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Parameter Estimation for Ornstein-Uhlenbeck
Process with Small Fractional Lévy Noises

Fang Xu, Yongfei Zhao and Chao Wei

Abstract—This paper is concerned with least squares esti-
mation for Ornstein-Uhlenbeck process with small fractional
Lévy noise from discrete observations. The contrast function
is given to obtain the least squares estimators. The consistency
and asymptotic distribution of estimators are derived when a
small dispersion coefficient ¢ — 0 and n — oo simultaneously.
Some simulations are made to verify the effectiveness of the
estimators.

Index Terms—Ileast squares estimation; Ornstein-Uhlenbeck
process; small fractional Lévy noises; consistency; asymptotic
distribution.

I. INTRODUCTION

In the real world, almost all systems are affected by noise
and exhibit certain random characteristics. Therefore, it is
reasonable and interesting to use random systems to model
actual systems. When modeling or optimizing a stochastic
system, due to the complexity of the internal structure and
the uncertainty of the external environment, parameters of
the system are unknown. It is necessary to use theoretical
tools to estimate the parameters of the system. In the past
few decades, some authors studied the parameter estimation
problem for stochastic models ( [7], [11], [28], [29]). For
example, Barczy and Pap ( [1]) analyzed the consistency
of the maximum likelihood estimators for nonlinear time
inhomogeneous stochastic process, and provided sufficient
conditions for the estimation error to satisfy the asymptotic
normality. Deck ( [3]) and Kan ( [9]) used Bayes method to
investigate the parameter estimation for linear stochastic sys-
tem. Wei and Shu ( [24]) studied the existence, consistency
and asymptotic normality of the maximum likelihood estima-
tor for the nonlinear stochastic differential equation. When
the system is observed discretely, Guy et al. ( [4])studied
the weak convergence of the minimal contrast estimator for
multidimensional stochastic differential equations with small
diffusion coefficients. Uchida and Yoshida ( [22]) constructed
a comparison function through a local Gaussian approxima-
tion of the transfer density and discussed the convergence
rate of the estimator. When the system is observed partially,
Singer ( [21]) used extended Kalman filtering and local
linear filtering to study the state and parameter estimation
of nonlinear continuous-discrete time state models. Wei (
[25])analyzed state and parameter estimation for nonlinear
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stochastic systems by extended Kalman filtering. The pa-
rameter estimation for diffusion processes with small noise is
well developed as well ( [15], [26], [27]). However, in practi-
cal applications, most of the system noise are non-Gaussian.
Non-Gaussian noise can more accurately reflect the practical
random perturbation. Therefore, fractional Lévy noise, as a
kind of important non-Gaussian noise, has attracted many
authors’ attention ( [2], [20]).

The parameter estimation of Ornstein-Uhlenbeck process-
es has been an extremely active topic of research recently,
see e.g. ( [23]) and references therein. For example, Hu and
Long ( [5], [6]) discussed parameter estimator problem for
Ornstein-Uhlenbeck processes driven by Lévy motions. Mai
( [17]) investigated efficient maximum likelihood estimation
for Lévy-driven Ornstein-Uhlenbeck processes. Zhang and
Zhang ( [30]) studied a least squares estimator for discretely
observed Ornstein-Uhlenbeck processes driven by symmetric
a-stable motions. However, the Ornstein-Uhlenbeck process
discussed in above literature is not driven by fractional
Lévy noise and a common denominator in all these works
is assumed that the equation admits only one unknown
parameter. The fractional Lévy process has non stationary
increments, the increments over non overlapping intervals
are more weakly correlated and their covariance decays
polynomially at a higher rate, which makes the fractional
Lévy process a possible candidate for models involving long-
range dependence, self-similarity and non-stationary. Since
the fractional Lévy process is not a martingale, methods
of stochastic analysis are more sophisticated. In this paper,
we consider the parameter estimation problem for Ornstein-
Uhlenbeck process with two unknown parameters driven
by fractional Lévy noise from discrete observations. The
contrast function is introduced to obtain the least squares
estimators. The consistency and asymptotic distribution of
the estimators are derived by Markov inequality, Cauchy-
Schwarz inequality and Gronwall’s inequality. Some nu-
merical calculus and simulations are given to verify the
effectiveness of estimators.

