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Abstract—Rugose spiraling whitefly (RSW) is one of the
major pest which affects the coconut trees. A mathematical
model for understanding the dynamics of this system along
with agricultural awareness is analysed using saturated re-
sponse functions (Holling type-II). The stability analysis of the
biologically feasible equilibrium points is observed by applying
Routh-Hurwitz criterion and constructing suitable Lyapunov
function. We perform sensitivity analysis to determine the effect
of parameters on the system. Also, an optimal control problem
is proposed by introducing the control parameters to figure
out the feasibility of better disease control with cost-effective
control strategies. Our results evoke that public awareness on
the application of various control measures can significantly
reduce the contact rate thereby controlling the disease spread.

Index Terms—mathematical model; holling type-II; stability;
sensitivity analysis; optimal control

I. INTRODUCTION

THE coconut tree plantation occupies an area of about
12 million hectares spread over 93 countries in the

world. India holds a major position contributing to the global
production of coconut products. Coconut and its by-products
serve multiple benefits to human life ranging from health
care, skin care to bio-farming methods and construction
materials. About half of our annual coconut production
is consumed internally. Tamil Nadu, Assam, Kerala, West
Bengal, Orissa and Karnataka are the top states in coconut
tree plantation. There have been numerous challenges faced
by farmers in growing up the coconut trees. One such
major threat is RSW, an invasive species of whitefly which
affects coconut trees by hindering the tree’s growth as well
as affecting the coconut yield. This particular pest is first
reported in 2004 in Belize, Central America that too in
coconut trees [1]. Now in India, this RSW pest has been a
major catastrophe affecting coconut plantations. In Pollachi
region of Tamil Nadu, this pest invasion was first spotted
on August 2016 that too in coconut trees [2], [3]. This
pest was quickly discovered on a variety of other plants,
including mango, guava, sapota, custard apple, banana, and a
variety of other economically significant decorative species.
The RSW invasion will place the coconut sector in India
at risk by lowering overall production rates, lowering the
quality of flesh produced, and increasing production costs
due to pest management [4]. The host plant is affected by
this whitefly because it feeds on the leaves, removing both
nutrients and water. Furthermore, it causes sooty mold to
form on the leaf surface, potentially reducing photosynthesis
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and reducing yield and growth [5]. Population dynamics of
this whitefly and its host range has been studied [6], [7].

The dynamics of population interaction can be studied
with the help of mathematical models. Particularly these
models provide us the biological interpretation of system by
revealing the interactions as well as the impact that exist
between the parameters and variables. The concept as well as
the formulation of mathematical models in epidemiology has
been discussed [8]. Mathematical modeling has been exten-
sively developed to study the dynamics of epidemic diseases
and to propose control strategies for the disease [9], [10].
The plant as well as the vector population dynamics has been
extensively studied for African cassava mosaic virus disease
(ACMD) and this study is conducted within a bounded lo-
cality [11]. The mathematical study of prey-predator models
incorporating nanoparticle has been carried out [12]. The
population dynamics of rugose spiraling whitefly affecting
coconut trees has been analysed [13]. It resulted that, if we
decrease the contact rate, we can have a better control over
the infection rate. This decrease in contact rate is achieved
only with the help of proper control techniques. Adopting
awareness programs aimed at educating farmers leads to
improved overall development, not only for cultivators but
also for farmers. The importance of agricultural awareness
for pest control has been studied in [14]. On the dynam-
ics of mosaic disease, the impact of farming awareness-
based interventions such as roguing, insecticide spraying,
and optimal control has been studied [15]–[18]. The study
in these literatures reveals that awareness campaigns can
eventually decrease or even eradicate the spread of mosaic
disease. It is also suggested that, the fading of awareness
among farmers and delay in implementation could be avoided
if the advertisement awareness campaigns are performed
within short time intervals. The impact of awareness created
by media campaigns on vaccination coverage in a variable
population has been analysed in [19]. The analysis for
the spread of infectious diseases was carried out by using
stability theory of differential equations [20]. The ability of
a disease to infect a population is the primary concern in
any infectious disease. The basic reproduction number is
a threshold parameter in epidemiological models that can
determine whether a disease has the potential to infect the
population or not. The models examine the reproduction
number using the next generation matrix [21].

