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Quasi-Boolean Algebras: a Generalization of
Boolean Algebras

Yajie Lv, Wenjuan Chen

Abstract—In the present paper, we introduce the notion of
quasi-Boolean algebras as a generalization of Boolean algebras.
First we discuss some properties of quasi-Boolean algebras.
Next we define ideals and filters of quasi-Boolean algebras and
investigate the related properties. We also show that there is a
one-to-one correspondence between the set of ideals and the set
of ideal congruences on a quasi-Boolean algebra. Finally, we
present the relationship between quasi-Boolean algebras and
Boolean quasi-rings.

Index Terms—Boolean algebras, quasi-lattices, quasi-Boolean
algebras, ideals, Boolean quasi-rings

I. INTRODUCTION

ECENTLY, quantum computational logics have been

received more and more attentions. Many authors con-
sidered that these logics were closely related with fuzzy
logics [8]. In order to study these new forms of non-
classical logics, some logical algebras had been introduced
and the known results showed that these algebras were
generalizations of well-known algebras associated with fuzzy
logics [3], [6]. For example, Ledda et al. introduced quasi-
MYV algebras and pointed out that quasi-MV algebras were
generalization of MV-algebras [12]. Chen and Wang defined
quasi-BL algebras and showed that quasi-BL algebras gen-
eralized BL-algebras [7].

In [10], quasi-Boolean algebras were introduced by
Iorgulescu in order to generalize the relationship between
MV-algebras and lattice ordered groups. It was proved that
any quasi-Wajsberg algebra defined in [1] is a quasi-Boolean
algebra. Since quasi-MV algebras are equivalent to quasi-
Wajsberg algebras, it is natural to obtain that any quasi-
MYV algebra is a quasi-Boolean algebra. Compared the re-
lationship between Boolean algebras and MV-algebras and
considered the important role of Boolean algebras in fuzzy
logics, we wish to find a more suitable way to define quasi-
Boolean algebras which generalize Boolean algebras in the
setting of quantum computational logics.

In 1993, Chajda introduced g-lattices and presented some
elementary results of a g-lattice [4]. Subsequently, an algebra
of quasiordered logic based on a g-lattice was defined in
[5]. The concepts of algebra of quasiordered logic as a
generalization of Boolean algebra is similar to the case of
quasi-MV algebras generalizing MV-algebras. However, in
the algebra of quasiordered logic, the unary operation is
defined by its binary operation and it does not satisfy the
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involution. Hence we want to redefine the quasi-Boolean
algebras based on g-lattices. In addition, ideals and filters
play an important role in studying the algebraic structures
[9], [11], [13], [14]. These notions are dual in a Boolean
algebra [2], so in this paper, we also want to study ideals and
filters in a quasi-Boolean algebra. The paper is organized as
follows. In Section 2, we recall some definitions and results
of g-lattices. In Section 3, we introduce the notion of quasi-
Boolean algebras. We also define ideals and filters of quasi-
Boolean algebras and investigate the related properties. In
Section 4, we present the relationship between quasi-Boolean
algebras and Boolean quasi-rings.

II. PRELIMINARY

In this section, we recall some definitions and results in
(4], [5].

Recall that an algebra (Z;U,M) of type (2,2) is called
a g-lattice, if it satisfies the following conditions for any
w, 0,6 € &,

QL) wUpo=popUwand wlMp=pMNw;

(QL2) wli(pls) = (wllp)Us and wl(oMs) = (wwlMe)Ms;

QL3) wl(pNw) =wlwand wMN(pUw) =wNw;

QL) wlpop=wlU(pUp) and wMo=w M (oM yp);

QLS) wlw = wMw.

