Quasi-Boolean Algebras: a Generalization of Boolean Algebras

Yajie Lv, Wenjuan Chen

Abstract—In the present paper, we introduce the notion of quasi-Boolean algebras as a generalization of Boolean algebras. First we discuss some properties of quasi-Boolean algebras. Next we define ideals and filters of quasi-Boolean algebras and investigate the related properties. We also show that there is a one-to-one correspondence between the set of ideals and the set of ideal congruences on a quasi-Boolean algebra. Finally, we present the relationship between quasi-Boolean algebras and Boolean quasi-rings.

Index Terms—Boolean algebras, quasi-lattices, quasi-Boolean algebras, ideals, Boolean quasi-rings

I. INTRODUCTION

RECENTLY, quantum computational logics have been received more and more attentions. Many authors considered that these logics were closely related with fuzzy logics [8]. In order to study these new forms of nonclassical logics, some logical algebras had been introduced and the known results showed that these algebras were generalizations of well-known algebras associated with fuzzy logics [3], [6]. For example, Ledda et al. introduced quasi-MV algebras and pointed out that quasi-MV algebras were generalization of MV-algebras [12]. Chen and Wang defined quasi-BL algebras and showed that quasi-BL algebras generalized BL-algebras [7].

In [10], quasi-Boolean algebras were introduced by Iorgulescu in order to generalize the relationship between MV-algebras and lattice ordered groups. It was proved that any quasi-Wajsberg algebra defined in [1] is a quasi-Boolean algebra. Since quasi-MV algebras are equivalent to quasi-Wajsberg algebras, it is natural to obtain that any quasi-MV algebra is a quasi-Boolean algebra. Compared the relationship between Boolean algebras and MV-algebras and considered the important role of Boolean algebras in fuzzy logics, we wish to find a more suitable way to define quasi-Boolean algebras which generalize Boolean algebras in the setting of quantum computational logics.

In 1993, Chajda introduced *q*-lattices and presented some elementary results of a *q*-lattice [4]. Subsequently, an algebra of quasiordered logic based on a *q*-lattice was defined in [5]. The concepts of algebra of quasiordered logic as a generalization of Boolean algebra is similar to the case of quasi-MV algebras generalizing MV-algebras. However, in the algebra of quasiordered logic, the unary operation is defined by its binary operation and it does not satisfy the

Manuscript received March 17, 2022; revised August 22, 2022.

This study was funded by Shandong Provincial Natural Science Foundation, China (No. ZR2020MA041).

Y. J. Lv is a postgraduate student of the School of Mathematical Sciences, University of Jinan, Jinan, Shandong, 250022 China (e-mail: jasslyj@mail.ujn.edu.cn).

W. J. Chen (Corresponding author) is a professor of the School of Mathematical Sciences, University of Jinan, Jinan, Shandong, 250022 China (e-mail: wjchenmath@gmail.com).

involution. Hence we want to redefine the quasi-Boolean algebras based on q-lattices. In addition, ideals and filters play an important role in studying the algebraic structures [9], [11], [13], [14]. These notions are dual in a Boolean algebra [2], so in this paper, we also want to study ideals and filters in a quasi-Boolean algebra. The paper is organized as follows. In Section 2, we recall some definitions and results of q-lattices. In Section 3, we introduce the notion of quasi-Boolean algebras. We also define ideals and filters of quasi-Boolean algebras and investigate the related properties. In Section 4, we present the relationship between quasi-Boolean algebras and Boolean quasi-rings.

II. PRELIMINARY

In this section, we recall some definitions and results in [4], [5].

Recall that an algebra $(\Xi; \sqcup, \sqcap)$ of type (2,2) is called a *q-lattice*, if it satisfies the following conditions for any $\varpi, o, \varsigma \in \Xi$.

(QL1) $\varpi \sqcup \varrho = \varrho \sqcup \varpi$ and $\varpi \sqcap \varrho = \varrho \sqcap \varpi$;

(QL2) $\varpi \sqcup (\varrho \sqcup \varsigma) = (\varpi \sqcup \varrho) \sqcup \varsigma$ and $\varpi \sqcap (\varrho \sqcap \varsigma) = (\varpi \sqcap \varrho) \sqcap \varsigma$;

 $(QL3) \varpi \sqcup (\varrho \sqcap \varpi) = \varpi \sqcup \varpi \text{ and } \varpi \sqcap (\varrho \sqcup \varpi) = \varpi \sqcap \varpi;$

(QL4) $\varpi \sqcup \varrho = \varpi \sqcup (\varrho \sqcup \varrho)$ and $\varpi \sqcap \varrho = \varpi \sqcap (\varrho \sqcap \varrho);$

(QL5) $\varpi \sqcup \varpi = \varpi \sqcap \varpi$.

On any q-lattice $(\Xi; \sqcup, \sqcap)$, one can define $\varpi \leq \varrho$ by $\varpi \sqcap \varrho = \varpi \sqcap \varpi$, or $\varpi \sqcup \varrho = \varrho \sqcup \varrho$. Then the relation \preceq is quasi-ordering. A q-lattice $(\Xi; \sqcup, \sqcap)$ is called distributive, if it satisfies (D1) $\varpi \sqcup (\varrho \sqcap \varsigma) = (\varpi \sqcup \varrho) \sqcap (\varpi \sqcup \varsigma)$ and (D2) $\varpi \sqcap (\varrho \sqcup \varsigma) = (\varpi \sqcap \varrho) \sqcup (\varpi \sqcap \varsigma)$. Similarly to lattices, we can show that a q-lattice satisfies (D1) if and only if it satisfies (D2). A distributive becomes distributive and distributive can show that a distributive distributive distributive because distributive distributive distributive and distributive and distributive di

Let $(\Xi; \sqcup, \sqcap)$ be a complemented distributive q-lattice. Define a unary operation * on $(\Xi; \sqcup, \sqcap)$ by $\varpi \mapsto \varpi^*$ with $\varpi^* = \varrho \sqcup \varrho$, where ϱ is a complement of ϖ .

Lemma 1: [5] Let $(\Xi; \sqcup, \sqcap)$ be a complemented distributive q-lattice and $\varpi \in \Xi$. Then ϖ^* is a complement of ϖ .

Proposition 1: [5] Let $(\Xi; \sqcup, \sqcap)$ be a complemented distributive *q*-lattice. Then for any $\varpi, \rho \in \Xi$, we have

- (1) if $\varpi \sqcup \varrho = 1$ and $\varpi \sqcap \varrho = 0$, then $(\varpi \sqcap \varpi)^* = \varrho \sqcap \varrho$;
- (2) $(\varpi \sqcap \varrho)^* = \varpi^* \sqcup \varrho^*$ and $(\varpi \sqcup \varrho)^* = \varpi^* \sqcap \varrho^*$;
- (3) if $\varpi \leq \rho$, then $\rho^* \leq \varpi^*$.

An algebra $(\Xi; \sqcup, \sqcap, ^*, 0, 1)$ is called an algebra of quasiordered logic, if its reduct $(\Xi; \sqcup, \sqcap)$ is a complemented distributive q-lattice, 0 and 1 are a zero and a unit of $(\Xi; \sqcup, \sqcap)$, respectively, and * is a unary operation defined as above.

III. QUASI-BOOLEAN ALGEBRA AND IDEALS

In this section, we give the definition of quasi-Boolean algebras and discuss some basic properties of quasi-Boolean algebras. We also investigate the properties of ideals and filters in a quasi-Boolean algebra.

Definition 1: An algebra $\Omega = (\Omega; \sqcup, \sqcap, ^*, 0, 1)$ of type (2, 2, 1, 0, 0) is called a *generalized quasi-Boolean algebra*, if the following conditions are satisfied:

- (1) $(\Omega; \sqcup, \sqcap)$ is a distributive *q*-lattice;
- (2) $\varpi \sqcap 0 = 0$ and $\varpi \sqcup 1 = 1$;
- (3) $\varpi \sqcap \varpi^* = 0$ and $\varpi \sqcup \varpi^* = 1$;
- $(4) (\varpi \sqcap \varpi)^* = \varpi^* \sqcup \varpi^*.$

A generalized quasi-Boolean algebra $\Omega = (\Omega; \sqcup, \sqcap, ^\star, 0, 1)$ with the condition (5) $\varpi^{\star\star} = \varpi$ is called a *quasi-Boolean algebra*.