Sensitivity analysis is termed to the connection that exists
between the solution that we observe and the parameters
that we have considered for the mathematical model. The
results define the behaviour of selected variable in the
specified parameter’s direction at time t [22], [23]. Since
optimal control theory gives an optimal way for control
procedures while minimizing adverse effects, it is becoming
increasingly essential in disease control. The model dynamics
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has been studied using MATLAB software by applying a
fixed control [24]–[27]. The stability study for dynamical
systems have extensively discussed [28]. Motivated by the
model [18], [19], we analyse the dyamics of the disease by
extending the model in [13] along with awareness programs.
Our research work confines specific to the Pollachi region
of Tamil Nadu. Hence the parameter values were taken from
the same zone. Local and global stability has been analysed
at the equilibrium points. The next generation matrix is used
to calculate the reproduction number. In sensitivity analysis,
we study the parameter which affects the system. Further,
an optimal control problem is formulated and the results are
obtained using Pontryagin minimum principle.

II. MATHEMATICAL FORMULATION

In [13], G. Suganya and R. Senthamarai studied the
dynamics of rugose spiraling whitefly affecting coconut trees.
Here, we have extended the above model by incorporating
awareness programs educated to farmers through media
activities. To study the effect of whitefly on coconut trees, the
total available tree population is subdivided as healthy trees,
which is indicated by C and infected trees, which is indicated
by I . P indicates the whitefly population and A indicates the
number of awareness programs conducted during time t. The
mathematical model is given as follows:

dC

dt
= RC

(
1− C + I

k

)
− µCP

1 + ηP
, (1)

dI

dt
=

µCP

1 + ηP
− φI − hAI, (2)

dP

dt
= ωI − ρP − ξAP, (3)

dA

dt
= r0 + αI − βA. (4)

with the initial conditions as

C(0) = C0, I(0) = I0, P (0) = P0, A(0) = A0. (5)

We assume C0 > 0, I0 > 0, P0 > 0, and A0 ≥ 0. Let µ
be the contact rate between whitefly and healthy tree, φ be
the mortality rate of infected trees. The healthy trees follow
logistic growth with tree density k. Let R indicate the rate of
replantation whereas the whitefly birth rate is denoted by ω
and mortality rate is ρ. The contact rate is represented by a
Holling type II functional response, which takes into account
the whitefly’s crowding effect and ensures the contact rate
µ’s boundedness for any positive constant. Let the awareness
level increase at a rate r0 through media activities. The rate of
local awareness α, is proportional to the number of infected
plants and β denotes fading of awareness due to falling of
importance.

III. MATHEMATICAL ANALYSIS OF THE MODEL

A. Positivity

From system (1)− (4) we see that

dC

dt

∣∣∣∣
C=0

= 0,
dI

dt

∣∣∣∣
I=0

=
µCP

1 + ηP
≥ 0,

dP

dt

∣∣∣∣
P=0

= ωI ≥ 0,

dA

dt

∣∣∣∣
A=0

= r0 + αI ≥ 0.

Hence the solutions are positive if the system possess
positive initial condition.

B. Boundedness

All solutions of system which originate in R4
+ are uni-

formly bounded.

dC

dt
+
dI

dt
= RC

(
1− C + I

k

)
− µCP

1 + ηP
+

µCP

1 + ηP
−φI−hAI,

dN

dt
+ ζN ≤ −RC2N

k
+RC + ζC + ζI − φI − hAI,

dN

dt
+ ζN ≤ l,

0 ≤ N(t) ≤ e−ζt
(
N(0)− l

ζ

)
+
l

ζ
.

where l = (R+ζ)2k
4R . As t → ∞, N(t) → l

ζ since
supt→∞N(t) = l

ζ . Similarly we find that

sup
t→∞

P (t) =
ωk

ρ
.

and
sup
t→∞

A(t) =
r0 + αk

β
= Am(say).

Hence the system is bounded. Thus, the positive invariant
set of the system is

Ω =

{
(C, I, P,A) ∈ R4

+ | 0 ≤ C, I ≤
l

ζ
, P ≤ ωk

ρ
,A ≤ r0 + αk

β

}
.

