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Oscillatory and Asymptotic Properties of
Fractional Delay Dynamic Equations on Time
Scales Involving Conformable Fractional
Derivative

Qinghua Feng and Bin Zheng*

Abstract—In this work, we research oscillation for a class of
fractional dynamic equations on time scales involving delay
term. By use of a generalized Riccati function, inequality
technique, and especially a certain technique dealing with the
delay term, some new sufficient conditions for oscillation and
asymptotic behaviour are proposed. The established results
unify continuous and discrete analysis as two special cases
of arbitrary time scales, and are further extensions of the
corresponding oscillatory and asymptotic results for delay
dynamic equations involving derivatives of integer order. We
also present some examples for the established results.

Index Terms—oscillation; asymptotic behavior; dynamic e-
quations; time scales

I. INTRODUCTION

For a long time, research on analytical or semi-analytical
solutions of various differential equations has been a
hot topic [1-3]. Besides, it is well known that research
on qualitative properties of solutions of differential and
difference equations is also very important in the case their
solutions are unknown, such as the stability, existence and
so on [4-6]. Oscillation belongs to the range of qualitative
properties analysis. In the last few decades, research
for oscillation of various equations including differential
equations, difference equations has been a hot topic in the
literature, and much effort has been done to establish new
oscillatory criteria for these equations especially fractional
differential equations so far [7-9]. In [10], Hilger initiated
the theory of time scale trying to treat continuous and
discrete analysis in a consistent way. Based on the theory of
time scale, Many authors have taken research in oscillation
of various dynamic equations on time scales (see [11-25]
for example). In the research for oscillation of dynamic
equations on time scales, we notice that little attention has
been paid to the research of oscillation of fractional order
dynamic equations on time scales so far in the literature. In
[26], Feng and Meng researched oscillation for a class of
fractional order dynamic equations on time scales as follows

(@) ([r(H)z @ )] @)@+ p@)([r(t)z® )] @) +
q(t)f(z(t)) =0, (1.1)
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where 2(®)(t) denotes the conformable fractional derivative
of order « [27]. Based on the properties of conformable
fractional calculus, some oscillatory and asymptotic criteria
for this equation were established. However, to our best
knowledge, there has been few results on oscillatory and
asymptotic behaviour for fractional dynamic equations on
time scales involving delay term so far.

Motivated by the above analysis, and based on (1.1), in
this paper, we further consider oscillatory and asymptotic
behavior of dynamic equation involving delay term, and
are concerned with the following fractional delay dynamic
equation with damping term on time scales:

(@) ([r(H)z @ O] @)@+ p)([rt)z@ @) @) +
q(t)f(x(k(t))) =0, t € Ty, (1.2)

where 2(®)(t) denotes the conformable fractional derivative
of order «, T is an arbitrary time scale, T = [tg,00) [T,
a, v, p, ¢ € Crq(To,Ry), f € C(R,R) satisfying
af(z) >0, L2 > L > 0for z # 0, k € Cra(R,R)
is the delay function satisfying x(t) < t, k() > 0 and
tlggc k(t) = oo, v > 1 is a quotient of two odd positive

integers.

A solution of Eq. (1.2) is said to be oscillatory if it is
neither eventually positive nor eventually negative, otherwise
it is nonoscillatory. Eq. (1.2) is said to be oscillatory in case
all its solutions are oscillatory.

The next of this paper will be organized as follows. In
Section 2, we present some basis for the theory of the time
scale and the conformable fractional calculus. In Section 3,
by use of the properties of conformable fractional calculus,
a generalized Riccati function and inequality technique, we
establish some new oscillatory and asymptotic criteria for
Eq. (1.2). In Section 4, we present some examples for the
established results. Some conclusions are given at the end of
this paper.

Throughout this paper, R denotes the set of real numbers
and R4 = (0, 00), while Z denotes the set of integers. p(t) =
I

t*7ip(t), Oi(t,a) = [, —1——
av(s)
fat wAas, t; € T, i=0,1,...,6. For an interval [a, b],
[a,b]T := [a,b] T, and we always assume ko0 = 0 o K.