Following from the definition, a generalized quasi-Boolean algebra is a complemented distributive q-lattice with the unary operation satisfying $(\varpi \sqcap \varpi)^* = \varpi^* \sqcup \varpi^*$, while a quasi-Boolean algebra is a generalized quasi-Boolean algebra satisfying the unary operation with involution.

Remark 1: It is easy to see that an algebra of quasiordered logic $(\Xi; \sqcup, \sqcap, ^\star, 0, 1)$ is a generalized quasi-Boolean algebra, since $\varpi^\star \sqcup \varpi^\star = (\varpi \sqcap \varpi)^\star$ for $\varpi \in \Xi$. Moreover, an algebra of quasiordered logic $(\Xi; \sqcup, \sqcap, ^\star, 0, 1)$ with $\varpi^{\star\star} = \varpi$ is a quasi-Boolean algebra.

Remark 2: In any quasi-Boolean algebra $\Omega = (\Omega; \sqcup, \sqcap, \star, 0, 1)$, its reduct $(\Omega; \sqcup, \star, 0)$ or $(\Omega; \sqcap, \star, 1)$ is a quasi-MV algebra.

Proposition 2: Let $\Omega = (\Omega; \sqcup, \sqcap, ^\star, 0, 1)$ be a quasi-Boolean algebra. Then for any $\varpi, \varrho, \kappa, \iota \in \Omega$, we have

- (1) $\varpi \preceq \varpi \sqcup \rho$ and $\varpi \sqcap \rho \preceq \varpi$;
- (2) if $\varpi \leq \varrho$ and $\kappa \leq \iota$, then $\varpi \sqcap \kappa \leq \varrho \sqcap \iota$ and $\varpi \sqcup \kappa \leq \varrho \sqcup \iota$;
 - (3) $(\varpi \sqcup \varrho)^* = \varpi^* \sqcap \varrho^*$ and $(\varpi \sqcap \varrho)^* = \varpi^* \sqcup \varrho^*$;
 - (4) if $\varpi \leq \varrho$, then $\varrho^* \leq \varpi^*$.

Definition 2: An algebra $(\Xi; \sqcup, \sqcap, ^*, 0, 1)$ of type (2, 2, 1, 0, 0) is called a *quasi-De Morgan algebra*, if the following conditions are satisfied:

- (1) $(\Xi; \sqcup, \sqcap)$ is a distributive *q*-lattice;
- (2) $(\varpi \sqcap \varrho)^* = \varpi^* \sqcup \varrho^*$ and $(\varpi \sqcup \varrho)^* = \varpi^* \sqcap \varrho^*$;
- (3) $\varpi^{\star\star} = \varpi$.

Hence any quasi-Boolean algebra is a quasi-De Morgan algebra.

Below we see the relationship between quasi-Boolean algebras and Boolean algebras. Obviously, any Boolean algebra is a quasi-Boolean algebra. However, a quasi-Boolean algebra is not a Boolean algebra in general. It is easy to show the following result.

Proposition 3: Let $\Omega = (\Omega; \sqcup, \sqcap, ^\star, 0, 1)$ be a quasi-Boolean algebra. Then the following conditions are equivalent:

- (1) $(\Omega; \sqcup, \sqcap, \star, 0, 1)$ is a Boolean algebra;
- (2) $(\Omega; \sqcup, \sqcap)$ is a lattice;
- (3) the induced quasiorder \leq is a partial order.

Let $\Omega=(\Omega;\sqcup,\sqcap,^\star,0,1)$ be a quasi-Boolean algebra. Denote $\mathcal{R}(\Omega)=\{\varpi\in\Omega|\varpi\sqcap\varpi=\varpi\}$. Obviously, $0,1\in\mathcal{R}(\Omega)$ and then $\mathcal{R}(\Omega)$ is a non-empty subset of Ω , so $(\mathcal{R}(\Omega);\sqcup,\sqcap,^\star,0,1)$ is a Boolean algebra.

Definition 3: Let $\Omega = (\Omega; \sqcup, \sqcap, ^*, 0, 1)$ be a quasi-Boolean algebra. A subset Σ of Ω is called an *ideal* of Ω , if the following conditions are satisfied:

- (1) $0 \in \Sigma$;
- (2) if $\varpi, \varrho \in \Sigma$, then $\varpi \sqcup \varrho \in \Sigma$;
- (3) if $\varpi \in \Sigma$ and $\varrho \preceq \varpi$, then $\varrho \in \Sigma$.

A subset Φ of Ω is called a *filter* of Ω , if the following conditions are satisfied:

- (1) $1 \in \Phi$;
- (2) if $\varpi, \varrho \in \Phi$, then $\varpi \sqcap \varrho \in \Phi$;
- (3) if $\varpi \in \Phi$ and $\varpi \leq \varrho$, then $\varrho \in \Phi$.

Definition 4: Let $\Omega = (\Omega; \sqcup, \sqcap, ^*, 0, 1)$ be a quasi-Boolean algebra. A subset Σ of Ω is called a *weak ideal* of Ω , if the following conditions are satisfied:

- (1) $0 \in \Sigma$;
- (2) if $\varpi, \varrho \in \Sigma$, then $\varpi \sqcup \varrho \in \Sigma$;
- (3) if $\varpi \in \Sigma$ and $\varrho \preceq \varpi$, then $\varrho \sqcap \varrho \in \Sigma$.

A subset Φ of Ω is called a *weak filter* of Ω , if the following conditions are satisfied:

- (1) $1 \in \Phi$;
- (2) if $\varpi, \varrho \in \Phi$, then $\varpi \sqcap \varrho \in \Phi$;
- (3) if $\varpi \in \Phi$ and $\varpi \leq \varrho$, then $\varrho \sqcup \varrho \in \Phi$.

Proposition 4: Let $\Omega = (\Omega; \sqcup, \sqcap, ^*, 0, 1)$ be a quasi-Boolean algebra. Then any ideal (filter) is a weak ideal (weak filter).

Proposition 5: Let $\Omega = (\Omega; \sqcup, \sqcap, ^*, 0, 1)$ be a quasi-Boolean algebra. Then the set of ideals (filters) of a quasi-Boolean algebra is closed under arbitrary intersection.

Let $\Omega = (\Omega; \sqcup, \sqcap, ^*, 0, 1)$ be a quasi-Boolean algebra and Γ be a non-empty subset of Ω . The ideal generated by Γ is the least ideal containing Γ and is denoted by $(\Gamma]$. Dually, the filter generated by Γ is the least filter containing Γ and is denoted by (Γ) .

Lemma 2: Let $\Omega = (\Omega; \sqcup, \sqcap, ^\star, 0, 1)$ be a quasi-Boolean algebra and Γ be a non-empty subset of Ω . Then

- $(1) \quad (\Gamma] = \{ \varpi \in \Omega | \varpi \leq \varpi_1 \sqcup \varpi_2 \sqcup \cdots \sqcup \varpi_n, \text{ for some } \varpi_1, \varpi_2, \ldots, \varpi_n \in \Gamma \};$
- (2) $[\Gamma] = \{ \varpi \in \Omega | \varpi_1 \sqcap \varpi_2 \sqcap \cdots \sqcap \varpi_n \leq \varpi, \text{ for some } \varpi_1, \varpi_2, \dots, \varpi_n \in \Gamma \}.$

Proposition 6: Let $\Omega = (\Omega; \sqcup, \sqcap, ^\star, 0, 1)$ be a quasi-Boolean algebra. Then

- (1) For any $\Sigma \subseteq \Omega$, Σ is a (weak) ideal if and only if Σ^* is a (weak) filter;
- (2) For any $\Phi \subseteq \Omega$, Φ is a (weak) filter if and only if Φ^* is a (weak) ideal.

