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Abstract—Although many advances have been made in the
research on image restoration (IR), continuous improvement
in the quality of restored clear images is a constant goal.
The focus of our study is to fuse multiple priors, build a
regularization model for IR and solve the model efficiently.
Considering the prominent abilities of sparse priors and the l0-
norm, a gradient-sparsity prior and a transform-sparsity prior
are combined to build a double l0-regularization model for
IR. For the IR model built, we propose an efficient approach
derived from the augmented Lagrangian method (ALM). First,
by variable splitting, the built model is equivalently converted
into a minimization problem with constraints. Second, the
ALM is imposed on the new constrained problem, generat-
ing several independent subproblems. Third, the subproblems
are addressed individually with suitable methods to obtain
their closed-form optimal solutions. After proposing the IR
algorithm, we analyze it in terms of the local minimizer
and convergence. In quantitative and visual experiments, the
proposed algorithm is used to handle degraded gray and color
images to show its advantages over some excellent algorithms
and its own good properties.

Index Terms—image restoration, gradient-sparsity priors,
transform-sparsity priors, double l0-regularization model, aug-
mented Lagrangian method.

I. INTRODUCTION

FROM a mathematical point of view, IR is a largescale
problem that is complicated and ill-posed. The target

of IR is to obtain clear images from corresponding de-
graded images, so we should first determine what image
degradation is. Let y∈RN denote a degraded image, x∈RM

denote a clear image, n∈RN denote Gaussian noise, and
B∈RN×M denote an operator. Then, the degradation is cast
as a linear system y=Bx+n. It is worth stating that the
acquired digital images are originally in the form of matrices,
but they are reassembled into vectors for the convenience
of image processing. Many unfavorable factors, such as
defocus, motions and inherent defects, often degrade image
quality, which sets obstacles for applications [1], [2]. There-
fore, research on IR has important theoretical significance
and application value. Previous research tells us that the
success of IR depends on the useful image priors. Among
the prior models for IR, the most modern and successful
ones are sparse prior-based regularization models, including
gradient-sparsity-based regularization models and transform-
sparsity-based regularization models. The former refers to
the total variation (TV) model and its generalizations, and
the latter refers to models that employ the lp-norm of sparse
representations as the regularization terms.
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A. Related Work

To fix the defects of Tikhonov regularization, Rudin et
al. [3] put forward the TV-model for IR. Since then, it
has gradually become famous and is now one of the most
successful image processing tools in the industry. Because
the TV-norm therein is not differentiable, Rudin et al.
suggest using a time-marching method to solve the TV-
model. However, the stability constraint makes the com-
putation converge slowly. Recently, Kamilov [4] used a
parallel proximal method to solve the TV-based IR problem,
obtaining a convergence speed equivalent to the fast proximal
gradient method. Some splitting-technology-based methods
provide possibilities for quickly solving TV-model-based IR
problems. Given that the derivative space contributes to the
high IR quality, Ren et al. [5] project the TV-model into
the new space and use the ADMM to address the resulting
model. To remove artifacts and preserve edges, Adam et
al. [6] applied the second-order TV and overlapping group
sparseness to IR. Li et al. [7] established an improved
fractional-order TV-model to reconstruct more image details
and prevent staircase artifacts. Based on the TGV, Zhang
et al. [8] built a nonconvex and nonsmooth model for IR.
Kongskov et al. [9] incorporated directional information into
the TGV model to construct a better directional TGV model
for IR. Wang et al. [10] presented a novel nonlocal TV
technology based on structural similarity and established a
regularization model via this technology to recover image
patches.

Currently, the application of transform-sparsity priors also
attracts much attention in the industry, resulting in many
research results. To speed up IR, Xue et al. [11] linearly
parameterized it using multidimensional filtering and wavelet
transforms. For the key sparse linear coefficients, they es-
tablished an unbiased estimation model to compute them.
Based on a wavelet frame, Cai et al. [12] constructed a new
IR model that characterizes images as piecewise functionals
with singularities. By penalizing the l2-norm and l1-norm of
framelet coefficients, the images and their singularities are
estimated simultaneously. To improve the nuclear norm, Zha
et al. [13] presented its weighted lp form that can accurately
utilize structural sparsity and self-similarity for IR. Under the
wavelet framework, You et al. [14] employed the ADMM
for a nonconvex IR model with a concave regularization.
Considering the potential of nonlocal self-similarity, Ren et
al. [15] proposed an overlapping nonlocal regression-based
IR algorithm. To improve the performance, the authors intro-
duced overlapping pixel groups, adjusted nonlocal regression
and the split Bregman method. Makinen et al. [16] intergrated
a method of calculating the noise power-spectrum into the
BM3D algorithm to improve its performance in IR and other
problems. Since a clear image can be represented by a

Engineering Letters, 31:1, EL_31_1_05

Volume 31, Issue 1: March 2023

 
______________________________________________________________________________________ 



sparse LR matrix, Yair et al. [17] applied multiscale WNNM
(MSWNNM) and variable splitting to IR to obtain better
results.