On any g¢-lattice (Z;U, M), one can define @ =< o by w1
0o = wllw,or wl o= pl . Then the relation < is
quasi-ordering. A g-lattice (Z;U,M) is called distributive, if
it satisfies (D1) w U (pM¢) = (w U o) M (wUg) and (D2)
w(oUs) = (wMp)U(wmg). Similarly to lattices, we can
show that a g-lattice satisfies (D1) if and only if it satisfies
(D2). A bounded g-lattice (Z;L,1) means that there exist
elements 0 and 1 in = such that w0 = 0 and w1 = 1 for
any w € E. Let (E;U,M) be a bounded g-lattice and w € E.
An element ¢ € Z is called a complement of w, if wlMp =10
and wwl o = 1. For any w € &, if it has a complement, then
(2;U,M) is called a complemented g-lattice.

Let (Z;U,M) be a complemented distributive g¢-lattice.
Define a unary operation * on (Z;U,MM) by w — w* with
w* = p U p, where p is a complement of .

Lemma 1: [5] Let (Z;1,M) be a complemented distribu-
tive g-lattice and w € =. Then w™ is a complement of w.

Proposition 1:  [5] Let (Z;U,M) be a complemented
distributive g-lattice. Then for any w, o € =, we have

DifwlUpg=1and wMe=0, then (wNw)*=pMg;

(2) (wNp)* =w* Up* and (w U p)* = w* M o*;

3) if w = o, then po* <X w*.

An algebra (Z;U,M,*,0,1) is called an algebra of qua-
siordered logic, if its reduct (Z;LJ,M) is a complemented
distributive g-lattice, 0 and 1 are a zero and a unit of
(Z; U, M), respectively, and * is a unary operation defined
as above.
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ITI. QUASI-BOOLEAN ALGEBRA AND IDEALS

In this section, we give the definition of quasi-Boolean
algebras and discuss some basic properties of quasi-Boolean
algebras. We also investigate the properties of ideals and
filters in a quasi-Boolean algebra.

Definition 1: An algebra Q@ = (Q;U,1M1,*,0,1) of type
(2,2,1,0,0) is called a generalized quasi-Boolean algebra,
if the following conditions are satisfied:

(1) (;U,M) is a distributive g-lattice;

2)wnNO0=0and wlU1l=1;

B)wNw*=0and wUw* =1,

@) (wNw)* =w* Uw*.

A generalized quasi-Boolean algebra © =(;1J,M,*,0,1)
with the condition (5) @™ = w is called a guasi-Boolean
algebra.

Following from the definition, a generalized quasi-Boolean
algebra is a complemented distributive g¢-lattice with the
unary operation satisfying (ww M w)* = @w* U w*, while a
quasi-Boolean algebra is a generalized quasi-Boolean algebra
satisfying the unary operation with involution.

Remark 1: It is easy to see that an algebra of quasiordered
logic (Z;,M,*,0, 1) is a generalized quasi-Boolean algebra,
since w*Uw* = (wMw)* for w € Z. Moreover, an algebra
of quasiordered logic (Z;U,M,*,0,1) with @™ = w is a
quasi-Boolean algebra.

Remark 2: In any quasi-Boolean algebra Q = (; U,
*,0,1), its reduct (;1,*,0) or (£2;M,*,1) is a quasi-MV
algebra.

Proposition 2: Let @ = (Q;U,M,*,0,1) be a quasi-
Boolean algebra. Then for any w, o, k, ¢ € (2, we have

() w<wlpand wllp =X w;

2)ifw fpand kK <X, then wMk <X ol and wllk <
ol

3) (wUo)* =w*Mp* and (wMp)* = w* U e*;

4) if w =< p, then po* <X w*.

Definition 2: An algebra (Z;U,M,*,0,1) of type
(2,2,1,0,0) is called a quasi-De Morgan algebra, if the
following conditions are satisfied:

(1) (2;u,M) is a distributive g-lattice;

2) (wNe)* =w*Up* and (w U p)* = w* M o*;

3) w** = w.

Hence any quasi-Boolean algebra is a quasi-De Morgan
algebra.