Proof: Let Σ be an ideal of Ω. Then $0 \in \Sigma$ and then $1 = 0^* \in \Sigma^*$. If $\varpi^*, \varrho^* \in \Sigma^*$, then $\varpi, \varrho \in \Sigma$ and we have $\varpi \sqcup \varrho \in \Sigma$, it turns out that $\varpi^* \sqcap \varrho^* = (\varpi \sqcup \varrho)^* \in \Sigma^*$ by Proposition 2. Let $\varpi^* \in \Sigma^*$ and $\varrho \in \Omega$ with $\varpi^* \preceq \varrho$. Then $\varrho^* \preceq \varpi^{**} = \varpi$. Since Σ is an ideal of Ω, we have $\varrho^* \in \Sigma$, so $\varrho = \varrho^{**} \in \Sigma^*$. Hence Σ^* is a filter of Ω. Conversely, if Σ^* is a filter of Ω, then $1 \in \Sigma^*$ and then $0 = 1^* \in \Sigma^{**} = \Sigma$. If $\varpi, \varrho \in \Sigma$, then $\varpi^*, \varrho^* \in \Sigma^*$ and $\varpi \sqcup \varrho = (\varpi^* \sqcap \varrho^*)^*$. Since Σ^* is a filter of Ω, we have $\varpi^* \sqcap \varrho^* \in \Sigma^*$, so $\varpi \sqcup \varrho = (\varpi^* \sqcap \varrho^*)^* \in \Sigma^{**} = \Sigma$. Let $\varpi \in \Sigma$ and $\varrho \in \Omega$ with $\varrho \preceq \varpi$. Then $\varpi^* \preceq \varrho^*$, it follows that $\varpi^* \in \Sigma^*$ and then $\varrho^* \in \Sigma^*$, so $\varrho = \varrho^{**} \in \Sigma^{**} = \Sigma$. Hence Σ is an ideal of Ω. The rest can be proved similarly or dually.

Since ideals and filters are dual in a quasi-Boolean algebra, we only discuss the properties of ideals in the following.

Let $\Omega=(\Omega;\sqcup,\sqcap,^\star,0,1)$ be a quasi-Boolean algebra and ϑ be a binary relation on Ω . Then ϑ is called an *ideal*

congruence, if ϑ is a congruence on Ω and $\langle \varpi \sqcap \varpi, \varrho \sqcap \varrho \rangle \in \vartheta$ implies $\langle \varpi, \varrho \rangle \in \vartheta$ for any $\varpi, \varrho \in \Omega$.

Lemma 3: Let $\Omega = (\Omega; \sqcup, \sqcap, ^\star, 0, 1)$ be a quasi-Boolean algebra and ϑ be an ideal congruence on Ω . Then the set $0/\vartheta = \{\varpi \in \Omega | \langle \varpi, 0 \rangle \in \vartheta \}$ is an ideal of Ω .

Proof: Since $\langle 0,0\rangle \in \vartheta$, we have $0 \in 0/\vartheta$. If $\varpi,\varrho \in 0/\vartheta$, then $\langle \varpi,0\rangle \in \vartheta$ and $\langle \varrho,0\rangle \in \vartheta$, it turns out that $\langle \varpi \sqcup \varrho,0\rangle = \langle \varpi \sqcup \varrho,0\sqcup 0\rangle \in \vartheta$, so $\varpi \sqcup \varrho \in 0/\vartheta$. Let $\varpi \in 0/\vartheta$ and $\varrho \in \Omega$ with $\varrho \preceq \varpi$. Then $\langle \varpi,0\rangle \in \vartheta$ and then $\langle \varpi \sqcap \varrho,0\sqcap \varrho\rangle \in \vartheta$, it follows that $\langle \varrho \sqcap \varrho,0\sqcap 0\rangle \in \vartheta$. Note that ϑ is an ideal congruence on Ω , we have $\langle \varrho,0\rangle \in \vartheta$, so $\varrho \in 0/\vartheta$. Hence the set $0/\vartheta$ is an ideal of Ω .

Lemma 4: Let $\Omega = (\Omega; \sqcup, \sqcap, ^\star, 0, 1)$ be a quasi-Boolean algebra and Σ be an ideal of Ω . Then the binary relation ϑ defined by $\langle \varpi, \varrho \rangle \in \vartheta$ if and only if $(\varpi \sqcap \varrho^\star) \sqcup (\varpi^\star \sqcap \varrho) \in \Sigma$ is an ideal congruence on Ω .

Proof: For any $\varpi \in \Omega$, since $(\varpi \sqcap \varpi^*) \sqcup (\varpi^* \sqcap \varpi) =$ $0 \in \Sigma$, we have $\langle \varpi, \varpi \rangle \in \vartheta$. If $\langle \varpi, \varrho \rangle \in \vartheta$, then $(\varpi \sqcap \varphi)$ ϱ^{\star}) $\sqcup (\varpi^{\star} \sqcap \varrho) \in \Sigma$, so $\langle \varrho, \varpi \rangle = (\varrho \sqcap \varpi^{\star}) \sqcup (\varrho^{\star} \sqcap \varpi) =$ $(\varpi \sqcap \varrho^*) \sqcup (\varpi^* \sqcap \varrho) \in \Sigma$. Let $\langle \varpi, \varrho \rangle \in \vartheta$ and $\langle \varrho, \varsigma \rangle \in \vartheta$. Then $(\varpi \sqcap \varrho^*) \sqcup (\varpi^* \sqcap \varrho) \in \Sigma$ and $(\varrho \sqcap \varsigma^*) \sqcup (\varrho^* \sqcap \varsigma) \in \Sigma$. Since Σ is an ideal of Ω , we have $((\varpi \sqcap \rho^*) \sqcup (\varpi^* \sqcap \rho)) \sqcup$ $((\varrho \sqcap \varsigma^*) \sqcup (\varrho^* \sqcap \varsigma)) \in \Sigma$. We calculate $(\varpi \sqcap \varsigma^*) \sqcup (\varpi^* \sqcap \varsigma) =$ $(\varpi \sqcap \varsigma^* \sqcap (\varrho \sqcup \varrho^*)) \sqcup (\varpi^* \sqcap \varsigma \sqcap (\varrho \sqcup \varrho^*)) = (\varpi \sqcap \varsigma^* \sqcap \varrho) \sqcup (\varpi \sqcap \varsigma^* \sqcap \varrho)$ $\varrho^{\star}) \sqcup (\varpi^{\star} \sqcap \varsigma \sqcap \varrho) \sqcup (\varpi^{\star} \sqcap \varsigma \sqcap \varrho^{\star}) \preceq (\varsigma^{\star} \sqcap \varrho) \sqcup (\varpi \sqcap \varrho^{\star}) \sqcup (\varpi^{\star} \sqcup \varrho^{\star}) \sqcup (\varpi^{\star$ $\varrho) \sqcup (\varsigma \sqcap \varrho^{\star}) = ((\varpi \sqcap \varrho^{\star}) \sqcup (\varpi^{\star} \sqcap \varrho)) \sqcup ((\varrho \sqcap \varsigma^{\star}) \sqcup (\varrho^{\star} \sqcap \varsigma))$ by Proposition 2, so $(\varpi \sqcap \varsigma^*) \sqcup (\varpi^* \sqcap \varsigma) \in \Sigma$ and then $\langle \varpi, \varsigma \rangle \in \vartheta$. Hence the binary relation ϑ is an equivalent relation on Ω . It is easy to see that if $\langle \varpi, \varrho \rangle \in \vartheta$, then $\langle \varpi^{\star}, \varrho^{\star} \rangle \in \vartheta$. For any $\langle \varpi, \varrho \rangle \in \vartheta$ and $\langle \kappa, \iota \rangle \in \vartheta$, then $(\varpi \sqcap \varrho^*) \sqcup (\varpi^* \sqcap \varrho) \in \Sigma$ and $(\kappa \sqcap \iota^*) \sqcup (\kappa^* \sqcap \iota) \in \Sigma$. Since $((\varpi \sqcup \kappa) \sqcap (\varrho \sqcup \iota)^*) \sqcup ((\varpi \sqcup \kappa)^* \sqcap (\varrho \sqcup \iota)) = ((\varpi \sqcup \kappa) \sqcap (\varrho^* \sqcap \iota^*)) \sqcup$ $((\varpi^{\star}\sqcap\kappa^{\star})\sqcap(\rho\sqcup\iota)) = (\varpi\sqcap\rho^{\star}\sqcap\iota^{\star})\sqcup(\kappa\sqcap\rho^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\sqcap\kappa^{\star}\sqcap\iota^{\star})\sqcup(\varpi^{\star}\Pi\iota^{\star})\sqcup(\varpi^{\star}\Pi\iota^{\star}\Pi\iota^{\star})\sqcup(\varpi^{\star}\Pi\iota^{\star}\Pi\iota^{\star})\sqcup(\varpi^{\star}\Pi\iota^{\star}\Pi\iota^{\star})\sqcup(\varpi^{\star}\Pi\iota^{\star}\Pi\iota^{\star})\sqcup(\varpi^{\star}\Pi\iota^{\star}\Pi\iota^{\star})\sqcup(\varpi^{\star}\Pi\iota^{\star}\Pi\iota^{\star})\sqcup(\varpi^{\star}\Pi\iota^{\star}\Pi\iota^{\star})\sqcup(\varpi^{\star}\Pi\iota^{\star}\Pi\iota^{\star}\Pi\iota^{\star})\sqcup(\varpi^{\star}\Pi\iota^{\star}\Pi\iota^{\star}\Pi\iota^{\star}\Pi\iota^{\star}\Pi\iota^{\star})\sqcup(\varpi^{\star}\Pi\iota^{\star}\Pi\iota^{\star}\Pi\iota^{\star}\Pi\iota^{\star}\Pi\iota^{\star}\Pi\iota^{$ $\varrho) \sqcup (\varpi^* \sqcap \kappa^* \sqcap \iota) \preceq ((\varpi \sqcap \varrho^*) \sqcup (\varpi^* \sqcap \varrho)) \sqcup ((\kappa \sqcap \iota^*) \sqcup (\kappa^* \sqcap \iota)),$ it follows that $((\varpi \sqcup \kappa) \sqcap (\varrho \sqcup \iota)^*) \sqcup ((\varpi \sqcup \kappa)^* \sqcap (\varrho \sqcup \iota)) \in \Sigma$, so $\langle \varpi \sqcup \kappa, \varrho \sqcup \iota \rangle \in \vartheta$. Similarly, we can prove $\langle \varpi \sqcap \kappa, \varrho \sqcap \iota \rangle \in$ ϑ . Hence the equivalent relation ϑ is a congruence on Ω . Finally, if $\langle \varpi \sqcap \varpi, \varrho \sqcap \varrho \rangle \in \vartheta$, then $((\varpi \sqcap \varpi) \sqcap (\varrho \sqcap \varrho)^*) \sqcup ((\varpi \sqcap \varrho)^*) \sqcup ((\varpi \sqcap \varphi)^*) \sqcup ((\varpi \square \varphi)^*) \sqcup ((\varpi \sqcap \varphi)^*) \sqcup ((\varpi \sqcap \varphi)^*) \sqcup ((\varpi \square \varphi)^*) \sqcup ((\varpi \square$ $(\varpi)^* \sqcap (\varrho \sqcap \varrho) \in \Sigma$, it follows that $(\varpi \sqcap \varrho^*) \sqcup (\varpi^* \sqcap \varrho) \in \Sigma$, so $\langle \varpi, \varrho \rangle \in \vartheta$. Hence the relation ϑ is an ideal congruence on Ω .