The paper is organized as follows. In Section 2, we give
the contrast function to obtain the least squares estimators.
In Section 3, we obtain the consistency and asymptotic
distribution of the estimators. In Section 4, some simulation
studies are provided. The conclusion is given in Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES

Definition 1: ( [19]) Let L = (L(t))ter be a zero-mean
two sided Lévy process with E[L(1)?] < oo and without
a Brownian component. For fractional integration parameter
d € (0, %), a stochastic process

=t | =9t - otz

— 00

teR,
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is called a fractional Lévy process, where x4 = x V 0.

In this paper, we study the parametric estimation problem
for Ornstein-Uhlenbeck process with small fractional Lévy
noises described by the following stochastic differential
equation:

1

dXi 5)

Xo

=(a — BX)dt +edLy, te[0,1],d € (0,

(D

=Xo,

where o and 3 are unknown parameters, L¢ is a fractional

Lévy process. Assume that this process is observed at n

regularly spaced time points {t; = %,i = 1,2,--- ,n},
€ (0,1].

Consider the following contrast function

Pns

Z\Xt (= BXy, )AL, ()

where Ati,1 = ti — ti,1 = %

It is easy to obtain the least square estimators

(X = X )X D0 X,
e e Xeo )2 —n 3 X7P
n i (Xe, — Xe ) 200 X7
i Xe, )P —n i X7
B\ne _ n? Z?:l(Xt Xt )Xt
L X )P - XE
n Z?:l(th, - X ,) Zi:l X,
(Z;;l Xti—l)z - nZ?:l Xt27:_1 '

3)

IIT. MAIN RESULTS AND PROOFS

Let X° = (X?,t > 0) be the solution to the underlying
ordinary differential equation under the true value of the
parameters:

dX) = (o — BXD)dt, X§ = xo. 4)
Note that
1 t; t;
X, = X, =—a- 5/ X.ds + 5/ L. (5)
ti—1 i—1

Then, we can give a more explicit decomposition for @,

and Ema as follows

"8 S S Xeds 0 X7
CCim Xe )2 =n 3o XP
nBY 0y Xeo, [i Xads Y0y X,

L X )P X
ne Y g Xe, ft " dLg Z? 1 Xti—l

(i Xe ) = HZZ 1 Xi

ney i, fttl dL i X tio1

N i Xe )2 —nyi X

n B3 ftii,l XSdSTIL S X2,
el X )P = X X2,
By Xty ftf:,l XSdS% Do Xeiy

Qe =q

(% Z?:l Xti—l)Q -1 ZZI 1 X2
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+52i=1 th‘,—l ftFl Ldl Zz 1Xt7 1
(127 lXti 1)27 725’ 1
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Before giving the theorems, we need to establish some
preliminary results.

Lemma 1: ( [19]) Let |f]|,|g| € H, H is the completion
of LY(R) N L*(R) with respect to the norm [|g||%
E[L2(1)] [5(I?,)?(u)du. Then,

/ f(s)dL / g(s)dL]
1—2d //f

I(@)r
Lemma 2: ( [19]) For any 0 < by < b; < a1, 0 < by <
as < a1, and by — by = a7 — as, there exists a constant C

~
Bn,s

— 5?4 Ydsdt.
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only depends on r and d and satisfies

b1 aq
|/ / e |y — )2 dudo)|
bQ as
- { C|6T(a1+b1) B er(a2+b2)||a1 o b2‘2d’

Clai — bo|*, ifr=0,

ifr #0,

where r denotes a constant and d is the fractional integration
parameter of fractional Lévy process.
Lemma 3: When € — 0, we have

sup | Xy — X7 £o.
0<t<1

Proof: Observe that
t t
X, — X = —ﬁ/ (X5 — X%)ds +£/ drLt.  (6)
0 0

By using the Cauchy-Schwarz inequality, we find

X — X7|?
t t
< 27| [ (X - XDasf 22 [ andp
0 0
t t
< 25%/ |Xs — X0)%ds +2¢2 sup | [ dL2?
0 0<t<1 Jo