Below we see the relationship between quasi-Boolean
algebras and Boolean algebras. Obviously, any Boolean al-
gebra is a quasi-Boolean algebra. However, a quasi-Boolean
algebra is not a Boolean algebra in general. It is easy to show
the following result.

Proposition 3: Let Q@ = (Q;U,M,*,0,1) be a quasi-
Boolean algebra. Then the following conditions are equiv-
alent:

(1) (Q;U,M,*,0,1) is a Boolean algebra;

(2) (;U,M) is a lattice;

(3) the induced quasiorder = is a partial order.

Let @ = (Q;U,M,*,0,1) be a quasi-Boolean algebra.
Denote R(Q2) = {w € Qw MNw = w}. Obviously,
0,1 € R() and then R(Q) is a non-empty subset of €,
so (R(Q);U,1,*,0,1) is a Boolean algebra.

Definition 3: Let @ = (Q;U,M,*,0,1) be a quasi-
Boolean algebra. A subset > of 2 is called an ideal of €2,
if the following conditions are satisfied:

1)oex;

2)if w,pe X, then wlp € X;

3) if w e X and o <X w, then p € X.

A subset ® of € is called a filter of €2, if the following
conditions are satisfied:

1) 1ed;

2)if w,p€ P, then w1 € ;

B)if we ® and w =X g, then p € P.

Definition 4: Let @ = (Q;U,M,*,0,1) be a quasi-
Boolean algebra. A subset 3 of  is called a weak ideal
of Q, if the following conditions are satisfied:

1Hoek;

) if w,pe X, then wlp € X

B)if we X and p < w, then plMp € X.

A subset ¢ of Q is called a weak filter of 2, if the
following conditions are satisfied:

1) 1ed;

2)if w,p € P, then w o€ ;

B)if we ®and w < g, then plLUp € P.

Proposition 4: Let Q@ = (Q;U,M,*,0,1) be a quasi-
Boolean algebra. Then any ideal (filter) is a weak ideal (weak
filter).

Proposition 5: Let Q@ = (Q;U,M,*,0,1) be a quasi-
Boolean algebra. Then the set of ideals (filters) of a quasi-
Boolean algebra is closed under arbitrary intersection.

Let = (Q;1,M,*,0,1) be a quasi-Boolean algebra and
T" be a non-empty subset of €. The ideal generated by T is
the least ideal containing I" and is denoted by (I']. Dually,
the filter generated by T is the least filter containing I" and
is denoted by [I').

Lemma 2: Let Q = (Q;U,M,*,0,1) be a quasi-Boolean
algebra and I" be a non-empty subset of €2. Then

M T = {w € QQw =X w Uwey U -+ U
wp, for some wy,wa,...,w, €'}
QI = {w € Yuwi Nw2 N - Nw, =

w, for some wy,ws,...,w, € ['}.

Proposition 6: Let Q@ = (Q;U,M,*,0,1) be a quasi-
Boolean algebra. Then

(1) For any > C Q, ¥ is a (weak) ideal if and only if ¥*
is a (weak) filter;

(2) For any ® C Q, ® is a (weak) filter if and only if &*
is a (weak) ideal.

Proof: Let X be an ideal of Q. Then 0 € ¥ and then
1=0" € ¥*. If w*, p* € ¥*, then w, p € X and we have
wllp € %, it turns out that @w* M o* = (w U p)* € X*
by Proposition 2. Let w* € ¥* and ¢ € Q with w* < p.
Then o* < w** = w. Since X is an ideal of €2, we have
o € X, s0 o = o € X*. Hence X* is a filter of .
Conversely, if X* is a filter of 2, then 1 € ¥* and then
0=1"€ ¥ =% If w,o € &, then w™, p* € ¥* and
wlUp = (w* M p*)*. Since ¥* is a filter of 2, we have
w*Me* € ¥, s0o wlp = (w*Mp")* € ¥** = 3. Let
w € X and g € Q) with p < w. Then w* < p*, it follows
that w* € ¥* and then ¢o* € ¥*, s0 p = o € ¥ = 3.
Hence ¥ is an ideal of €2. The rest can be proved similarly
or dually. [ |

Since ideals and filters are dual in a quasi-Boolean algebra,
we only discuss the properties of ideals in the following.