A%s, O5(t,a) =
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II. BASIS FOR THE THEORY OF TIME SCALE AND
CONFORMABLE FRACTIONAL CALCULUS

A time scale is an arbitrary nonempty closed subset of the
real numbers. T denotes an arbitrary time scale. On T we
define the forward and backward jump operators o € (T, T)
and p € (T,T) such that o(t) = inf{s € T,s > t},
p(t) = sup{s € T,s < t}. A point t € T is said to be
left-dense if p(t) =t and ¢ # inf T, right-dense if o(t) = ¢
and t # sup T, left-scattered if p(t) < t and right-scattered
if o(t) > t. The set T is defined to be T if T does not
have a left-scattered maximum, otherwise it is T without
the left-scattered maximum. A function f € (T, R) is called
rd-continuous if it is continuous at right-dense points and
if the left-sided limits exist at left-dense points, while f is
called regressive if 1+ pu(t) f(t) # 0, where pu(t) = o(t) —t.
C,q denotes the set of rd-continuous functions, while R
denotes the set of all regressive and rd-continuous functions,
and Rt = {f|f € R, 1+ u(t)f(t) >0, Vt € T}.

Definition 2.1: For some ¢t € T, and a function
f € (T,R), the delta derivative of f at t is denoted
by f2(t) (provided it exists) with the property such that
for every € > 0 there exists a neighborhood U/ of ¢ satisfying

[f(o(t)) = f(s) = fA()(a(t) = s)| < elo(t) — s
for all s € U.

Note that if T = R, then f2(t) becomes the usual
derivative f’(t), while f2(t) = f(t +1) — f(t) if T = Z,
which represents the forward difference.

Definition 2.2: For p € R, the exponential function is
defined by

ep(t,s) = exp(fst Eur) (p(1))AT) for s,t € T.

Due to [28, Theorem 5.2], if p € R, then e,(t,s) > 0
for Vs, t € T.

For more details about the calculus of time scales, we refer
to [29].

The following are some important definitions and
theorems [27] for the conformable fractional calculus on
time scales (see also in [26]).

Definition 2.3 [27, Definition 1]. For t € T*, o € (0, 1],
and a function f € (T,R), the fractional derivative of «
order for f at t is denoted by f(®)(t) (provided it exists)
with the property such that for every € > 0 there exists a
neighborhood U of ¢ satisfying

[F(o(®) = F()]tr = = fO(t) (o (t) — )| < elo(t) — s]
for all s € Y.

Definition 2.4 [27, Definition 28]. If F(®)(t) =
f(t), t € T", then F is called an a-order antiderivative
of f, and the Cauchy a-fractional integral of f is defined
by

[P pact = [P peTt AL = F(b) — F(a),
where a, b € T.

Theorem 2.5 [27, Theorem 4]. For ¢t € T*, a € (0,1],
and a function f € (T, R), the following conclusions hold:

(). If f is conformal fractional differentiable of order «
at t > 0, then f is continuous at .

(#4). If f is continuous at ¢ and ¢ is right-scattered, then
f is conformable fractional differentiable of order o at ¢

with £(@)(t) = fla(t)) — f(t)tl—a _ f(a(t;)i)(t; f(t)tl—oz.

o(t)—t
(7i7). If t is right-dense, then f is conformable fractional
differentiable of order « at t if, and only if, the limit

lirr}5 Mtka exists as a finite number. In this case,
S5—r
F) = llﬂ% =t

(iv). If f is fractional differentiable of order « at ¢, then

flo(t)) = f(t) + p)tr = f ().

Corollary 2.6. According to the definition of the
conformable fractional differentiable of order «, it holds
that f()(t) = t'=fA(t), where f2(t) is the usual A
derivative in the case o = 1. Furthermore, if f(®)(t) > 0
(< 0) for ¢t > 0, then f is increasing (decreasing) for ¢ > 0.

Theorem 2.7: Let p(t) = t* 7 p(t), a € (0,1]. If
p € R, and fix ty € T, then the exponential function
efpv(t, to) is the unique solution of the following initial value
problem

y( @ (t) = p(t)y(t),

y(to) = 1.
Proof. By [28, Theorem 5.1], if p € R, and fix
to € T, then the exponential function ey(t,to) is the
unique solution of the following initial value problem

Y2 (t) = p(t)y(t),

y(to) = 1.
So according to Corollary 2.6, one has

(ex(t,t0))(®) = £17%(ex(t,t0))™ = 17 B(t)es(t, to) =
p(t)e;(t, to).

So the proof is complete.

Theorem 2.8 [27, Theorem 15]. Assume f, g € (T,R)
are conformable fractional differentiable of order . Then

(@) (f +9) (1) = fF) + 9 ().

(i)). (f9) () = fDg(t) + flo®)g!®(t) =
FO g0 (t) + F(£)g > (1)

Theorem 2.9. Let « € (0,1], f, g be two rd-continuous
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functions. Then

ARIG) — [? f(o(1)g"

The proof of Theorem 2.9 can be reached by fulfilling a-
fractional integral for the first equality in Theorem 2.8 (7).

g(t)At = O (t) At

III. MAIN RESULTS

The following lemmas are necessary for proving our main
results.

