-06 3.635E-05 -1.437E-06 

0.18 6.122E-06 -2.883E-05 -3.709E-06 

0.21 1.801E-05 -1.273E-04 -3.025E-05 

0.24 4.586E-05 -2.581 E-04 -1.1230 E-04 

0.27 1.0460E-04 -4.2054E-04 -2.893 E-04 

0.30 2.187 E-04 -6.294 E-04 -6.719 E-04 

 

Table 20. The absolute error 
0.1( )n ix   for 2,4n= .  

ix  0.1
2 ( )ix  

0.1
4 ( )ix  

0.01 7.979E-09 2.174E-09 

0.02 1.251E-08 1.100E-09 

0.03 1.342E-08 4.197E-10 

0.04 1.036E-08 1.009E-09 

0.05 2.496E-09 1.028E-09 

0.06 1.160E-08 3.063E-09 

0.07 3.418E-08 1.272E-08 

0.08 6.896E-08 3.934E-08 

0.09 1.227E-07 9.679E-08 

0.1 2.081E-07 2.108E-07 

 

Table 21. The absolute error 
0.3 ( )n ix   for 2,4n= .  

ix  0.3
2 ( )ix  

0.3
4 ( )ix  

0.03 4.447E-05 1.136E-05 

0.06 7.212E-05 6.632E-06 

0.09 8.177E-05 7.742E-07 

0.12 7.106E-05 3.769E-06 

0.15 3.464E-05 3.145E-06 

0.18 3.495E-05 9.831E-06 

0.21 1.453E-04 4.826E-05 

0.24 3.039 E-04 1.582E-04 

0.27 5.251 E-04 3.939 E-04 

0.30 8.481 E-04 8.906 E-04 

 

 

Fig.9. The absolute errors ( )0.1
n ix  for 2,4n=

 

 

 

Fig.10. The absolute errors ( )0.3
n ix  for 2,4n=   

 

Table 22 shows the CPU time comparison for the presented 

examples for   0.1,0.3b=  and 2,4n=  . In example 1 for any 

value of b , the obtained solution 5 ( )x  is found to be the exact 

solution. The CPU time was 8.11287 seconds for any value 

of b  .  

 

Table 22. Comparison CPU time for 0.1,0.3b=  and 2,4n =  between 

different examples  
Examples ( )x  ( , )k x t  CPU  

time for 

0.1b=  

and 

2,4n =  

(sec) 

CPU 

time for 

0.3b=  

and 

2,4n =  

(sec) 

1 
7 5

12
x x+  

2 2xt x t− −  8.112 8.112 

2 
5

162 2
15

x x+  

1

x t

−

−
 

2.974 

and 

12.127 

3.175 

and 

13.948 

3 
11
4

x−  
1

2 x t−
 

3.749 

and 

11.837 

3.971 

and 

14.873 

4 ( )1 ( )xe erf x+  
1

x t

−

−
 

4.389 

and 

14.049 

5.939 

and 

15.918 

5 
2 x  1

x t

−

−
 

4.748 
and 

12.046 

5.938 
and 

14.793 

6 ( )40961
6435

7x x−  
1

x t−
 

5.838 
and 

11.849 

6.841 
and 

13.481 

 

                           

IV    CONCLUSION 

 

An interpolation method based on an enhanced 

barycentric interpolation formula via the Vandermonde 
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matrix with Chebyshev nodes is presented for solving 

second-kind weakly singular Volterra integral equations. 

The method presents a new rule for isolating the kernel 

singularity, which involves selecting the best node 

distributions for the two variables to ensure that the 

numerator does not be imaginary or zero. Without 

employing the collocation strategy, the required unknown 

function is converted to an algebraic system by inserting 

the interpolant solution on both sides of the integral 

equation. The interpolated solutions of the six solved 

instances converge faster to the exact ones when the lowest 

interpolant degree is used, and the results are better than 

those achieved by the other indicated methods. As a result, 

the superiority and uniqueness of the proposed method are 

assured. 
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