Let 2 = (Q;,M,*,0,1) be a quasi-Boolean algebra and
¥ be a binary relation on €. Then ¢ is called an ideal
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congruence, if ¥ is a congruence on  and (wMw, pMp) € ¢
implies (z, o) € ¥ for any w, g € .

Lemma 3: Let & = (Q;U,11,*,0,1) be a quasi-Boolean
algebra and ¥ be an ideal congruence on €2. Then the set
0/9 = {w € Q|(w,0) € ¥} is an ideal of €.

Proof: Since (0,0) € ¥, we have 0 € 0/9. If w,p €
0/9, then (w,0) € ¥ and (p,0) € ¥, it turns out that (w LI
0,0) = (wlp,0U0) € ¥, so wllp € 0/9. Let w € 0/ and
0 € Q with ¢ < w. Then (w, 0) € ¥ and then (wMp,0Mp) €
1, it follows that (9 M p,0M0) € ¥. Note that ¢ is an ideal
congruence on €2, we have (0,0) € ¥, so o € 0/9. Hence
the set 0/ is an ideal of €2. |

Lemma 4: Let & = (Q;U,11,*,0,1) be a quasi-Boolean
algebra and X be an ideal of 2. Then the binary relation
defined by (w, ) € 9 if and only if (wMe*)U(w*Mp) € &
is an ideal congruence on (2.

Proof: For any w € , since (wMNw*) U (w* MNw) =
0 € X, we have (w,w) € V. If (w,p) € I, then (w N
") U(w* Mo) € X, 50 (0,w) = (eMNw*) U (0" MNw) =
(wNe*)U(w*Mp) € . Let (w, p) € ¥ and (o,5) € 9.
Then (wMe*) U (@w*Mp) € ¥ and (pMN¢*) U (0*Mg) € X.
Since ¥ is an ideal of €2, we have ((w M o*) U (w* Mp)) U
((eMs*)U(*Mg)) € X. We calculate (cwlM¢*) U (w* Mg) =
(wMe*M(pUe*))U(ww*MsM(pUe*)) = (wMe*Me)U(ewMs* M
o) U (ww*MsMo)U(w*MeMe*) = (¢*Mo)U(wwMe*)U(w* M
Q) U(sMer) = ((whe*)U(w*Me)) U ((eMe¥) LU (e* Ms))
by Proposition 2, so (w M¢*) U (w* M) € ¥ and then
(w,s) € 0. Hence the binary relation ¢ is an equivalent
relation on €. It is easy to see that if (w, ) € o, then
(w*, 0*) € ¥. For any (w,p) € ¢ and (k,.) € ¢, then
(wNe*)U(w*Mp) € X and (kM*) U (k* M) € 3. Since
(L) (o) )U((UR) (1) = (U)o )L
((w*NE*)MN(eUe)) = (wNe*Me*)U(kMe*Me*)U (w* MK* N
o)U(w*Mk* M) = ((wNe*)U(w*Me))U((kMe)U(K*Me)),
it follows that ((cwlx)M(elU)*)U((wwlk)*M(elUe)) € X, so
(wUk, o) €. Similarly, we can prove (w Mk, pMe) €
1. Hence the equivalent relation ¥ is a congruence on 2.
Finally, if (wMw, pMp) € 9, then ((wMw)M(eMe)*)U((wwn
w)*M(pMp)) € %, it follows that (oM e*) U (ww*Mp) € %,
so (w, o) € ¥. Hence the relation ¥ is an ideal congruence
on €. ]

Theorem 1: Let 2 = (Q;U,M,*,0, 1) be a quasi-Boolean
algebra. Then there exists a one-to-one correspondence be-
tween the set of ideals and the set of ideal congruences on
Q.