C. Existence of Equilibria

The system (1)− (4) has the basic reproduction number

R0 =
µkωβ2

(βφ+ hr0)(ρβ + ξr0)
.

Further, the equilibrium points for the system are:
• Tree-Pest free equilibrium: E0 = (0, 0, 0, r0β )

• Pest free equilibrium: E1 =
(
k, 0, 0, r0β

)
• Coexistence equilibrium: E∗ = (C∗, I∗, P ∗, A∗)

where C∗ = (φ+ hA∗)
α(ρ+ ξA∗) + ηω(βA∗ − r0)

µαω
,

I∗ =
βA∗ − r0

α
, P ∗ =

ω(βA∗ − r0)

α(ρ+ ξA∗)
,

and A∗ is the positive root of the cubic equation

(Rhρηξα+Rhη2β2)A3 + (Rφαηβξ +Rφη2ωβ2

+Rhα2ξρ+Rhρβηα−Rhρηr0αξ +Rηµωβ2

+Rhηβωα)A2 + (Rφρηβα+Rφα2ξ +Rφηωβα

+Rhρα2 +Rhη2ωr20 + βRµαω −Rkµωβη
−Rφα2ξηr0 − 2Rφη2ωβr0 −Rhρr0ηα−Rhηωr0α
−βRµωηr0 −Rr0ωµηβ)A+ (Rkµαωηr0 +Rφρα2

−Rφρηr0α−Rkµα2ω −Rφηωr0α+Rφη2ωr20

−Rφµαω +Rr20ηµω + kr0µ
2αω) = 0. (6)
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D. Stability Analysis

Here, we’ve discussed the stability results of the system
(1) − (4). The local stability is implemented using Routh
Hurwitz (R-H) criterion and global stability by constructing
suitable Lyapunov function.

Lemma: The tree-pest free equilibrium E0 is always
unstable.

Theorem 1: The pest free equilibrium E1 is locally asymp-
totically stable (LAS) for R0 < 1 and unstable otherwise.
Proof: The Jacobian matrix evaluated at E1 is given by

J(E1) =


−R −R −µk 0
0 −φ− h r0β µk 0

0 ω −ρ− ξ r0β 0

0 α 0 −β

 .
The characteristic equation of the matrix is

(−R− λ)

[
(−φ− hr0

β
− λ)(−ρ− ξ r0

β
− λ)(−β − λ)

+µk(ω(β + λ))] = 0.

which implies

λ4 + λ3[R+ h
r0
β

+ φ+ ρ+ ξr0 + β] + λ2[Rφ

+Rh
r0
β

+Rρ+Rξr0 +Rβ + ρφ+ ξφr0 + φβ

+hρ
r0
β

+ hξ
r20
β

+ hr0 + ρβ + ξr0 − µkω] + λ[Rρφ

+Rξr0φ+Rφβ +Rh
r0ρ

β
+Rh

r20ξ

β
+Rhr0

+Rρβ +Rξr0 −Rµkω + ρβφ+ φξr0

+hr0ρ+ hξ
r20
β
− µkωβ] + [Rρβφ+ φξr0R

+Rhr0ρ+Rhξ
r20
β
−Rµkωβ] = 0. (7)

which is of the form λ4 + υ1λ
3 + υ2λ

2 + υ3λ+ υ4 = 0.
The system is LAS if it satisfies the R-H criterion, υ4 > 0,
υ1υ2 − υ3 > 0 and (υ1υ2 − υ3)υ3 − υ21υ4 > 0. Hence E1

is locally asymptotically stable if µkωβ2

(βφ+hr0)(ρβ+ξr0)
< 1 i.e.,

R0 < 1.

Theorem 2: The coexistence equilibrium E∗ is LAS if the
roots of characteristic equation λ4+q1λ

3+q2λ
2+q3λ+q4 =

0 of the Jacobian matrix satisfies Routh–Hurwitz criterion i.e.
q4 > 0, q1q2 − q3 > 0 and (q1q2 − q3)q3 − q21q4 > 0.
Proof: The Jacobian matrix of corresponding interior equi-
librium E∗ is given by

J(E∗) =



B∗11 B∗12 B∗13 B∗14

B∗21 B∗22 B∗23 B∗24

B∗31 B∗32 B∗33 B∗34

B∗41 B∗42 B∗43 B∗44


.