According to the Gronwall’s inequality, we obtain
t
X, — X012 <2222 squp | [ dLY?. )
0<t<1 Jo
Then, it follows that
. t
sup | Xy — X0 < V2 sup | [ dLY.  (8)
0<t<1 0<t<1 Jo

By the Markov inequality, the results in Lemma 1 and
Lemma 2 when f(s) = g(s) = 1, » = 0, for any given
0 > 0, when € — 0, we have

t
P(\/ﬁseﬁz sup | [ dL% > 9)

0<t<1 Jo

t
< (5_22526252E[ sup | [ dLY|)?
o<t<1 Jo

1
§5—2252e2521E[|/ dr?))?
0

11
< 05_225262’62/ / |t — 5|24~ dsdt
o Jo
< 0672222

— 0,

where C' is a constant.
Therefore, it is easy to check that

sup |X; — X7 5o. )
0<t<1
The proof is complete. ]

Lemma 4: When € — 0 and n — oo, we have,

1< 1
N X2 i/ (X0)24t.
n “ ‘T 0

=1

Proof: Since
i - X2 _ l - XO 2 l - X2 o XO 2
n Z ti—1 n Z( ti—l) + n Z( ti—1 ( ti—l) )’
=1 =1 =1
(10)
It is clear that

1 & p [
EZ(X?H)2—>/ (X0)2dt.
i=1 0

For %Z?:l(Xth—l
and the fact that »
Ly X0 |5 [ |1XP|dt, When € — 0 and n — oo,

we have

(1)

— (X _,)?), according to Lemma 3

n

1
e = (X))
=1

1
= ‘E Z(Xti—l + Xt0,i71>(Xti—l - X?i,l)|

i=1

1 n
SO DIRCIES N[> AN ER P )
i=1

IN

IN

1 n
=~ (X, - XP P
=1

+2|X1?L HXti—l _Xg,lD

—1

1 n
= E Z |Xti—1 - X?i,l |2
=1

1 n
+2E Z |X2,1 ||Xt1:71 - Xwg,l |
=1

< (sup |X; - X7|)?
0<t<1
n

1
+2 sup |X; — XO|= X0

0§t21| t t‘n;| tL,1|
£o.

Therefore, we obtain

1 !
“NxE i/ (X0)2dt.
nia 0

The proof is complete. ]

In the following theorem, the consistency of the least
squares estimators are proved.

Theorem 1: When £ — 0, n — oo and en'~® — 0, the
least squares estimators &, . and 3,, . are consistent, namely

12)

. P ~ P
Qpe — Q, /Bn,e — ﬁ

Proof: According to Lemma 3 and Lemma 4, it is clear
that

1 n 1 p 1 1
X X, B ([ xpa- [ xpan
i=1 i=1
13)
With the results that £ " X7 5 [1(X0)%dt and
D D, O 5 fol XPdt, when e — 0 and n — oo, it can
be checked that

n t n 1 1
i 1 p
> Xods— Y X2 5 Xodt/ X024t
/8 i=1 /til ( sn i—1 tiz /6/0 K 0 ( t) ,

(14)
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and

15)

ﬁZXL / defZXu )

ti—

£>ﬁ/ (X?)th/ X0dt.
0 0

According to Lemma 3 and Lemma 4, we have

n ts 1 n
52/ XsdsEZXfH
—ﬂZXL / defZth .

ti—

(16)

50.

Since

n t;
|62Xti—l / dLg|
i=1 tim1
n ti
<3l [ ar
; ti—a
t;
<300+ Xy~ X2 DI

ti—1
0
sQM&J% dL|
i=1 i1

ti
+e sup |Xt—XtOH/ dL?|.
0<t<1 ti—1

dL?|

By the Markov inequality, the results of Lemma 1

and Lemma 2 when f(s) = g(s) = 1, r = 0 and
%2?21 |X8,1| — fol X?dt, we obtain
SO S SRR
i=1
<522Z|X0 ]E|/ dLeP?
tioa
< Cd™ 22Z|X / / S‘2d71d3dt
tio1

t; —ti_1]*?