Lemma 3.1. Suppose —% € R4, and assume that

e ~(s,t0)]”

T A% =0 3.1
he —or (3.1)
Jia Tls A%s = oo, (3.2)

and z 1s eventually a positive solution of Eq. (1.2). Then
there exists a sufficiently large 77 such that

a(®)([r@®)z @ )] |
OO o g

[Tl*’ OO)T' ’

, [r®)2@(#))*) > 0 on

Lemma 3.2. Under the conditions
furthermore, assume that

of Lemma 3.1,

Z oo ) ag)d

Jim bupfto r(€ fE a(7) ) e ;(U(S),to)A s)
A*T]AYE = oo. ‘ (3.3)
Then either there exists a sufficiently large 75 such

that 2(*)(t) > 0 on [T, c0)r or tli}m z(t) = 0.

Lemma 3.3. Assume fg € R4, and z is eventually a

positive solution of Eq. (1.2) such that
[r(t)z(@ ()] >0, 2(®)(t) > 0 on [Ty, 00)T,

where T3 > ¢ is sufficiently large. Then for ¢ € [T, 00)r
it holds that

01(t,T3) (a> (1)[r(t)z') ()]
r(t) v

() (t) >

w(t) > O(t, T3){~

The proof of Lemmas 3.1-3.3 are similar to [26, Lemmas
2.1-2.2] with some difference on the delay term, which are
omitted here.

Lemma 3.4 [30, Theorem 41]. Assume that X and
Y are nonnegative real numbers. Then

AXYAE - XA < (A= 1)Y? for all A > 1.

p

Theorem 3.5. Suppose —7 € Ry, and assume that

(3.1), (3.2), (3.3) hold, and for all sufficiently large T' € T,

[a(o(s))wa(o(s))] T

s} = o0, (3.4)
where w;, wsy are two given nonnegative functions
on T with @ (t) > 0. Then every solution of Eq. (1.2) is
oscillatory or tends to zero.

Proof. Assume (1.2) has a nonoscillatory solution =z
on Ty. Without loss of generality, we may assume
x(t) > 0, z(k(t)) > 0 on [t1,00)T, where 1 is sufficiently
large. By Lemmas 3.1 and 3.2, there exists sufficiently large
ty such that [r(t)2(®)(#)](*) > 0 on [tz,00)T, and either
(@) () > 0 on [tz,00)T or tlim z(t) = 0. Now we assume
—00

(@) () > 0 on [ta,
t3 > to such that x(t) > t on [ts,
on [t3, OO)T.

oo)r. Since lim k(t) = oo, there exists
t—oo

o0)r. So (@ (k(t)) >0

Define a generalized Riccati function:

()]“)”
J o+ walt)]

w(t) = @i (t)alt )[a(:[ ((ﬁ)(t))e ~(t, to

a

Then for ¢t € [t3,00)r, by Theorem 2.8 (iii) and
Theorem 2.7 one can deduce that

w1 a r(t) 2 ()] @)
o = A0 (OO o
D o alo @) ) )
z”(k(t)) 5 (o(t), to)
+oy () [a(t)w2 ()] + @ a)(t) (o(t))w2(a(t))
_ wl(t) 1
i) e i) ~(0(0)t)

{e ~(t,to) (a(t)([r(£)z() ()] )"))

)
(e ~(t,t0)@a()([r(1)a() (1)) )"}

@ (t)
+w1(0(t))w(a(t))
_[m(t)(ﬂ«””(%(t)))(a)]a(a ) ([r(e )z (o ()] )
z”(k(1)) z”(k(o(t)))e ~(o(t),to)
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+o1 (1) [a(t) w2 (1))

Furthermore, according to [29, Theorem 1.87 and 1.93], and
the assumption k o o0 = o o Kk, one has

(a¥(5(1)))® = va"= (k1)) (x(k(1))) >
= v’ k(1) z? (k(1)) 2 ().