The eigenvalues of the matrix is given by roots of the
characteristic equation which is of the form

λ4 + q1λ
3 + q2λ

2 + q3λ+ q4 = 0. (8)

The roots of above equation (8) will possess negative real
parts when,

q4 > 0, q1q2 − q3 > 0 and (q1q2 − q3)q3 − q21q4 > 0. (9)

Hence the system (1)− (4) around E∗ is LAS.

Theorem 3: The coexistence equilibrium E∗ is globally
asymptotically stable (GAS) if it holds the below inequalities:

k < Cm + C∗ + I∗,

m1 <
2

ω2

(
RIm
k

+ φ

)
(ρ+ ξAm) ,

0 < m2 <
2hI∗

α
.

Proof: A Lyapunov function V ∗(C; I;P ;A) in Ω is con-
structed as follows,

V∗(C, I, P,A) =
1

2
(C − C∗ + I − I∗)2 +

m1

2
(P − P ∗)2

+
m2

2
(A−A∗)2, (10)

dV∗
dt

= (C − C∗ + I − I∗)
(
dC

dt
+
dI

dt

)
+m1(P − P ∗)dP

dt

+m2(A−A∗)dA
dt
,

where m1, m2 are positive constants. dV∗
dt is calculated along

the solution of the system. After simplification, we get

dV∗
dt

= −
(
R

k
(I∗ + C + C∗)−R

)
(C − C∗)2

−
(
R

k
(2C + C∗ + I∗)−R+ φ+ hA

)
(C − C∗)(I − I∗)

−
(
RI

k
+ φ

)
(I − I∗)2 −m1(ρ+ ξA)(P − P ∗)2

+m2β(A−A∗)−m1ξP
∗(P − P ∗)(A−A∗)

+m1ω(I − I∗)(P − P ∗)− (2hI∗ −m2α)(I − I∗)(A−A∗).

Thus, inside the region of attraction, dV
∗

dt stands as negative-
definite on condition that:

k < Cm + C∗ + I∗,

m1 <
2

ω2

(
RIm
k

+ φ

)
(ρ+ ξAm) ,

0 < m2 <
2hI∗

α
.

It is seen that dV∗
dt < 0 and dV∗

dt = 0 iff, C = C∗, I =
I∗, P = P ∗ and A = A∗ in Ω. Using the Lyapunov LaSalle
theorem [28], we conclude that E∗ is GAS whenever R0 > 1.

IV. SENSITIVITY ANALYSIS

To assess the sensitive parameters of the system, we’ve
performed sensitivity analysis with the help of MATLAB
software. In this task, we calculate the sensitivities by
formulating differential equations which is done by differ-
entiation of the state variables corresponding to the sensitive
parameters. To perform the analysis, we choose µ, ω, ρ, α
as sensitive parameters. In Figure 9, we portray the sensitivity
characteristic of the parameters µ, ω, ρ, α in the proposed
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model. The graph indicates the partial derivative of the state
variables with respect to the selected parameters. It is clear
that contact rate µ plays a crucial role since it decreases the
healthy tree population and rises the infection. Furthermore
it is to be noted that the birth rate and death rate of whitefly
is able to make slight changes in the state variables. The
parameter α increases healthy tree population, decreases
infected tree, whitefly population and increases the awareness
campaigns. The logarithmic sensitivity analysis is the ratio
of the relative change in the variable to the relative change in
the parameter. ie., the normalized forward sensitivity index
of a variable X that depends differentiably on a parameter a
is defined as: ∂logX(t)

∂loga = a
X(t,a)Xa(t, a) and the anticipated

change due to the result of doubling the parameter can be
noticed from this analysis. Figure 10 describes the logarith-
mic sensitivity analysis of the state variables. It is noted
that, 0.35% decline in the healthy tree population, 3.4%
rise in the infected tree population, 1.1% rise in whitefly
population and 0.2% in awareness by the effect of doubling
the value of µ. On doubling the parameter ω, there is 0.04%
decrease in healthy tree population, 0.3% increase in infected
tree population, 58.2% increase in whitefly population and
a slight change in awareness. The result of doubling the
parameter ρ rises the healthy tree population slightly, reduces
the infected tree population by 0.04%, decreases whitefly
population by 6.8% and a decrease in awareness is seen.
The effect of doubling the parameter α shows a increase in
healthy tree, decrease in infected tree population of about
0.07%, decreases whitefly population by 2.3% and increases
awareness campaigns by 11.7%.