Theorem 1: Let $\Omega=(\Omega;\sqcup,\sqcap,^\star,0,1)$ be a quasi-Boolean algebra. Then there exists a one-to-one correspondence between the set of ideals and the set of ideal congruences on Ω .

Proof: Let Σ be an ideal of Ω . Then ϑ_{Σ} defined in Lemma 4 is an ideal congruence on Ω . Moreover, since $\varpi \leq$ $\varpi\sqcup\varpi=\varpi\sqcap\varpi\preceq\varpi$, we have $\Sigma_{\vartheta_{\Sigma}}=\{\varpi\in\Omega|\langle\varpi,0\rangle\in$ $\vartheta_{\Sigma}\} = \{\varpi \in \Omega | \varpi \cap \varpi \in \Sigma\} = \Sigma$. Conversely, let ϑ be an ideal congruence on Ω . Then $\Sigma_{\vartheta} = 0/\vartheta$ defined in Lemma 3 is an ideal of Ω . Moreover, $\vartheta_{\Sigma_{\vartheta}} = \{\langle \varpi, \varrho \rangle | (\varpi \sqcap \varrho^{\star}) \sqcup (\varpi^{\star} \sqcap \varrho^{\star}) \}$ $\varrho) \in \Sigma_{\vartheta} \} = \{ \langle \varpi, \varrho \rangle | \langle (\varpi \sqcap \varrho^{\star}) \sqcup (\varpi^{\star} \sqcap \varrho), 0 \rangle \in \vartheta \} = \vartheta.$ Indeed, for any $\langle \varpi, \varrho \rangle \in \vartheta$, we have $\langle \varpi \sqcap \varrho^*, 0 \rangle = \langle \varpi \sqcap \varrho^*, 0 \rangle$ $\varrho^{\star},\varrho\sqcap\varrho^{\star}\rangle\in\vartheta\ \ \text{and}\ \ \langle\varpi^{\star}\sqcap\varrho,0\rangle=\langle\varpi^{\star}\sqcap\varrho,\varpi^{\star}\sqcap\varpi\rangle\in\vartheta,$ so $\langle (\varpi \sqcap \varrho^*) \sqcup (\varpi^* \sqcap \varrho), 0 \rangle \in \vartheta$ and then $\langle \varpi, \varrho \rangle \in \vartheta_{\Sigma_\vartheta}$. For any $\langle \varpi, \varrho \rangle \in \vartheta_{\Sigma_{\vartheta}}$, then $\langle (\varpi \sqcap \varrho^*) \sqcup (\varpi^* \sqcap \varrho), 0 \rangle \in \vartheta$. We calculate that $\langle (\varpi \sqcap \varrho^*) \sqcup (\varpi^* \sqcap \varrho), 0 \rangle = \langle (\varpi \sqcup \varpi^*) \sqcap (\varrho^* \sqcup \varpi^*) \rangle$ ϖ^*) $\sqcap (\varpi \sqcup \varrho) \sqcap (\varrho^* \sqcup \varrho), 0 \rangle = \langle (\varpi \sqcap \varrho)^* \sqcap (\varpi \sqcup \varrho), 0 \rangle \in \vartheta, \text{ it}$ turns out that $\langle (\varpi \sqcap \varrho) \sqcup ((\varpi \sqcap \varrho)^* \sqcap (\varpi \sqcup \varrho)), (\varpi \sqcap \varrho) \sqcup 0 \rangle =$ $\langle \varpi \sqcup \varrho, \varpi \sqcap \varrho \rangle \in \vartheta$, so $\langle (\varpi \sqcup \varrho) \sqcap \varpi, (\varpi \sqcap \varrho) \sqcap \varpi \rangle =$ $\langle \varpi \sqcap \varpi, \varpi \sqcap \varrho \rangle \in \vartheta$. Similarly, we have $\langle \varrho \sqcap \varrho, \varpi \sqcap \varrho \rangle \in \vartheta$.

Hence we have $\langle \varpi \sqcap \varpi, \varrho \sqcap \varrho \rangle \in \vartheta$. Note that ϑ is an ideal congruence on Ω , we get $\langle \varpi, \varrho \rangle \in \vartheta$.

IV. BOOLEAN QUASI-RINGS

It is well-known that Boolean algebras can be regards as rings. Below we discuss the similar results for quasi-Boolean algebras.