So by Corollary 2.6 it holds that

(a (K()))\®) = t' = (2" (k(1)))*
>t w1 k()2 (k(
= v’ k()2 (k(t)) KA (¢

which implies

on [tg,00)r. So

1

(a(o (W) [r(a(t))a' ) (a(t))]

[e_g(g(t)vtO)]% for € [tBa OO)T.
Furthermore, one can obtain that
PR UL ANl
w( )(t) < Le ~(0—(t)7t0) + wl(a(t))w(g(t))

+1()]al)ws (1)@ — v

Wl 141
T -l

Using the following inequality (see [31, Eq. (3.12)]):
(u—v)*e >ults + %vl‘”‘% —(1+ %)v%u,

one can deduce that

that

W@(t) < ~L q?f(;)( 20) + 1 (1) [a(t) s (1)@
_ @ WA 00 (K1), t)[a(o (D)) ma(o ()]
(k1))
w(a(t)) ()
+r(n(t))w1(o(t ){T(’i(t))w1 (t) 1
+(v + D (K2 ()01 (5 (1), t2) a(o (t))w2(a(8))] 7 }
,le(t)ﬁA(t)el(K(t)vb) Wt (o(t) (3.8)
r(s(?)) ) '
Setting
.1 _ @R 001 (K(1), t2) w7 (o)
A=l g X0 = r(k(t)) @, ¥ (ot
Y)\fl _ V%

[r(s(O)1 (1) + (v + D ()62 ()01 (s(1), 12)

[a(o () w2 (o (t))] 7} (3.9)
Substituting ¢ with s in (3.9), fulfilling a-fractional integral
for (3.9) with respect to s from ¢3 to ¢ yields that

JiAL A2 S — o (5) a(s)ma (o))

+wl<s>éﬁ<s>el<m<s>,m)k;gcf(s))w?(g(s))]u;
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[ 1 V e e ~(k(t), to)]”
(v + D ()] ()(k2 () 1077 ((s), 12) 1ot (Ko@) (s ) (o ()] 4,1
" e S (sla(t)), to)]*
{r(s(s))ay™ (s) + (v + D ()a2()01 (k(5), £2) 0, (5(1). 1)
la(o(s))ma(a(s))]¥ } T A% = Z(H(t))xy(/{(g(t)()a) o
sl el selh) < s e EUCCOIRS
So it also holds that {ai(a(t))[rga )2 (o (£))] ot
JAE I o o) o) le_jlo o)
e o(e).40) ’ o Bu(s(t). t)85~ ({0 (t). t2))
A 1+ - r(k(t))
L @1(8)62(8)01 (5(5), ta) [a(o(s)) wa(o ()] a(o () ([ (1) 2™ (o (1)) @)
o I ORI O 31y
- . — 1 — e Using (3.11) in (3.5) we get that
(v + D)r7T (s(s)) i (s)(K(5) 710777 (k(s), t2) (B () () ()
w(®) B O “ w(o
() (6) + (04 D (505 () (5, ) W=t o " =)
a(o(s))ma(a(s))] 'A% < oo, 1 o A
[a(o(s))m2(o(s))] i A%s < om0
which contradicts (3.4), and the proof is complete. @ (s(t))

Theorem 3.6. Suppose —g € R4, and (3.1), (3.2), a(o V)) [’"(U(t))x(a)(a(t))](a))u
(3.3) hold. If for all sufficiently large T" € T, z (n(o(t)))e_g(g(t),to)

Jim sup{f{L 2 o ()[a(s)am (s))

e ~(o(s),t w1 @' @
£ 7 = _Leqét()a t>(,t 1)50) " m(a((t»“("(t”WI”)[““)M“”( )
+VW1(S)HA(S)91(K( s), T)05 "' (r(0(s), T))a*(o(s))w3 (0 (s)) e
r(r(s)) vt
—I/wl(t)nA(t) 01 (k(t) t2)7"9(2ﬁ(t)(;‘5(‘7(t)at2))
» o, oy a(o () ([r(a(t))x ) (a(8))]““)" 12
e Yt ()H(A(’ 0 %é) S Con R C o
(k(a(s), T))a(o(s))m2(o(s))]*}A%s} = oo (3.10)
where w;, wsy are defined as in Theorem 3.5. Then :—Leqft()fl(tz j +g§(ag)(( )))w(a(t))-l—zm(t)[a(t)zm(t)}(o‘>
every solution of Eq. (1.2) is oscillatory or tends to zero. —e 0 !