Proof: Let 3 be an ideal of €. Then ¥y, defined in
Lemma 4 is an ideal congruence on 2. Moreover, since w =<
wlw=wlNw =X @, we have Xy, = {w € Q(w,0) €
In} ={w € Qwnw € £} = X. Conversely, let ¥ be an
ideal congruence on €2. Then ¥y = 0/9 defined in Lemma 3
is an ideal of €. Moreover, V5, = {(w, 0)|(wMe*)U(w* N
0) € X} = {(m,0)l{(= 1 ") U (=" M0),0) € 9} = .
Indeed, for any (w, ¢) € ¥, we have (w M p*,0) = (w N
0*,0M %) € ¥ and (w* M p,0) = (w* Mo, w* MNw) € ¥,
so ((wMe*)U (w*Mp),0) € ¥ and then (w, g) € Vx,. For
any (w, 0) € ¥x,, then ((w M e*) U (w* Myp),0) € 9. We
calculate that {(ww M e*) U (w*Mp),0) = ((wlw*)M(e* L
@*) M (wUe)(e*Uo),0) = ((@Me)*M(wUpe),0) € v, it
turns out that ((wMe)U((wMe)*M(wle)), (wMe)U0) =
(wUp,wMp) € 9,50 (wUp) MNw,(wMNp) Nw) =
(wMNw,wMp) €Y. Similarly, we have (oM g, M g) € V.

Hence we have (w M, oM ) € 9. Note that 9 is an ideal
congruence on 2, we get (w, 0) € V. u

IV. BOOLEAN QUASI-RINGS

It is well-known that Boolean algebras can be regards as
rings. Below we discuss the similar results for quasi-Boolean
algebras.

Definition 5: Let A = (A;®,6,0) be an algebra of type
(2,1,0) and denote the set A ® 0 = {w @ O|cw € A}. Then
A is called a quasi-group if the following conditions are
satisfied for any w, o € A:

(QG1) (A®0;®,5,0) is a group with 0@ 0 = 0;

(QG2) &(6w) = w;

(QG3) o(w® 0) = (ow) B 0;

QGH w® o= (wd0) D (0D O0).

If A =(A;®,6,0) is a quasi-group and for any w, g € A,
we have w @ p = p P w, then A is commutative. Following
from the definition, we know that if (A & 0;®,5,0) is a
commutative group, then A is a commutative quasi-group.

Lemma 5: Let A = (A;®,,0) be a quasi-group. Then
the following hold for any w, g,¢ € A:

Difwdp0eA®0, then wd0 =06 w;

Q) (Do) Ds=wD(0DS);

Q) (ow)dw=wd (ow) =0;

@ifwdo=wds, then 0P =0,

ifodw=¢PHw,then o 0=¢c3d0.
Proof: (1) Since 00 =0¢€ AH 0, we have w B 0 =
06 (w®0)=(080)®(wd0) =0®w by (QG4).

(2) We have (w®0)®s = ((w®0)D(0D0)D0)D(cd0) =
(w®0)D(0®0))®(s®0) = (w®0)D((0®0)® (s®0))
w® (0@ <) by (QG4) and (QG1).

(3) We have (6w) ®w = (6w) ®0) ® (wd 0) =
(B(wd0)) ® (wd0) =0 by (QG4), (QG3) and (QG1).

D Ifwdo=wdg, then (Cw)Pwdo = (Ow) Dwds,
we have 0 ® o = 0 ® ¢. The other can be proved similarly.

|

Definition 6: Let ¥ = (U;®,©,6,0) be an algebra
of type (2,2,1,0). Then ¥ is called a guasi-ring if the
following conditions are satisfied for any w, o,¢ € U:

(QR1) (¥;@®,6,0) is a commutative quasi-group;

(QR2) (T;®) is a semigroup;

(QR3) w® o= (w® 0) & 0;

(QRY) w® (0®s) = (@O ) ® (w®s) and (o) Ow =
(0O w) (s Ow).