—2 2Z|Xt_1
Z\Xt,l )”

=(C§2
— 0,

. . . i P
which implies that e Y7 | [XP [| [* dL¢| = 0ase — 0,
n — oo and en!~?% — 0.

According to Lemma 3, when ¢ — 0 and n — oo, it is

obvious that

t;
e sup |thX?\|/ ar?| 5 o. (17)
0<t<1 ti
Then, we have
n t;
sZXtH/ ar? £ o. (18)
i=1 ti-1

With the results of Lemma 4, (13) and (18), we have
62?:1 Xti—l j;ftlb de : Zz 1 Xt
(% Z?:l th‘—l) - %Zi:l
Then, when ¢ — 0 and n — oo, it is easy to check that
n t; n
€D iy fti,l L?}L Zz 1Xt21 1 P
—mn = 0. (20)
(ﬁ Zi:l Xti,—l) Zz 1 tl 1

Moreover, there is no possible singularity in (19) and (20).
Therefore, When ¢ — 0, n — oo and ent=¢ — 0, we
have

=L By, (19)

~ P
Ope — O

Using the same methods, it can be easily to check that
When € — 0, n — oo and en!~% — 0, we have

~ P

Brn.e = B.

The proof is complete. ]

Theorem 2: When e — 0, n — 00, en'~% — 0 and ne —

o,
5_1(62”,E — )
1 1 1 1
i) _>fo Xtodt fo XtOdLg - fo (Xg)zdt fo dL(ti
(Jo XPdt)? — [} (XP)2dt

)

5_1 (577,,5 - B)
1
X0dLg —
A fo .
(f X0dt)>2
Proof: According to the explicit decomposition for &, ¢,
it is obvious that

[y dLg [ X0dt
— [(x02dt

e HAne — )
e 1B ftt:,l Nodsy S0, X7,
(% Z;L:1 Xtifl)Q - % Z:'L:l XtQi—l
e B Xy fttl_l Xodsyy iy Xo s

(% Z?:lXti 1)2 - lZZ’ 1X2
n ti
+Zz’=1 Xti—l ‘[ti—l Ldl Zq 1Xt1 1
(%Z?:lXti 1) 721’ 1

t; /
S, T
(%Z?:l Xti—l) Z tl 1
From Lemma 3, when ¢ — 0, n — oo and ne — oo,

*152)@1 / X, ds|

ti—

<571BZ|XtFl||/ X, ds|
i=1 i1

n
e TBY (1Xes, = XD+ 1XD_ )
i=1
sup | Xy Lo
ti—1<t<t;

Then, it is easy to check that

5*162/ Xods 55 0.
i=17ti—1
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Thus, we have

_1ﬁ3§:z 1];1 <X'dS z:z 1 ti—1
(E Zi:l Xti—l)

P

" IS — 0,
n i=1 ti—l

and
e Xy, f) XedsE S, X,
(% Z?:l Xti—1)2 - % Z?:l Xt2_

Since

i-1 P
_>

th7 . /t dr?
1

t;

ti
rﬁﬁﬂw/dﬁ
ti—1

According to Lemma 3, we have
n

ti
S(X, ., - X? 1)/ ar? 5 o.
ti—1

i=1 i
Moreover,

ng / drd — /Xode

ti—
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0

1
fXEH/ ar|
0

0<s<1

< sup |X} |
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We obtain that
n t; p 1
> X, / dL? % / X%Le.
i=1 ti1 0
Then, we have
sfl(an’e —a)
1 1
o Jo XPdt Jy XpdL{ -
(fiy X0dt)?

fo (XP)?dt [, dL{
— Jo (xP)2dt
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It is obvious that
e 1B, fttl_l Xodsyy iy Xo s
(% Z?:l Xti71)2 o % Z?:l X7
eTIBY Xy, [ Xods
HEOVEP AN R Vil
—71p R 0,

ey
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Dt Xeoo in dL]
(I Xy )25 XE
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(Jo XPdt)? = [5(XP)%dt

27

Then, we have

1
gy 4 Jo X0z

1 1
Jo dLi [y XPdt
L X0a1)2 — [1(X9)24d¢

0 t 0 t

The proof is complete. ]

Remark 1: The fractional Lévy process has non stationary
increments, the increments over non overlapping intervals
are more weakly correlated and their covariance decays
polynomially at a higher rate, which makes the fractional
Lévy process a possible candidate for models involving long-
range dependence, self-similarity and non-stationary. Since
the fractional Lévy process is not a martingale, methods of
stochastic analysis are more sophisticated. We have applied
Markov inequality, Cauchy-Schwarz inequality and Gron-
wall’s inequality to derive the consistency and asymptotic
distribution of estimators.