Proof. Assume (1.2) has a nonoscillatory solution
x on Ty. Similar to Theorem 3.5, we may assume
x(t) > 0 on [t1,00)T, where ¢; is sufficiently large. By [ w(o(t)) — a(o(t))wa (o (1)))?
Lemmas 3.1 and 3.2, there exists sufficiently large %o w1 (o(t))

such that [r(t)z(®) ()] > 0 on [tz,00)T, and either = —L%—&—wl(t)[a(t)wﬂt)](a)
(@) (t) > 0 on [ty,00)T or tlggo z(t) = 0. Now we assume 2 0
2(@(t) > 0, 2(®)(k(t)) > 0 on [t3,00)T, Where ¢35 > ta iS ooy (1)x™ (1)01 (k(0), 2)05~ (5(o (1), £2))a2 (0 (1)) =2 (o (1))
sufficiently large. Let w(t) be defined as in Theorem 3.5. — r(r(t))
By Lemma 3.3, for ¢t € [t3,00)T, we have the following
observation: +M[r(n(t))wia) (1) + 2w (D)KA (1)
(k1) o 2V (m) _ @ (k() 91?nﬁff)23$gqgt()g(a(t) t2))a(o(£))wa(o(1))]
) = alet) ~ o@D R e 06, (s(0) 105 sl (0. )]
> o (il)gﬁg?’? o) r(k(t))@i(o(t))
— r(k(t))x" (klo 1)y (t a
a¥ (kO [r(s(0)z® (w(1)] ), <L qé&- iy = Ol 0]
{ AN o1 (o (1)
e (n(t), o)) :
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Proof. Assume (1.2) has a nonoscillatory solution

+ T z on Ty. Similar to Theorem 3.5, we may assume

dvr (s (()2(? 1D (1)0 ( ( ), 22)03 ™ (1(0(t), £2)) z(t) > 0 on [t;,00)T, where t; is sufficiently large. By
[C(fl(t)) (t) + 2veo (t) K2 (t) 01 2( K(t), ta) Lemmas 3.1 and 3.2, there exists sufficiently large ¢,
05 (k(o (t) t2))a(o(t))m@2(o(1))]". (312)  guch that [r(t)z(@)(#)](®) > 0 on [ty,00)r, and either

Substituting ¢ with s in (3.12), fulfilling a-fractional integral x(a)(t) >0 on [t2,00)T or lim z(t) = 0. Now we assume
’ —00 ’

for (3.12) with respect to s from 3 to ¢ yields )
(@ (t) > 0, (¥ (k(t)) > 0 on [ts3,00)T, Where t3 >ty is

wi(s) o sufficiently large. Let w(t) be defined as in Theorem 3.5.

fts e_t ( ). t0) wi(s)[als)wa(s)] )+ Then by (};.9),gfor t € [t3,00)T, we have
v (s)k2 (s 1&5,2’2'71#;0572 a’(o(s))w2(o(s M—w a(t)w a

()5 ()01 ( ()t)er(,f(s%( ),t2))a* (0(5))5 (o (s)) L- FG o). 1y~ = (Ola(t)wa()]

L DR W0 (s(0). t)alo () (o (1)
1 T r(s(t))

Avr(k(s))w(s)r" (5)01(k(s), 12)05 " (r(0(s), t2))
[r((5))01”)(5) + 2001 ()5 (3)01 (5 (). )
0L k(0 (5), 12))a(0(5)) 2 (0 ()} A% | ! P

(t). (3.15)

—a Substituting ¢ with s in (3.15), multiplying both sides
le(S)RA(S)Ql(H(S%t2)05—1(ﬁ(0(5)’t2))a2 (U(S))wg (o(s)) by H(t,s) and then fulfilling a-fractional integral with
) respect to s from t3 to ¢, together with the use of Theorem

2.9 yields that

Avr(r(s)) @1 ()2 (5)01 (1 (5), 72005 T(k(o(5), 12)) N H(t,s){L%—wl(s)[a(s)wz(s)](“’
[ ()™ (5) + 201 ()5 (5)01 (1 (5), t2) Lk e
05 (k(0(5), £2))alo(5)) (o () }A%s < o, + A0 ().t o)
r(k(s
which contradicts (3.10). So the proof is complete.
Theorem 3.7. Suppose —g € Ry, and | — — " e [
assume that (3.1), (3.2), (3.3) hold, and define (v 4+ Drot (k(s)) @y (s)(57(s)) 7F1 077 (k(s), t2)
D = {(t,9)[t > s > tg, t,s € T}. If there exists a
function H € C,q(D,R) such that [T(R(S))wgo‘)( )+ (V+ D (s)k>(s)01(k(s), t2)
[a(o(s))@2(0 ()] 7] T 1A%
H(t,t) =0, fort>ty, H(t,s) >0, fort>s>
to, (3.13) < — [ H(t,s)w@(s)A%s
= H(t,t3)w(ts) + [ HS(t, 5)w(o(s))A%s
and H has a nonpositive continuous «— partial < H(t,t3)w(ts)
fractional derivative Hga)(t,s) with respect to the < Ht,to)w(ts).
second variable, and for all sufficiently large 7" € T,
lim sup M{L’i} (t S){L‘% So one has
— w1 (s)[a(s)wa(s)] (@) ‘ 1 ftto H(t, 5){L% — w1(s)[a(s)wa(s)]@
L @1(5)K2 ()0 (1(s), T)[a(o(s))wa(o ()] -z .
r(k(s)) L @1(8)K2 ()01 (1(5), 1) [a(o () wa (0 (5))]
r(k(s))
[ - 4
(v + r7 (s() =l T ()62 () P10 (1(s), T) 0 - ! L ot