Definition 5: Let $\Lambda = (\Lambda; \oplus, \ominus, 0)$ be an algebra of type (2,1,0) and denote the set $\Lambda \oplus 0 = \{\varpi \oplus 0 | \varpi \in \Lambda\}$. Then Λ is called a *quasi-group* if the following conditions are satisfied for any $\varpi, \rho \in \Lambda$:

(QG1) $(\Lambda \oplus 0; \oplus, \ominus, 0)$ is a group with $0 \oplus 0 = 0$;

 $(QG2) \ominus (\ominus \varpi) = \varpi;$

 $(\mathbf{QG3}) \ominus (\varpi \oplus 0) = (\ominus \varpi) \oplus 0;$

(QG4) $\varpi \oplus \rho = (\varpi \oplus 0) \oplus (\rho \oplus 0)$.

If $\Lambda = (\Lambda; \oplus, \ominus, 0)$ is a quasi-group and for any $\varpi, \varrho \in \Lambda$, we have $\varpi \oplus \varrho = \varrho \oplus \varpi$, then Λ is *commutative*. Following from the definition, we know that if $(\Lambda \oplus 0; \oplus, \ominus, 0)$ is a commutative group, then Λ is a commutative quasi-group.

Lemma 5: Let $\Lambda = (\Lambda; \oplus, \ominus, 0)$ be a quasi-group. Then the following hold for any $\varpi, \varrho, \varsigma \in \Lambda$:

(1) if $\varpi \oplus 0 \in \Lambda \oplus 0$, then $\varpi \oplus 0 = 0 \oplus \varpi$;

(2) $(\varpi \oplus \varrho) \oplus \varsigma = \varpi \oplus (\varrho \oplus \varsigma);$

 $(3) (\ominus \varpi) \oplus \varpi = \varpi \oplus (\ominus \varpi) = 0;$

(4) if $\varpi \oplus \varrho = \varpi \oplus \varsigma$, then $0 \oplus \varrho = 0 \oplus \varsigma$, if $\varrho \oplus \varpi = \varsigma \oplus \varpi$, then $\varrho \oplus 0 = \varsigma \oplus 0$.

Proof: (1) Since $0 \oplus 0 = 0 \in \Lambda \oplus 0$, we have $\varpi \oplus 0 = 0 \oplus (\varpi \oplus 0) = (0 \oplus 0) \oplus (\varpi \oplus 0) = 0 \oplus \varpi$ by (QG4).

(2) We have $(\varpi \oplus \varrho) \oplus \varsigma = ((\varpi \oplus 0) \oplus (\varrho \oplus 0) \oplus 0) \oplus (\varsigma \oplus 0) = ((\varpi \oplus 0) \oplus (\varrho \oplus 0)) \oplus (\varsigma \oplus 0) = (\varpi \oplus 0) \oplus ((\varrho \oplus 0) \oplus (\varsigma \oplus 0)) = \varpi \oplus (\varrho \oplus \varsigma)$ by (QG4) and (QG1).

(3) We have $(\ominus \varpi) \oplus \varpi = ((\ominus \varpi) \oplus 0) \oplus (\varpi \oplus 0) = (\ominus (\varpi \oplus 0)) \oplus (\varpi \oplus 0) = 0$ by (QG4), (QG3) and (QG1).

(4) If $\varpi \oplus \varrho = \varpi \oplus \varsigma$, then $(\ominus \varpi) \oplus \varpi \oplus \varrho = (\ominus \varpi) \oplus \varpi \oplus \varsigma$, we have $0 \oplus \varrho = 0 \oplus \varsigma$. The other can be proved similarly.

Definition 6: Let $\Psi = (\Psi; \oplus, \odot, \ominus, 0)$ be an algebra of type (2, 2, 1, 0). Then Ψ is called a *quasi-ring* if the following conditions are satisfied for any $\varpi, \varrho, \varsigma \in \Psi$:

(QR1) $(\Psi; \oplus, \ominus, 0)$ is a commutative quasi-group;

(QR2) $(\Psi; \odot)$ is a semigroup;

(QR3) $\varpi \odot \rho = (\varpi \odot \rho) \oplus 0$;

(QR4) $\varpi \odot (\varrho \oplus \varsigma) = (\varpi \odot \varrho) \oplus (\varpi \odot \varsigma)$ and $(\varrho \oplus \varsigma) \odot \varpi = (\varrho \odot \varpi) \oplus (\varsigma \odot \varpi)$.

A quasi-ring $\Psi = (\Psi; \oplus, \odot, \ominus, 0, 1)$ is called a *quasi-ring* with quasi-identity if the following condition is satisfied for any $\varpi, \varrho \in \Psi$: (QR5) $\varpi \oplus \varrho = (\varpi \oplus \varrho) \odot 1$ and $1 \odot 1 = 1$.

In the following, a quasi-ring $\Psi = (\Psi; \oplus, \odot, \ominus, 0, 1)$ always means a quasi-ring with quasi-identity. In addition, we shall consider that the operation \odot has priority to the operation \oplus .

Proposition 7: Let $\Psi=(\Psi;\oplus,\odot,\ominus,0,1)$ be a quasiring. Then the following hold for any $\varpi,\varrho,\varsigma\in\Psi$:

(1) $0 \odot \varpi = \varpi \odot 0 = 0$;

 $(2) (\ominus \varpi) \odot \varrho = \varpi \odot (\ominus \varrho) = \ominus (\varpi \odot \varrho);$

(3) $(\ominus \varpi) \odot (\ominus \varrho) = \varpi \odot \varrho$;

 $(4) \varsigma \odot (\varpi \ominus \varrho) = \varsigma \odot \varpi \ominus \varsigma \odot \varrho \text{ and } (\varpi \ominus \varrho) \odot \varsigma = \varpi \odot \varsigma \ominus \varrho \odot \varsigma$ where $\varpi \ominus \varrho = \varpi \oplus (\ominus \varrho)$;

(5) $\varpi \odot 1 = \varpi \oplus 0$ and $\varpi \odot 1 = 1 \odot \varpi$;

(6) $\varpi \odot \varrho \odot 1 = \varpi \odot \varrho$;

(7) $1 \oplus 0 = 1$.

Proof: (1) Since $0\odot\varpi=(0\oplus0)\odot\varpi=0\odot\varpi\oplus0\odot\varpi$, we have $0\odot\varpi\oplus0=(0\odot\varpi\oplus0)\oplus(0\odot\varpi\oplus0)$. Note that $0\odot\varpi\oplus0\in\Lambda\oplus0$, it turns out that $0\odot\varpi=0\odot\varpi\oplus0=0$. Similarly, we have $\varpi\odot0=0$.

- (2) Since $(\ominus \varpi) \odot \varrho \oplus \varpi \odot \varrho = (\ominus \varpi \oplus \varpi) \odot \varrho = 0 \odot \varrho = 0$ by (QR4) and (1), we have $(\ominus \varpi) \odot \varrho \oplus 0 = \ominus (\varpi \odot \varrho) \oplus 0$ by Lemma 5, so $(\ominus \varpi) \odot \varrho = \ominus (\varpi \odot \varrho)$. Similarly, we have $\varpi \odot (\ominus \varrho) = \ominus (\varpi \odot \varrho)$.
- (3) We have $(\ominus \varpi) \odot (\ominus \varrho) = \ominus(\varpi \odot (\ominus \varrho)) = \ominus(\ominus(\varpi \odot \varrho)) = \varpi \odot \varrho$ by (2) and (QG2).
- (4) We have $\varsigma \odot (\varpi \ominus \varrho) = \varsigma \odot (\varpi \oplus (\ominus \varrho)) = \varsigma \odot \varpi \oplus \varsigma \odot (\ominus \varrho) = \varsigma \odot \varpi \oplus (\ominus(\varsigma \odot \varrho)) = \varsigma \odot \varpi \ominus \varsigma \odot \varrho$. Similarly, we have $(\varpi \ominus \varrho) \odot \varsigma = \varpi \odot \varsigma \ominus \varrho \odot \varsigma$.
- (5) We have $\varpi \oplus 0 = (\varpi \oplus 0) \odot 1 = \varpi \odot 1 \oplus 0 \odot 1 = \varpi \odot 1 \oplus 0 = \varpi \odot 1$. Similarly, $0 \oplus \varpi = 1 \odot \varpi$. Since $\varpi \oplus 0 = 0 \oplus \varpi$ by Lemma 5, we have $\varpi \odot 1 = 1 \odot \varpi$.
 - (6) We have $(\varpi \odot \varrho) \odot 1 = (\varpi \odot \varrho) \oplus 0 = \varpi \odot \varrho$ by (5).
 - (7) We have $1 \oplus 0 = 1 \odot 1 = 1$.