A quasi-ring ¥ = (U;®,6,0,0,1) is called a quasi-ring
with quasi-identity if the following condition is satisfied for
any @, 0 €V: (QR) wdp=(w®p)©land161=1.

In the following, a quasi-ring ¥ = (¥;®,0,5,0,1)
always means a quasi-ring with quasi-identity. In addition,
we shall consider that the operation ® has priority to the
operation .

Proposition 7: Let ¥ = (¥;®,0,6,0,1) be a quasi-
ring. Then the following hold for any w, g,s € U:

MHO0Ow=we0=0;

2) (bw)eo=w e (80) =9(w®o);

B) (ow) © (60) =w O 0

4) cO(wE) = OO and (WSP)Os = WEOSPES
where w © 0 = w ® (©0);

O wol=wdlandw©1=10 w;

) wOeOl=wop;

MH1e0=1
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Proof: (1) Since 00w = (040) 0w =00wd 00w,
we have 00w ®0= (00w P 0)® (0® w P 0). Note that
00wd0 e A®0,itturns outthat 0O w =00wd 0 = 0.
Similarly, we have @ ® 0 = 0.

(2) Since (6w) @ edwO o= (Cwdw)©o=000=0
by (QR4) and (1), we have (S@) © 0B 0=(w® o) &0
by Lemma 5, so (Ow) ® 9 = S(w ® p). Similarly, we have
w O (60) =6(w O o).

(3) We have (6w) © (©0) = S(w © (60)) = 0(8(w ©
0)) = @ ® o by (2) and (QG2).

(4 Wehave s © (O 0) =cO (@®(S0) =cOw@wP
cOBY)=comd(E(O0) =cOwOsO . Similarly,
we have (w8 0) Os=w OO pOs.

BG)Wehave wd 0= (wd0)0l=w0l1d001=
w®1®0 =w®1l Similarly, 0 ® w = 1 ® w. Since
w®0=08w by Lemma 5, we have w© 1 =10 w.

(6) We have (w® ) ©1= (w®0)®0 =1 g by (5).

(7)Wehave 16 0=101=1. [ |

Definition 7: A quasi-ring ¥ = (U;6,0,6,0,1) is
Boolean, if U satisfies w? = w ® 1 for any w € W.

Lemma 6: Let ¥ = (U;$,0,5,0,1) be a Boolean
quasi-ring. For any w,p € ¥, we have w @& w = 0 and
wOo=00w.

Proof: For any @ € ¥, we have (w ® @)? = (w @
wOl=wdwand (wohw)’ =’’’ dw’=
wOlewoOldwolowol=(wdbwdwdw)Ol=
wPwhDwDw, itturnsout that P wPwPw = wPw,
so w®w = 0. For any w, p € ¥, on the one hand, we have
(w®0)? = (wPo)®1 = wD g, on the other hand, we have
(w®0)? = T?PwEeBOwP0? = wO1IPwO D eOwD
001 = wB0BwO P OwEoP0 = wBwOoPoOwdo,
it turns out that w P w © B o O w B p = w P o, SO
wOeBeOw = 0. Since wOBwOo =0=wOpHpOw,
we have w®p®0 = pOw@®0 by Lemma 5, so w®p = 0Ow.

|

Theorem 2: Let Q = (Q;U,M,*,0,1) be a quasi-Boolean
algebra. Define Q¥ to be the algebra (; ©, ®, S, 0, 1) where
forany w, 9 € Q, wPo = (wle*)U(w*Mp), wGp = wlp
and ©w = w. Then Q¥ is a Boolean quasi-ring.