[r((s))@1”) () 4 (v + D1 ()52 ()61 (s (5), T) -
[a(o(s))m2(o(s))]¥]" T} A%s} = oo. (3.14)  [r(s(s))w; (s) + (VV;:?AZE;( 5)K% (5)01 (i (s), t2)
Then every solution of Eq. (1.2) is oscillatory or tends to

zero. = [* H(t,s){L-1

Volume 30, Issue 4: December 2022



Engineering Letters, 30:4, EL. 30 4 18

RGO
L @ ()52 ()01 (5(5), ) [ () (o ()]
r(s(s))

$)K2 (5)01(5(5), t2)

< H(t, to)w(ts)
(8)w@1(s)

+H(t, tg) :03 |Lej]g(a(s),to) — w1 (s)[a(s)wa(s)](@
+w1(8)'€A(8)91(H(8)7t2) a(o(s))ma(o(s)]" >
(1(s))

[r(5(5))m1™ (5) + (v + Lo ()™
[a(o(s))wa ()] 7]+ A,

(8)01(r(s), t2)

Then
Jim sup 77 tl, ) {fto (t,s){L qi‘—? (7520)
~w1(s)[a(s)wa(s)]
| TR )1 (5(5). (o () (o (s))]
r(k(s))

[r(5(5))e1”) (5) + (v + L)1 (s)r2 (5)61 (R (s), )
[a(o(s))a(0(s)]7] 1 A%}

< wits) + [ Leqés()ﬁ;)(fgo) — @1(s)[a(s)s(s)] @)
L = (9)r ()01 (k(5), t2) a( () ma( ()] F*
(w(5))

1 v+1
_[ T A L2 T }
v+ D)r7T (k(s))ooy ™ (s) (57 () 7F1 07 (k(s), t2)

[r(5(5))1”) (5) + (v + e (s)r
[a(o(s))w2(0(s))]7]“ 1A% < oo,

2(s)01((5), 2)

which contradicts (3.14). The proof is complete.

Based on (3.12) and the deduction process in Theorem
3.7, one can easily prove the following theorem.

Theorem 3.8. Suppose —g € R4, and assume that
3.1), (3.2), (3.3) hold. Let H be defined as in Theorem 3.7,

and for all sufficiently large T' € T,

hm Sup 77 tl, ) {ft (t,5) {L( ()UZ?;)(’SEO)
—1(s)[a(s)ma ()] @) K
v (s)k™ (s)01 (k(s),

1)65~ " (k(0(s), T))a* (o(s))e3 (o ()
)

* r((5)

1
dwr(r(s)) w1 (s)r ()01 (k(s), T)05 k(0 (s), T))
()™ (5)-+ 205 () (901 ((5), T
05~ (k(a(s), T))a(o(s))wa(o(s))]*A%s}
= 00. (3.16)
Then every solution of Eq. (1.2) is oscillatory or tends to

Remark 3.9. If k(t) = ¢, then the established results
above reduce to the main results in [26, Theorems 2.4-2.7].

In Theorems 3.5-3.8, if we take T for some special cases
such as T = R, T = Z and so on, then one can obtain
some corollaries. For example, based on theorem 3.5, one
has the following corollaries.

Corollary 3.10. Let T = R. Assume that

e s(st))?
. s lds = oo, 3.17
»/;&0 , af(s) ( )
fto @sa’ ds = oo, (3.18)
_ € (T7 to) —1
0o 5(} 1 OOTa—l —% 0o q(S)Sa s % -
f;o [7"(5) ¢ ( a(7) I e ;(S>t0)d )vdr]dé

a

(3.19)

= 00,
and for all sufficiently large T' € R,

q(s)m(s)
Jim sup{fT{L —5.10)

1 (s)1(5)61 (w(5), T) ()
* r(x(s))

— @1(s)[a(s)ma(s)]'s

()]~

_[ 1 L v z
v

(v+ 1)rvet

[r(r(s))@1(s)s'~* + (v + Dwi(s)'(s)01(k(s), T)

[a(s)ma(s)]*]* T} ds} = . (3.20)
Then every solution of Eq. (1.2) is oscillatory or tends to
ZEero.