Definition 7: A quasi-ring $\Psi = (\Psi; \oplus, \odot, \ominus, 0, 1)$ is Boolean, if Ψ satisfies $\varpi^2 = \varpi \odot 1$ for any $\varpi \in \Psi$.

Lemma 6: Let $\Psi=(\Psi;\oplus,\odot,\ominus,0,1)$ be a Boolean quasi-ring. For any $\varpi,\varrho\in\Psi$, we have $\varpi\oplus\varpi=0$ and $\varpi\odot\varrho=\varrho\odot\varpi$.

Proof: For any $\varpi \in \Psi$, we have $(\varpi \oplus \varpi)^2 = (\varpi \oplus \varpi) \odot 1 = \varpi \oplus \varpi$ and $(\varpi \oplus \varpi)^2 = \varpi^2 \oplus \varpi^2 \oplus \varpi^2 \oplus \varpi^2 = \varpi \odot 1 \oplus \varpi \odot 1 \oplus \varpi \odot 1 \oplus \varpi \odot 1 = (\varpi \oplus \varpi \oplus \varpi \oplus \varpi) \odot 1 = \varpi \oplus \varpi \oplus \varpi \oplus \varpi,$ it turns out that $\varpi \oplus \varpi \oplus \varpi \oplus \varpi \oplus \varpi,$ so $\varpi \oplus \varpi = 0$. For any $\varpi, \varrho \in \Psi$, on the one hand, we have $(\varpi \oplus \varrho)^2 = (\varpi \oplus \varrho) \odot 1 = \varpi \oplus \varrho$, on the other hand, we have $(\varpi \oplus \varrho)^2 = \varpi^2 \oplus \varpi \odot \varrho \oplus \varrho \odot \varpi \oplus \varrho^2 = \varpi \odot 1 \oplus \varpi \odot \varrho \oplus \varrho \odot \varpi \oplus \varrho \odot 1 = \varpi \oplus 0 \oplus \varpi \odot \varrho \oplus \varrho \odot \varpi \oplus \varrho \oplus \varrho \odot \varpi \oplus \varrho$, it turns out that $\varpi \oplus \varpi \odot \varrho \oplus \varrho \odot \varpi \oplus \varrho = \varpi \oplus \varrho$, so $\varpi \odot \varrho \oplus \varrho \odot \varpi = 0$. Since $\varpi \odot \varrho \oplus \varpi \odot \varrho = 0 = \varpi \odot \varrho \oplus \varrho \odot \varpi$, we have $\varpi \odot \varrho \oplus 0 = \varrho \odot \varpi \oplus 0$ by Lemma 5, so $\varpi \odot \varrho = \varrho \odot \varpi$.

Theorem 2: Let $\Omega = (\Omega; \sqcup, \sqcap, ^*, 0, 1)$ be a quasi-Boolean algebra. Define Ω^{\otimes} to be the algebra $(\Omega; \oplus, \odot, \ominus, 0, 1)$ where for any $\varpi, \varrho \in \Omega, \varpi \oplus \varrho = (\varpi \sqcap \varrho^*) \sqcup (\varpi^* \sqcap \varrho), \varpi \odot \varrho = \varpi \sqcap \varrho$ and $\ominus \varpi = \varpi$. Then Ω^{\otimes} is a Boolean quasi-ring.

Proof: Firstly, we show that $(\Omega; \oplus, \ominus, 0)$ is a commutative quasi-group. For any $\varpi \in \Omega$, since $\varpi \oplus 0 =$ $(\varpi \sqcap 0^*) \sqcup (\varpi^* \sqcap 0) = (\varpi \sqcap \varpi) \sqcup 0 = \varpi \sqcap \varpi$, it is easy to see that $(\Omega \oplus 0; \oplus, \ominus, 0)$ is a group and $0 \oplus 0 = 0 \cap 0 = 0$. Meanwhile, (QG2) we have $(\ominus(\ominus\varpi)) = \ominus\varpi = \varpi$; (QG3) since $\ominus(\varpi \oplus 0) = \varpi \oplus 0$ and $(\ominus \varpi) \oplus 0 = \varpi \oplus 0$, we have $\ominus(\varpi \oplus 0) = (\ominus \varpi) \oplus 0$; (QG4) we have $(\varpi \oplus 0) \oplus (\varrho \oplus 0) =$ $(\varpi \sqcap \varpi) \oplus (\varrho \sqcap \varrho) = ((\varpi \sqcap \varpi) \sqcap (\varrho \sqcap \varrho)^*) \sqcup ((\varpi \sqcap \varpi)^* \sqcap (\varrho \sqcap \varrho)) =$ $((\varpi \sqcap \varpi) \sqcap (\rho^* \sqcup \rho^*)) \sqcup ((\varpi^* \sqcup \varpi^*) \sqcap (\rho \sqcap \rho)) = ((\varpi \sqcap \varpi) \sqcap (\rho^* \sqcap \varphi))$ $(\varrho^*) \sqcup ((\varpi^* \sqcap \varpi^*) \sqcap (\varrho \sqcap \varrho)) = (\varpi \sqcap \varrho^*) \sqcup (\varpi^* \sqcap \varrho) = \varpi \oplus \varrho.$ Moreover, we have $\varpi \oplus \varrho = (\varpi \sqcap \varrho^*) \sqcup (\varpi^* \sqcap \varrho) =$ $(\varrho \sqcap \varpi^*) \sqcup (\varrho^* \sqcap \varpi) = \varrho \oplus \varpi$. So $(\Omega; \oplus, \ominus, 0)$ is a commutative quasi-group. Secondly, for any $\varpi \in \Omega$, we have $(\varpi \odot \varrho) \odot \varsigma = (\varpi \sqcap \varrho) \sqcap \varsigma = \varpi \sqcap (\varrho \sqcap \varsigma) = \varpi \odot (\varrho \odot \varsigma)$ which implies that $(\Omega; \odot)$ is a semigroup. Moreover, $(\varpi \odot \varrho) \oplus 0 =$ $(\varpi \odot \varrho) \sqcap (\varpi \odot \varrho) = (\varpi \sqcap \varrho) \sqcap (\varpi \sqcap \varrho) = \varpi \sqcap \varrho = \varpi \odot \varrho.$ Thirdly, on the one hand, we have $\varpi \odot (\varrho \oplus \varsigma) = \varpi \sqcap (\varrho \oplus \varsigma) =$ $\varpi \sqcap ((\varrho \sqcap \varsigma^*) \sqcup (\varrho^* \sqcap \varsigma)) = (\varpi \sqcap \varrho \sqcap \varsigma^*) \sqcup (\varpi \sqcap \varrho^* \sqcap \varsigma), \text{ on the }$ other hand, we have $(\varpi \odot \varrho) \oplus (\varpi \odot \varsigma) = (\varpi \sqcap \varrho) \oplus (\varpi \sqcap \varsigma) =$ $((\varpi \sqcap \varrho) \sqcap (\varpi \sqcap \varsigma)^*) \sqcup ((\varpi \sqcap \varrho)^* \sqcap (\varpi \sqcap \varsigma)) = (\varpi \sqcap \varrho \sqcap (\varpi^* \sqcup \varphi))$ $\varsigma^{\star})) \sqcup ((\varpi^{\star} \sqcup \varrho^{\star}) \sqcap (\varpi \sqcap \varsigma)) = (\varpi \sqcap \varrho \sqcap \varpi^{\star}) \sqcup (\varpi \sqcap \varrho \sqcap \varsigma^{\star}) \sqcup$ $(\varpi^* \sqcap \varpi \sqcap \varsigma) \sqcup (\varrho^* \sqcap \varpi \sqcap \varsigma) = (\varpi \sqcap \varrho \sqcap \varsigma^*) \sqcup (\varrho^* \sqcap \varpi \sqcap \varsigma), \text{ so}$

 $\varpi\odot(\varrho\oplus\varsigma)=(\varpi\odot\varrho)\oplus(\varpi\odot\varsigma). \text{ Since }\varpi\odot\varrho=\varpi\sqcap\varrho=\varrho\sqcap\varpi=\varrho\square\varpi=\varrho\square\varpi=(\varrho\oplus\varsigma)\odot\varpi=(\varrho\oplus\varsigma)\odot\varpi=(\varrho\odot\varpi\oplus\varsigma\odot\varpi.$ Finally, $(\varpi\oplus\varrho)\odot1=(\varpi\oplus\varrho)\sqcap1=\varpi\oplus\varrho$ and $1\odot1=1\sqcap1=1.$ Thus Ω^\otimes is a quasi-ring with quasi-identity. Note that $\varpi^2=\varpi\odot\varpi=\varpi\sqcap\varpi=\varpi\sqcap1=\varpi\odot1,$ we have that Ω^\otimes is a Boolean quasi-ring.