“(Be

(23)

IV. SIMULATION

In this experiment, we use iterative approach to generate a
discrete sample (X, ,)i=1,..» and compute &, . and S, .
from the sample. We let zp = 0.01. For every given true
value of the parameters-(«, 3), the size of the sample is
represented as“Size n” and given in the first column of the
table. In Tables 1 and 3, ¢ = 0.1, the size is increasing
from 1000 to 5000. In Tables 2 and 4, £ = 0.01, the size is
increasing from 10000 to 50000. In Tables 1 and 2, d = 0.02,
In Tables 3 and 4, d = 0.3. ThAese tables list the value of
least squares estimatols “Oln.e”“Pn,e” and the absolute errors
(AE) “[@n.c — a|"|Bn.c — BI™.

These tables illustrate that when n is large enough and &
is small enough, the obtained estimators are very close to the
true parameter value. If we let n converge to the infinity and
€ converge to zero, the estimator will converge to the true
value.

(24)

V. CONCLUSION

The aim of this paper is to study the parameter esti-
mation problem for Ornstein-Uhlenbeck process driven by
small fractional Lévy noises from discrete observations. The
contrast function has been introduced to obtain the explicit
formula of the least squares estimators and the error of
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TABLE 1
LEAST SQUARES ESTIMATOR SIMULATION RESULTS OF o AND 3

TABLE III
LEAST SQUARES ESTIMATOR SIMULATION RESULTS OF o AND 3

True Aver AE True Aver AE
(e, )  Sizen  @Gne Br.e |Gne —  |Bne — (0, )  Sizen  @Gne Br.e |Gne —  |Bne —
a B al Bl
1000 12652 12179 02652 02179 1000 12106 1.1982 02106  0.1982
() 2000 11263 1.1428  0.1263  0.1428 LD 2000 11035 1.1241  0.1035  0.1241
5000 10541 1.0365 00541  0.0365 5000 10394 1.0227 00394  0.0227
1000 22587 32649 02587  0.2649 1000 21973 32061  0.1973  0.2061
@3 2000 21436 3.1368  0.1436  0.1368 @3 2000 20945 31158  0.0945  0.1158
5000 20625  3.0451 00625  0.0451 5000 20269 30371 00269  0.0371
TABLE 1I TABLE IV

LEAST SQUARES ESTIMATOR SIMULATION RESULTS OF o AND 3

LEAST SQUARES ESTIMATOR SIMULATION RESULTS OF o AND 3

True Aver
(,8)  Sizen  @ne Bn.e |@ne —  |Bne —
al B

10000 1.1352  0.8659  0.1352  0.1341

LD 20000  1.0571  1.0627  0.0571  0.0627
50000  1.0013 10018 00013  0.0018
10000 1.8546  3.1571  0.1454  0.1571

@3 20000 2.0632 30528 00632  0.0528
50000  2.0027  3.0041 00027  0.0041

True Aver
(,8)  Sizen  @ne Bn.e |@ne —  |Bne —
o B

10000 1.0852 09236  0.0852  0.0764

LD 20000  1.0187  1.0269  0.0187  0.0269
50000  1.0010  1.0008  0.0010  0.0008
10000 20927  3.0810  0.0927  0.0810

@3 20000  2.0158 30121 00158  0.0121
50000  2.0009  3.0011 00009  0.0011

estimation has been given as well. The consistency and
asymptotic distribution of the estimators have been derived
by Markov inequality, Cauchy-Schwarz inequality and Gron-
wall’s inequality. Further research topics will include pa-
rameter estimation for partially observed Ornstein-Uhlenbeck
process driven by fractional Lévy noises.
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