Corollary 3.11. Let T = Z. Assume that —g € R4, and
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P> _i%(s) a1 = oo, (3.21)

i %8“‘1 = 00, (3.22)
_ e ~(T,t0) 1

o0 ga 1 oo 1 75 o) q(s)so‘ 1

Soe s Tam He et

= oo, ’ (3.23)

and for all sufficiently large T" € Z,

hm sup{ Z {L 4(s)m(s)

o—=T e "'(S +1 t())
—wi(s)a(s + 1)wz(8 +1) — a(s)wa(s)]st™@

T)la(s + )wa(s + 1)]1+7
)

(3.24)

Then every solution of Eq. (1.2) is oscillatory or tends to
Zero.

Remark 3.12. We note that the established main
theorems are generalizations of many existing results in the
literature. If we set v = 1, x(t) = ¢ and the forced function
f(z) = z in Eq. (1.2), then Eq. (1.2) reduces to [11, Eq.
(1.1)], and the results in Theorems 3.4 and 3.7 reduce to
[11, Theorems 2.4, 2.6] with L = 1.

Remark 3.13. The deduction process of Theorems
3.4-3.7 can be further applied to prove oscillation of other
dynamic equations on time scales with higher fractional
derivative term, such as

Corresponding oscillatory criteria can be established by
following a similar proving process with Theorems 3.4-3.7.

IV. APPLICATIONS
In this section, we will present some applications for the

established results above.

Example 1. Consider the following fractional delay
differential equation with T = R:

{t8[((t+ 1)~ 5@ (1) D] }®)
3)

o lE+1)7s 5205 (1))
+ty}r%x”(t71)[e$(t*1)+1] 0, t € [2,00), (4.1)

where v > 1 is a quotient of two odd positive integers.

Compared with Eq. (1.2) we have a = %, a(t) =

z _ 1 fod _ q4a—1 _ 1 _

ts, p(t) = e p(t) = t*7'pt) = AT qt) =

S ) =11 @) = et ) () = (0
3

1)_%, tg = 2.

One can see f;la/:) >1=1L, p(t) =0o(t)—t =0, and
“PeRy. Soe ~(tity) = e ~(t,2) = exp(— ;Zgz)ds),
and ‘ ‘

tp(s) o _
1>expf ) > 1 — [,5=%ds = 1 —

t
f2 4"4,_; ds 2 1- f2

Furthermore, one has the following observations:

[e ~(s,t0)]%

Ja 7g1( ) so s > L [ Lagg — o,

av (s
S sy tds = () s = oo,

and
— N(Tato) a—1
0o ga 1 o o 67% - q(s)s N

to [r(f) ff T a(T) fr e g(s’to)ds)“dﬂdg
= 200(521)%
[ goo %(6_2(7, 2) froo PR, 1~(s 2)d Yvdr]d¢
> A U R Shrds)arla
= 4;5 Iy [{g” Lydrlag
- (4u)% )2 Edg -

Then (3.18)-(3.20) hold. Moreover,
large 7', one has

for a sufficiently

le sG]
0.(t,T) = [ —1———s*"*ds — oo for t — oo.
av(s)
So we can take sufficiently large 7" > T such
that 01(k(t),T) > 1 for t € [T* 00). Taking

w1 (t) = t¥, wa(t) = 0 in (3.20), considering L = 1, one
can obtain that

q(s)m(s)
Jim sup{f {LW

s 1ds
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¢ ca(s)w(s) w e 3(s,2)]7 .
+fT*{e_z(3,to) — —ﬁf > (%)% > % = 0,
a s=2 s=2
,[ T(H(S))wi(s)sl_a ]V+1} and
(v + )7 () (3) (W' () 7T 077 (w(s), T o > 1
1 1 SE;O T(s)sa—lzsgo(s—gl)z - >
a—1
s ds} Moreover,
>tli>1&8up{f$*{z(iz(m 0o 504—1 =) ot e_%'(TatO) oo q(s Safl 1
o sgo[r(f) TXZ:ET —am 5;@ —+1L5)
(r(s))aoi (s)s"—* v e ~(7,2) _

ol - o ; g | et & Ly, e TR g(s)s T
v+ Dr 7 (s(s) 7 (5)(8 (5)) P07 (), T P R A o P Vi e 2
o=14s > ()P LI HE o))