Theorem 3: Let $\Psi=(\Psi;\oplus,\odot,\ominus,0,1)$ be a Boolean quasi-ring. Define Ψ^\otimes to be the algebra $(\Psi;\sqcup,\sqcap,^\star,0,1)$ where for any $\varpi,\varrho\in\Psi,\varpi\sqcup\varrho=\varpi\oplus\varrho\oplus\varpi\odot\varrho,\varpi\sqcap\varrho=\varpi\odot\varrho$ and $\varpi^\star\in\Psi$ with $\varpi^\star\oplus 0=(\varpi\oplus 0)^\star=1\oplus\varpi$. Then Ψ^\otimes is a generalized quasi-Boolean algebra.

Proof: Firstly, we show that $(\Psi; \sqcup, \sqcap)$ is a q-lattice. For any $\varpi, \varrho, \varsigma \in \Psi$, (QL1) we have $\varpi \sqcup \varrho = \varpi \oplus \varrho \oplus (\varpi \odot \varrho) =$ $\varrho \oplus \varpi \oplus (\varrho \odot \varpi) = \varrho \sqcup \varpi$ and $\varpi \sqcap \varrho = \varpi \odot \varrho = \varrho \odot \varpi = \varrho \sqcap \varpi$ by Lemma 6. (QL2) We have $\varpi \sqcup (\rho \sqcup \varsigma) = \varpi \oplus (\rho \sqcup \varsigma) \oplus \varpi \odot$ $(\varrho \sqcup \varsigma) = \varpi \oplus \varrho \oplus \varsigma \oplus \varrho \odot \varsigma \oplus \varpi \odot (\varrho \oplus \varsigma \oplus \varrho \odot \varsigma) = \varpi \oplus \varrho \oplus \varsigma \oplus \varrho \odot$ $\varsigma \oplus \varpi \odot \varrho \oplus \varpi \odot \varsigma \oplus \varpi \odot \varrho \odot \varsigma$. The value of this last expression does not change if we permute ϖ, ϱ and ς , so $\varpi \sqcup (\varrho \sqcup \varsigma) =$ $\varsigma \sqcup (\varpi \sqcup \varrho)$ and then $\varpi \sqcup (\varrho \sqcup \varsigma) = (\varpi \sqcup \varrho) \sqcup \varsigma$. Meanwhile, we have $(\varpi \sqcap \varrho) \sqcap \varsigma = (\varpi \odot \varrho) \odot \varsigma = \varpi \odot (\varrho \odot \varsigma) = \varpi \sqcap (\varrho \sqcap \varsigma).$ (QL3) We have $\varpi \sqcup \varpi = \varpi \oplus \varpi \oplus \varpi \odot \varpi = 0 \oplus \varpi \odot 1 = \varpi \odot 1$ and $\varpi \sqcup (\rho \sqcap \varpi) = \varpi \oplus (\rho \sqcap \varpi) \oplus \varpi \odot (\rho \sqcap \varpi) = \varpi \oplus \rho \odot \varpi \oplus \varpi \odot$ $(\rho \odot \varpi) = \varpi \oplus \rho \odot \varpi \oplus \varpi \odot \rho \odot \varpi = \varpi \oplus \rho \odot \varpi \oplus \varpi \odot \varpi \odot \rho =$ $\varpi \oplus (\varpi \odot \varrho \oplus \varrho \odot \varpi) = \varpi \oplus (\varpi \odot \varrho \oplus \varpi \odot \varrho) = \varpi \oplus 0 =$ $\varpi \odot 1$. Thus $\varpi \sqcup (\varrho \sqcap \varpi) = \varpi \sqcup \varpi$. Similarly, we have $\varpi \sqcap (\rho \sqcup \varpi) = \varpi \sqcap \varpi$. (QL4) We have $\varpi \sqcup (\rho \sqcup \rho) =$ $\varpi \sqcup (\varrho \odot 1) = \varpi \oplus \varrho \odot 1 \oplus \varpi \odot \varrho \odot 1 = \varpi \oplus \varrho \oplus \varpi \odot \varrho = \varpi \sqcup \varrho$ and $\varpi \sqcap (\varrho \sqcap \varrho) = \varpi \odot (\varrho \odot \varrho) = \varpi \odot (\varrho \odot 1) = (\varpi \odot \varrho) \odot$ $1 = \varpi \odot \varrho = \varpi \sqcap \varrho$. (QL5) We have $\varpi \sqcup \varpi = \varpi \odot 1 = 0$ $\varpi \odot \varpi = \varpi \sqcap \varpi$. Hence $(\Psi; \sqcup, \sqcap)$ is a q-lattice. Secondly, since $\varpi \sqcup (\varrho \sqcap \varsigma) = \varpi \sqcup (\varrho \odot \varsigma) = \varpi \oplus \varrho \odot \varsigma \oplus \varpi \odot \varrho \odot \varsigma$ and $(\varpi \sqcup \varrho) \sqcap (\varpi \sqcup \varsigma) = (\varpi \oplus \varrho \oplus \varpi \odot \varrho) \odot (\varpi \oplus \varsigma \oplus \varpi \odot \varsigma) =$ $\varpi\odot\varpi\oplus\varpi\odot\varsigma\oplus\varpi\odot\varpi\odot\varpi\odot\varsigma\oplus\varrho\odot\varpi\oplus\varrho\odot\varsigma\oplus\varrho\odot\varpi\odot\varsigma\oplus$ $\varpi \odot \rho \odot \varpi \oplus \varpi \odot \rho \odot \varsigma \oplus \varpi \odot \rho \odot \varpi \odot \varsigma = \varpi \odot 1 \oplus (\varpi \odot \varsigma \oplus \varpi \odot \rho \odot \varpi \odot \varsigma)$ $\varpi \odot \varpi \odot \varsigma) \oplus (\varrho \odot \varpi \oplus \varpi \odot \varrho \odot \varpi) \oplus (\varrho \odot \varpi \odot \varsigma \oplus \varpi \odot \varrho \odot$ $\varpi \odot \varsigma$) $\oplus \varrho \odot \varsigma \oplus \varpi \odot \varrho \odot \varsigma = \varpi \oplus \varrho \odot \varsigma \oplus \varpi \odot \varrho \odot \varsigma$, we have $\varpi \sqcup (\varrho \sqcap \varsigma) = (\varpi \sqcup \varrho) \sqcap (\varpi \sqcup \varsigma)$. Similarly, we have $\varpi \sqcap (\varrho \sqcup \varsigma) =$ $(\varpi \sqcap \rho) \sqcup (\varpi \sqcap \varsigma)$. Moreover, we have $\varpi \sqcap 0 = \varpi \odot 0 = 0$ and $\varpi \sqcup 1 = \varpi \oplus 1 \oplus \varpi \odot 1 = \varpi \oplus 1 \oplus \varpi \oplus 0 = 1$. Finally, we have $\varpi \sqcup \varpi^{\star} = \varpi \oplus \varpi^{\star} \oplus \varpi \odot \varpi^{\star} = \varpi \oplus (\varpi^{\star} \oplus 0) \oplus \varpi \odot (\varpi^{\star} \oplus 0) =$ $\varpi \oplus (1 \oplus \varpi) \oplus \varpi \odot (1 \oplus \varpi) = \varpi \oplus 1 \oplus \varpi \oplus \varpi \odot 1 \oplus \varpi \odot \varpi = 1$ and $\varpi \sqcap \varpi^* = \varpi \odot \varpi^* = \varpi \odot (\varpi^* \oplus 0) = \varpi \odot (1 \oplus \varpi) =$ $\varpi \odot 1 \oplus \varpi \odot \varpi = \varpi \odot 1 \oplus \varpi \odot 1 = 0$. Hence $(\Psi; \sqcup, \sqcap, ^*, 0, 1)$ is a complemented distributive q-lattice. Note that for any $\varpi \in \Psi, \ \varpi^{\star} \sqcap \varpi^{\star} = \varpi^{\star} \odot \varpi^{\star} = (\varpi^{\star} \oplus 0) \odot (\varpi^{\star} \oplus 0) =$ $(1\oplus\varpi)\odot(1\oplus\varpi)=(1\oplus\varpi)\odot 1=1\oplus\varpi$ and $(\varpi\sqcup\varpi)^{\star}=(\varpi\odot$ $1)^* = (\varpi \oplus 0)^* = 1 \oplus \varpi$, we get $(\varpi \sqcup \varpi)^* = \varpi^* \sqcap \varpi^*$ which implies that Ψ^{\otimes} is a generalized quasi-Boolean algebra.