V. OPTIMAL CONTROL PROBLEM

This study is performed to figure out the cost-effective so-
lution such as insecticide spraying and awareness campaigns
in order to have better disease control. We have formulated
an optimal control problem with control U(t) and U1(t). The
assumption is made in such a way that insecticide spraying
should cover the entire pest population of a confined area.
The reframed system with the control 0 ≤ U(t) ≤ 1 and
0 ≤ U1(t) ≤ 1 is given by:

dC

dt
= RC

(
1− C + I

k

)
− (1− U)

µCP

1 + ηP
, (11)

dI

dt
= (1− U)

µCP

1 + ηP
− φI − hAI, (12)

dP

dt
= (1− U)ωI − ρP − ξAP, (13)

dA

dt
= U1r0 + αI − βA, (14)

with the initial conditions as

C(0) = C0, I(0) = I0, P (0) = P0, A(0) = A0. (15)

It is assumed that C(0) > 0, I(0) > 0, P (0) > 0, A(0) ≥
0. The control parameters U and U1 indicates the decline in
the rate of infection due to the result of insecticide spraying
and awareness campaigns. The cost function including the

implementation of optimal spraying and awareness programs
is considered in the following form:

J(U(t), U1(t)) =

∫ tf

t0

(
P1U

2(t) +QU2
1 (t) + TP 2

−SA2 −R1C
2
)
dt (16)

Here P1, Q, R, S, T are positive constants. The objec-
tive functional is chosen so that optimal cost is involved
in spraying insecticide as well as implementing awareness
campaigns. Our aim is to find optimal U(t) and U1(t) which
involves minimum cost.
We have constructed the Hamiltonian ~ in order to evaluate
the optimal control problem as given below:

~ = P1U
2(t) +QU2

1 (t) + TP 2 − SA2 −R1C
2

+δ1

[
RC

(
1− C + I

k

)
− (1− U)

µCP

1 + ηP

]
+δ2

[
(1− U)

µCP

1 + ηP
− φI − hAI

]
+ δ3 [(1− U)

ωI − ρP − ξAP ] + δ4 [U1r0 + αI − βA] . (17)

where δi, i = 1, 2, 3 are the adjoint variables. We’ve used
“Pontryagin Minimum Principle” in order to resolve optimal
control problem and the following results were obtained.

Theorem 4 If the objective function J(U,U1) is minimum
for the optimal control U∗(t), U∗1 (t), then there exists adjoint
variables δi, i = 1, 2, 3, 4, which satisfy the equations below:

dδ1
dt

= 2R1C
2 + δ1R

(
1− C + I

k

)
− RCδ1

k

−(1− U)(δ1 − δ2)
µP

1 + ηP
, (18)

dδ2
dt

= −δ1
RC

k
− δ2(φ+ hA) + δ3(1− U)ω + δ4α, (19)

dδ3
dt

= (1− U)(δ2 − δ1)
(1 + ηP )µC − µηCP

(1 + ηP )2

−δ3(ρ+ ξA)− 2TP, (20)

dδ4
dt

= 2SA− δ2hI − δ3ξP − δ4β. (21)

with the transversality condition satisfying δi(tf ) = 0, i =
1, 2, 3, 4. The optimal control is written as

U∗(t) = max

{
0,min

{
1,

µCP
(1+ηP ) (δ2 − δ1) + δ3ωI

2P1

}}
.

(22)

U∗1 (t) = max

{
0,min

{
1,
−r0δ4

2Q

}}
. (23)

Proof
The optimal control variable U∗ and U∗1 satisfies the

following equation by applying ”Pontryagin Minimum Prin-
ciple” [25]

∂~
∂U∗i

= 0. (24)

From (17) and (24), we get,

U∗ =

µCP
(1+ηP ) (δ2 − δ1) + δ3ωI

2P1
.
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U∗1 =
−r0δ4

2Q
.