Proof: Firstly, we show that (Q;®,5,0) is a com-
mutative quasi-group. For any w € (), since w @& 0 =
(wn0*)U(w*M0) =(wNw)U0=wM, it is easy to
see that (Q @ 0;®,0,0) is a group and 00 =0M0 = 0.
Meanwhile, (QG2) we have (&(6w)) = Sw = w; (QG3)
since ©(w @ 0) =w @0 and (Ow) &0 =w @ 0, we have
S(wd0) = (0w) ®0; (QG4) we have (w D 0) B (0B 0) =
(@wNw@)d(eMe) = ((whMw)M(eMe)*)U((wMw)* M(eMe)) =
((@M@)M(e*Ue*))U((w*Uw*)M(eMe)) = ((wMw)M(e* T
¢)U((=* Ne*) N(eMe)) = (@) U(w* o) = wae.
Moreover, we have @w @ 9o = (w M p*) U (w* M) =
(eMNw)U (0 Mw) = 0® w. So (2;®,6,0) is a
commutative quasi-group. Secondly, for any w € (2, we have
(w®e)Os = (wlMp)Ms =wlM(pMs) = w® (p®¢) which
implies that (2; ®) is a semigroup. Moreover, (w® 9) ®0 =
()N (w®o)=(wMNe)N(wMNp)=wlNg=w .
Thirdly, on the one hand, we have w® (o®s) = wl(pdHs) =
wM((eMs*)U(0*Ms)) = (wMoM¢*)U(wMe*Mcs), on the
other hand, we have (w® ) B (w®s) = (wMp)® (whs) =
(=M0) M (= 1<)*) U (= 10)* M (T1s)) = (Mo (=" L
GNU(w*Ue*) N (wNs)) = (wNeMw*)U(wMeMe*) L
(w*MNwNe)U(0*Mwg) = (wMeMe*)U(p* Mwg), so

wO(0®s)=(w® ) ®(wOs). Since w®op=wllg=
o0MNw =00 w, we have (0 D) OwW=0Ow@wDs O w.
Finally, (w ® 0) ®1 = (w® ) N1 = w & p and
1®1=1Mn1=1. Thus Q% is a quasi-ring with quasi-
identity. Note that D =wlw=wNw=wll=wol,
we have that Q% is a Boolean quasi-ring. ]

Theorem 3: Let ¥ = (¥;®,0,6,0,1) be a Boolean
quasi-ring. Define ¥® to be the algebra (W;U,M,*,0,1)
where for any w, o € ¥, wllp = wdoPwbe, wllp = wde
and @w* € ¥ with @* © 0 = (w @ 0)* = 1 ® w. Then ¥¥
is a generalized quasi-Boolean algebra.