Corollary 1: Let $\Psi=(\Psi;\oplus,\odot,\ominus,0,1)$ be a Boolean quasi-ring and Ψ^\otimes be defined in Theorem 3. If the unary operation * satisfies an additional condition $\varpi^{\star\star}=\varpi$ for any $\varpi\in\Psi$, then Ψ^\otimes is a quasi-Boolean algebra. Moreover, $\Psi^{\otimes\otimes}=\Psi$ under this case.

Corollary 2: Let $\Omega = (\Omega; \sqcup, \sqcap, ^{\star}, 0, 1)$ be a quasi-Boolean algebra and Ω^{\otimes} be defined in Theorem 2. If the unary operation * defined in $\Omega^{\otimes \otimes}$ is same to Ω , then $\Omega^{\otimes \otimes} = \Omega$.

Given a quasi-ring $\Psi = (\Psi; \oplus, \odot, \ominus, 0, 1)$, we define an *ideal* Σ of Ψ , if the following conditions are satisfied for any $\varpi, \varrho, \varepsilon \in \Psi$, $\varpi, \varrho \in \Sigma$ imply $\varpi \ominus \varrho \in \Sigma$, $\varepsilon \odot \varpi \in \Sigma$ and $\varpi \odot \varepsilon \in \Sigma$.

Theorem 4: Let $\Omega = (\Omega; \sqcup, \sqcap, ^{\star}, 0, 1)$ be a quasi-Boolean algebra and Σ be a weak ideal of Ω . Then Σ is an ideal of Ω^{\otimes} .

Proof: Let Σ be a weak ideal of Ω . For any $\varpi, \varrho \in \Sigma$, since $\varpi \sqcap \varrho^* \preceq \varpi$ and $\varpi^* \sqcap \varrho \preceq \varrho$ and Σ is a weak ideal of Ω , we have $\varpi \sqcap \varrho^* \in \Sigma$ and $\varpi^* \sqcap \varrho \in \Sigma$, it turns out that $\varpi \oplus \varrho = (\varpi \sqcap \varrho^*) \sqcup (\varpi^* \sqcap \varrho) \in \Sigma$. Meanwhile, we have $\ominus \varrho = \varrho \in \Sigma$, so $\varpi \ominus \varrho \in \Sigma$. Since $\varepsilon \odot \varpi = \varepsilon \sqcap \varpi = \varpi \odot \varepsilon \preceq \varpi$, we have $\varepsilon \odot \varpi \in \Sigma$ and $\varpi \odot \varepsilon \in \Sigma$. Hence Σ is an ideal of Ω^{\otimes} .

Theorem 5: Let $\Psi = (\Psi; \oplus, \odot, \ominus, 0, 1)$ be a Boolean quasi-ring and Σ be an ideal of Ψ . Then Σ is a weak ideal of Ψ^{\otimes} .

Proof: Let Σ be an ideal of Ψ . For any $\varpi \in \Sigma$, $0 = 0 \odot \varpi \in \Sigma$. If $\varpi, \varrho \in \Sigma$, then $\varpi \oplus \varrho \in \Sigma$ and $\varpi \odot \varrho \in \Sigma$, it follows that $\varpi \sqcup \varrho = \varpi \oplus \varrho \oplus \varpi \odot \varrho \in \Sigma$. Finally, if $\varpi \in \Sigma$ and $\varrho \in \Psi$ with $\varrho \preceq \varpi$, then $\varrho \sqcap \varrho = \varpi \sqcap \varrho = \varpi \odot \varrho \in \Sigma$. Hence Σ is a weak ideal of Ψ^{\otimes} .

Corollary 3: Let $\Omega = (\Omega; \sqcup, \sqcap, ^{\star}, 0, 1)$ be a quasi-Boolean algebra and $\Omega = \Omega^{\otimes \otimes}$. Then Σ is a weak ideal of Ω if and only if Σ is an ideal of Ω^{\otimes} .

REFERENCES

- [1] F. Bou, F. Paoli, A. Ledda, M. Spinks, and R. Giuntini, "The logic of quasi-MV algebras," *Journal of Logic and Computation*, vol. 20, no. 2, pp. 619-643, 2010.
- [2] S. Burris and H. P. Sankappanavar, A course in universal algebra, The Millennium Edition, 1981.
- [3] G. Cattaneo, M. L. Dalla Chiara, R. Giuntini, and R. Leporini, "Quantum computational structures," *Mathematica Slovaca*, vol. 54, pp. 87-108, 2004.
- [4] I. Chajda, "Lattices in quasiordered sets," Acta Universitatis Palackianae Olomoucensis. Facultas Rerum Naturalium. Mathematica, vol. 31, no. 1, pp. 6-12, 1992.
- [5] I. Chajda, "An algebra of quasiordered logic," *Mathematica Bohemica*, vol. 119, no. 2, pp. 129-135, 1994.
- [6] W. J. Chen and W. A. Dudek, "Quantum computational algebra with a non-commutative generalization," *Mathematica Slovaca*, vol. 66, pp. 19-34, 2016.
- [7] W. J. Chen and H. K. Wang, "Filters and ideals in the generalization of pseudo-BL algebras," *Soft Computing*, vol. 24, no. 2, pp. 795-812, 2020
- [8] S. Gudder, "Quantum computational logic," *International Journal of Theoretical Physics*, vol. 42, no. 1, pp. 39-47, 2003.
- [9] H. P. Gumm and A. Ursini, "Ideals in universal algebra," Algebra Universalis, vol. 19, pp. 45-54, 1984.
- [10] A. Iorgulescu, Implicative-groups vs. groups and generalizations, Bucuresti: Matrix Rom, 2018.
- [11] Y. B. Jun and A. Iampan, "Falling UP-filters," *IAENG International Journal of Computer Science*, vol. 48, no. 4, pp. 1170-1174, 2021.
- [12] A. Ledda, M. Konig, F. Paoli, and R. Giuntini, "MV algebras and quantum computation," *Studia Logica*, vol. 82, pp. 245-270, 2006.
- [13] J. T. Wang and M. Wang, "The lattices of monadic filters in monadic BL-algebras," *IAENG International Journal of Applied Mathematics*, vol. 50, no. 3, pp. 656-660, 2020.
- [14] G. Q. Yang and W. J. Chen, "Some types of filters in pseudo-quasi-MV algebras," *IAENG International Journal of Computer Science*, vol. 48, no. 3, pp. 586-591, 2021.