The optimal control has the following form

U∗(t) =



0 for

µCP
(1+ηP ) (δ2 − δ1) + δ3ωI

2P1
≤ 0,

µCP
(1+ηP ) (δ2 − δ1) + δ3ωI

2P1
for

0 <

µCP
(1+ηP ) (δ2 − δ1) + δ3ωI

2P1
< 1,

1 for

µCP
(1+ηP ) (δ2 − δ1) + δ3ωI

2P1
≥ 1.

U∗1 (t) =



0 for
−r0δ4

2Q
≤ 0,

−r0δ4
2Q

for 0 <
−r0δ4

2Q
< 1,

1 for
−r0δ4

2Q
≥ 1.

Thus U∗(t), U∗1 (t) takes the compact form as,

U∗(t) = max

{
0,min

{
1,

µCP
(1+ηP ) (δ2 − δ1) + δ3ωI

2P1

}}
.

U∗1 (t) = max

{
0,min

{
1,
−r0δ4

2Q

}}
.

The aforementioned equations are the necessary conditions
that satisfy the optimal control U(t), U1(t) as well as the
system’s state variables. According to [25], the existence con-
ditions are confirmed by the corresponding adjoint equations.

dδ1
dt

= − ∂~
∂C

,
dδ2
dt

= −∂~
∂I
,
dδ3
dt

= − ∂~
∂P

,
dδ4
dt

= − ∂~
∂A

.

(25)
From the set of equation (25), we get (18)− (21).

VI. NUMERICAL SIMULATION

We’ve chosen the values in such a way that it provides
a reference point for every parameter to perform numerical
analysis. We assume, the initial population to be 50 healthy
trees, 5 infected trees, 10 whitefly per tree and the number of
awareness programs conducted as 10. Hence the initial con-
ditions are considered as C(0) = 50, I(0) = 5, P (0) = 10,
A(0) = 10. All parameter values used for analysis are given
in Table 1. The number of coconut trees planted per acre
ranges from 60-70. Here, we consider the carrying capacity
as 70 acre−1. The maximum number of trees which requires
replanting is assumed to be 3 and hence the replanting rate
is 0-0.003. The maximum number of mortality is assumed
to be 2 trees and hence the mortality rate is given by 0-
0.002. We’ve used the values of whitefly population same as
that of ACMD [11] since it is much relevant to our case.
The rate at which the adult whitefly infects the trees is
considered to be contact rate. (i.e) 0.5-1 tree in 25 days [11].
The parametric values related to awareness and saturation
constant are referred from [16], [18].

Figure 1 displays the numerical simulation of healthy tree
as a function of time (days) with parameter values mentioned
in Table 1. It is seen that, due to contact rate, healthy trees are
infected and replanting of intensely infected tree corresponds
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 = 0.001

(a)
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)

 R = 0.0001, 0.0004, 0.0008, 0.0015, 0.002

(b)

Fig. 1. Profiles of Healthy tree C(t) versus time (1000 days) (a) for
different values of contact rate µ (b) for different values of replanting rate
R with other parameters as given in Table 1

to increase in healthy tree population. Figure 2 indicates
the numerical simulation of infected tree as a function of
time (days) with parameter values given in Table 1. The
result infers that, more trees get infected due to contact rate
and death rate of whitefly corresponds to decrease in the
infected tree population. Figure 3 interprets the variation of
whitefly population with respect to its birth and death rate.
Figure 4 infers the number of awareness programs which can
be increased through local awareness rate α. The number
of campaigns decreases due to increase in fading rate of
awareness among farmers. The surface plots of state variables
are shown in Figure 5-8. The population of healthy tree with
respect to time and contact rate is shown in Figure 5. The
infected trees in regard to time and contact rate is shown
in Figure 6. From Figure 7 we see the variation in whitefly
population with respect to its birth rate and time. Figure 8
implies the awareness programs with respect to r0 and time.
The description of parameter effect on reproduction number
R0 is shown in Figure 10-14. These figures shows the range
of reproduction number based on the selected parameters.
i.e., we can visualize when R0 will be less than 1 and greater
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TABLE I
THE PARAMETER VALUES WHICH ARE CALCULATED BASED ON [11], [16], [18] AND USED FOR ANALYSIS.