¢ 3\L e 1,00 1 1
+/ [1 _ (VL—H)uﬁ-l]éds} = 00 Z (7)” ,522[7—;5 ?(f‘r sl/+1 ds)”}
T* _ l % oo 00 L
(Bt 513 b
So (3.17)-(3.20) all hold, and by Corollary 3.10 we deduce 3.1 2 X 1
that every solution of Eq. (4.1) is oscillatory or tends to zero. > (77,)3 > T+ D)
§=21=¢

Example 2. Consider the following fractional delay
difference equation with T = Z:

—
\]
N
N
axy
11078
= ﬂ
I

So (3.21)-(3.23) hold. On the other hand, for a sufficiently

{EFAD((t+ 1) AD ()

[A( )(( large 7' > 1, when ¢ — oo, one has

REINE ())]”+t%39:( ) =0, t€[2 oo) (4.2) e ~(s )]
3 01(t,T) = Z —a 5t 5 00,
where A(1) denotes the fractional difference operator s=T av(s)

of order %, M > (s a constant, and v > 1 is a quotient of g there exists 7% > T such that 6y (x(t),T) > 1 for

two odd positive integers. te[T*, 00)z.

Compared with Eq. (1.2) we have o = %7 a(t) = In (3.24), if we let @ (t) = t¥, wo(t) = 0, then by use
t%7 p(t) = V:-li-i . Dt ) = toIp(t) = u}ri’ q(t) = of the inequality (t + 1) —t" < v(t + )=t <por—tr-t

ta e for ¢ > T*, one can deduce that
tu+37 K(t) = bE f(z) = Lr)=@+1)71, to=2.
s)w1 (s
Then ,,(()) >M=L, p(t)=o(t) —t =1, and Jim_sup{ 2 {L%—
o) _ 1 1o ’
Lmu =1 2l r 2o >0 () (@1 (s + 1) = 1 ()5~

which implies —£ € R. So According to [32, Lemma 2] (v + 1)r7T
one can deduce that

(r(s))wy ™" (s)(k(s + 1) = K(s)) 771077 (s(s), T)

]u+1}5a71}

e ~(t,to) =e ~(t,2) =1 ;%A t—1 (s)w1 (s)

— 2 = q(s)w1(s

—1_ fzt 7V1+§ As—1— til ﬁ = Jim Sup{sg*{Meig(s +1Lt )

s 2 s=284 "2 a
>1- i s 21— )7 —hyd () (@15 +1) ~ @i ()5
=1- %[1 —(t-1)"%] > %7 (v + vt (s(s))wy () (k(s + 1) — K(s) 7107 ((s), T)
and ]u+1}8a 1
t p(s)

e %(t to) < exp(— /. @As) <1 + (M q( )T}f;o)_

r(s(s) (@ (s +1) - wi(s))s

~ L€ ;(SytO)]% ~ le ;(3,2)]5 (v + D7 (m(s))@ " (s)(k(s + 1) — k(s)) 71077 ((s), T)
e ga-l_ N _Ta 0 ol ' 1 |
S:Zto at(s) 82222 ai(s)
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e
> £ il

_bp
a

r(s(s)(@i(s +1) -

(v + 1)ro¥ (k(s))@l " (s) (s + 1) —

)1/+12u271]% 5 00

]u+1}8a71+ ti:l [M—

( 1%
S v+1

for t — oo,

provided that M > (- v 1)"“2"2_1. So (3.21)-(3.24) all
hold, and by Corollary 3.11 we obtain that every solution of

Eq. 4.2) is oscﬂlatory or tends to zero under the condition
M > (1/-1|/— 1)u+12u —1

V. CONCLUSIONS

We have derived some new oscillatory and asymptotic
criteria for a class of fractional delay dynamic equation on
time scales based on the properties of conformable fractional
calculus, a generalized Riccati function and inequality tech-
nique, which are extensions of the corresponding results for
dynamic equations on time scales involving integer order
derivative. When the time scale T is taken for some different
cases such as T = R, T = Z, T = ¢% and so on,
then corresponding oscillatory and asymptotic criteria can be
obtained respectively. Applications for the established results
show that they are valid.

The deduction process of Theorems 3.5-3.8 can also be
applied to other types of fractional delay dynamic equation
on time scales, which is expected to further research.
For example, the n — th fractional dynamic equation on
time scales with delay term and forced term as follows

{[(a®) ([t () )m) @)}
+p(O)([r(Hz D O1)7 + q(t) f(x(t) = 0,

where the «-order fractional derivative appears for n
times.
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