Proof: Firstly, we show that (U; L, 1) is a g-lattice. For
any @, 9,6 € ¥, (QL1) we have wllp =@ @ o® (@ ®p) =
0PwP(0Ow) = plUw and wlMp = w@p = pOw = pMNw
by Lemma 6. (QL2) We have wl!(plLs) = w® (oUs)Dw®
(0Ls) = wBoBc®pOsdwO(0BsPoOs) = whHoPsPe®
SBwOEPwOSPw®p®s. The value of this last expression
does not change if we permute w, ¢ and ¢, so wll (pUs) =
sU(wlp) and then wll(gUs) = (wllp)Us. Meanwhile, we
have (wMp)Ms = (@®) O =wO® (0®¢) = wM(pMg).
(QL3) We have wllw = wPhwPwOw = 0Pwd®]1l = w1
and wl(pNw) = we(oNw)Pwe(Nw) = wSeOwPwd
(00wW) = WD POWPWOPOW = WHPOWPWOWO P =
T (WO PO w) =wd(wOeBwO) =wd0=
w ® 1. Thus @w U (9 M w) = w U w. Similarly, we have
wN(pUw) = wMNw. (QL4) We have w U (p U p) =
wl(p0]) = wdpelowepO]l = wdpdwdp = wllp
and wN(oMe) =w® (0G0 =wO(001) = (w0 ®
l=wOop=wMp. (QLS) Wehave wllw =w O 1 =
w ®w = w Mw. Hence (¥;L,M) is a g-lattice. Secondly,
since wll(pM¢) =wl(pO¢) = wDODw@O pO¢ and
(wlo)M(wls) = (wDodw@ ) O(wdcDwdg) =
WOWPBwWOCPHwWOWOCHBoOWPHpOCPHBoOwOCD
WEOPOWHAWOPOEWOPOWOS=wOl®(wOcd
WOWOS)DPOWHWOPOW) B (POWOCHWO PO
WEOS)DPOSHWOPOS=wPeOsPwO pOg, we have
wl(oMs) = (wle)M(wli). Similarly, we have w(oLls) =
(wMp)U(wMs). Moreover, we have w0 = w®0 = 0 and
wll =wPhldwe®]l = wd1®wd0 = 1. Finally, we have
wlw* = wdbw* PwoOw* = wd(w*®0)Dwe (w*d0) =
wd(1ow)Pwo(ldw) =wdldowdwdlPwodw =1
adoNe*=wow" =w®(@*®0)=we (1dw) =
wOldwOw =w®1l®dwe1 = 0. Hence (V; UL, M,*,0,1)
is a complemented distributive g-lattice. Note that for any
weV, " MNw* =w*0w* = (@*d0)0 (x*®0) =
(Iew)o(1dw) = (10w)el = 1&w and (wlw)* = (wO
1)* = (wd®0)* = 1dw, we get (wlw)* = w*Mw™* which
implies that ¥® is a generalized quasi-Boolean algebra. M

Corollary 1: Let ¥ = (¥;$,0,5,0,1) be a Boolean
quasi-ring and ¥® be defined in Theorem 3. If the unary
operation * satisfies an additional condition w** = w for
any w € U, then ¥¥ is a quasi-Boolean algebra. Moreover,
P¥®® — ¥ under this case.

Corollary 2: Let Q@ = (Q;U,M1,*,0,1) be a quasi-
Boolean algebra and Q% be defined in Theorem 2. If the
unary operation * defined in Q®%® is same to €, then
Q%% = Q.

Given a quasi-ring ¥ = (U;$,0,5,0,1), we define an
ideal 35 of W, if the following conditions are satisfied for
any w,0,e €V, wo e X implywepe X, cOw € X
and w © e € X.
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Theorem 4: Let Q = (Q;U,M,*,0,1) be a quasi-Boolean
algebra and X be a weak ideal of €2. Then ¥ is an ideal of
Q.

Proof: Let X be a weak ideal of 2. For any w, p € %,
since w1p* = w and w*Mp < p and X is a weak ideal of
Q, we have w M p* € ¥ and w* M p € ¥, it turns out that
w® o= (whe*) U (@ Myp) € X. Meanwhile, we have
Co=p€d,sowbpe.SincecOw =clNw=w®e X
w, we have e ®w € ¥ and w ®¢e € Y. Hence ¥ is an ideal
of Q%. ]

Theorem 5: Let ¥ = (¥;$,0,6,0,1) be a Boolean
quasi-ring and X be an ideal of W. Then X is a weak ideal
of ¥%.

Proof: Let ¥ be an ideal of ¥. For any w € ¥, 0 =
DoweX. ffw,poeX, thenwdpe X and w®p € 3, it
follows that wllp =w P oD w ©® p € X. Finally, if w € ¥
and o € U with p <, then pMpop=wMNp=w® 0 € X.
Hence ¥ is a weak ideal of ¥®. [ |

Corollary 3: Let @ = (Q;U,M,*,0,1) be a quasi-
Boolean algebra and 2 = Q®%. Then ¥ is a weak ideal
of Q if and only if ¥ is an ideal of Q%.
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