S.No Symbol Meaning Unit Value taken for analysis Range
1 k Tree density acre−1 70 60-70
2 R Replanting rate day−1 0.0005 0-0.003
3 φ Mortality rate of tree day−1 0.0002 0-0.002
4 µ Contact rate pest−1 day−1 0.0002 0-0.002
5 ω Whitefly birth rate day−1 0.2 0.1-0.3
6 ρ Death rate of whitefly day−1 0.06 0.06-0.1
7 η Saturation constant 0.2 0.2
8 h Maximum activity rate day−1 0.0001 0-0.0001
9 ξ Death rate of whitefly due to awareness day−1 0.005 0.005
10 r0 Rate of awareness programs day−1 0.03 0.03
11 α Rate of local awareness day−1 0.025 0.025
12 β Fading rate of awareness day−1 0.015 0.015
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Fig. 2. Infected tree profile I(t) versus time (a) for different values of
contact rate µ, (b) for different values of death rate of whitefly ρ and other
fixed parameters as given in Table 1

than 1.
In Figure 12 and 13, we portray the sensitivity characteris-

tic of the parameters µ, ω, ρ, α in the proposed model. The
graph clearly infers, the contact rate µ plays a crucial role
in the study since it reduces the count of healthy trees and
tends to increase the infection. The rate of local awareness
decreases the whitefly population as well as the infected tree
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Fig. 3. Profiles of whitefly population P (t) versus time (1000 days) (a)
for different values of its birth rate ω, (b) for different values of death rate
ρ and other fixed parameters as given in Table 1

population.
Figure 14 infers the optimal control effect on the popula-

tion dynamics of the model. Our main aim of using control
term is to minimize the infected tree population as well as
whitefly population so that the yield remains unaffected. It is
witnessed that there is a significant difference in populations
with and without the effect of control. Figure 15 denotes
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Fig. 4. Profiles of awareness programs A(t) versus time (1000 days) (a)
for different values of its local awareness rate α, (b) for different values of
fading away rate β and other fixed parameters as given in Table 1

Fig. 5. Surface plot of healthy tree with respect to time and µ

Fig. 6. Surface plot of infected tree with respect to time and µ

Fig. 7. Surface plot of whitefly population with respect to time and ω

Fig. 8. Surface plot of awareness programs with respect to time and r0
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Fig. 9. Surface plot of reproduction number R0 with respect to h and ρ

Fig. 10. Surface plot of reproduction number R0 with respect to ω and ρ

Fig. 11. Surface plot of reproduction number R0 with respect to φ and ρ
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Fig. 12. Plot of sensitivity index of the state variables (a) healthy trees
C(t) (b) infected trees I(t) (c) whitefly population P (t) (d) awareness
programs A(t) corresponding to the sensitive parameters µ, ω, ρ, α.
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Fig. 13. Plot of logarithmic sensitivity analysis for state variables (a)
healthy trees C(t) (b) infected trees I(t) (c) whitefly population P (t) (d)
awareness programs A(t). We use a common term a to indicate the selected
parameters.
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Fig. 14. Comparison of state variables (a) healthy trees C(t) (b) infected
trees I(t) (c) whitefly population P (t) (d) awareness programs A(t) of
system (1) − (4) with system (18) − (21). It is clear that, use of control
decreases the infection and whitefly population.
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Fig. 15. Plot of control function (a) U(t) and (b) U1(t) versus time with
parameter values as given in Table 1.

the control effect U(t) and U1(t) versus function of time.
The control can be operated through insecticide spraying and
implementing awareness programs. Thus conducting several
awareness programs which will educate the farmers in better
way to go with cost effective optimum level of spraying
techniques which is much needed to control the disease
spread.

VII. CONCLUSION

A mathematical model has been projected to study the
population dynamics of the system. It deals with the impact
of awareness on the interaction of rugose spiraling whitefly
with coconut trees. The equilibrium points as well as the
condition to be LAS and GAS have been analysed. To
witness the system dynamics and to study the species
behaviour with respect to sensitive parameters, we have
carried out the numerical simulation and sensitivity analysis.
Furthermore, we have applied optimal control theory to
develop a cost-effective insecticide usage and awareness
programs. Thus, by educating the farmers in better way to
understand the whitefly population control through various
awareness programs can help in better control or even
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eradication of the disease.
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