In addition to the above typical IR algorithms based on
sparse priors, there are also some special algorithms with
more flexible frameworks. For IR, Chierchia et al. [18] pro-
posed a structure-tensor (ST) based IR algorithm, which can
use TV or nonlocal TV as the regularizer in their built model.
In the SAPG algorithm [19], the TV prior and a transform-
sparsity prior are separately incorporated into the Bayesian
framework to restore images while estimating parameters.
The IDBP algorithm proposed by Tirer et al. [20] has a plug-
and-play structure, so good image denoising methods can
be employed to solve related subproblems. Similarly, the IR
algorithm based on regularized similarity (RS) proposed by
Kheradmand et al. [21] also used excellent external methods
to address its denoising subproblem.

B. Contributions and Outline

As recalled above, most sparse regularization algorithms
treat IR as a convex optimization problem with a single
prior or l1-norm-induced priors. However, theories and ex-
periments have proven that these practices cannot provide IR
with improvements. Therefore, to boost the IR, we model it
as a nonconvex optimization problem with l0-norm-induced
multiple sparse priors. For the built model, a novel solution
derived from ALM is presented to obtain better restoration
results and eliminate more annoying visual defects. The con-
tributions of the proposed algorithm (denoted by DRALM)
are summarized as follows.

• Studies indicate that the best sparsity-inducing norm
is the l0-norm, which directly calculates the number
of nonzero components [22]. The most favourable l1-
norm is just a convex relaxation of the l0-norm, and
this relaxation is optimal only under certain conditions.
Therefore, we employ the sparse priors induced by the
l0-norm to promote IR.

• The gradient-sparsity priors represented by TV have
strong edge-preserving abilities, and the transform-
sparsity priors are good at denoising and removing
artifacts. Therefore, we fuse the two kinds of sparse
priors to build a novel double l0-regularized IR model.
The built model can exploit the strengths of the two
kinds of sparse priors and overcome their inherent
drawbacks.

• With the help of the ALM and other suitable methods,
we decouple and handle the built IR model with a sep-
arable structure, thus avoiding the numerical difficulties
and NP-hardness caused by the l0-norm.

• The generated subproblems can obtain closed-form so-
lutions without inner iterations, and subproblems of the
same type and structure can be solved in parallel, so the
proposed IR algorithm is very efficient.

• The fixed point of DRALM is also a local minimizer of
the built IR model, and the bounded sequences obatined
by DRALM converge to local minimizers.

We arrange the remaining contents as follows. In II, regu-
larization technology and sparse prior models are reviewed.
In III, based on a gradient-sparsity prior and a transform-
sparsity prior, we build a double l0-regularization model

for IR. In IV, a novel IR algorithm (DRALM) is proposed
and a concise analysis of it is given. In V, experiments are
conducted on benchmark images to show the effectiveness
of DRALM and demonstrate its superiorities through com-
parisons. In the last section, the conclusions of the paper are
drawn.

II. REVIEW OF REGULARIZATION TECHNOLOGY AND
SPARSE PRIOR

Because B is usually not invertible, it is obviously impos-
sible to perform direct computations on y=Bx+n. Even if
B is invertible, its ill-posedness only makes direct compu-
tations produce trivial solutions. Therefore, researchers have
exhausted various ideas to address IR problems. At present,
the standard practice is to regard IR as a given minimization
problem, i.e., IR modeling.

Originally, IR was cast as a least squared problem

min
x
∥Bx− y∥22, (1)

where B is defined as ∥B∥2=sup∥Bz∥2

∥z∥2
, and the l2-norm

∥·∥2 is defined as ∥z∥2=(
∑

i |zi|2)
1
2 . The (BTB)−1BT y

obtained by handling problem (1) is not meaningful because
(BTB)−1 does not always exist and is very ill-conditioned.
Additionally, model (1) usually amplifies the noise in images,
so it is not competent at IR.

A. Regularization Technology

To remedy the defects of model (1), Tikhonov et al. [23]
presented the regularization model:

min
x

1

2
∥Bx− y∥22 + λ∥Ax∥22, (2)

where the operator A∈RS×M is bounded and linear; 1
2∥Bx−

y∥22 is the fidelity-term, which punishes the difference be-
tween Bx and y to preserve consistency; ∥Ax∥22 is the crucial
regularization-term, which represents an image prior and
enhances the outcomes; and the parameter λ>0 is used to
achieve a tradeoff between regularization and fidelity. When
λ→∞, regularization dominates, so the restored images
may have different structures from the observed images. In
contrast, when λ→0, the restored results tend to be blurry
and noisy images.

The idea of regularization is to incorporate priors into IR
in the form of regularization-terms so that the established
optimization models conform to the nature of clear images.
The designs of the regularization-terms are the keys to IR
modeling and are major factors that affect the final restored
results. For example, the regularization term ∥Ax∥22 enforces
the Gibbs prior on clear images, so solving model (2) usually
results in smooth images.

B. TV-Model

To promote regularization technology, the TV-based IR
model

min
x

1

2
∥Bx− y∥22 + λ∥∇x∥1 (3)

is presented, where the l1-norm ∥·∥1 is defined as ∥z∥1=∑
i |zi|; and ∥∇·∥1 is the famous TV-norm with ∇∈R2M×M
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denoting the gradient operator. Let ∇1 and ∇2 be the hor-
izontal and vertical difference operators, respectively; then,
the image gradient is defined as ∇x=[∇1x;∇2x].

The TV-model (3) arises from the observation that a
noisy image has a larger TV than the corresponding clear
image. From the perspective of statistics, the TV-model
represents the Laplacian prior and is more suitable for natural
images than previous models. In the perspective of image
priors, the TV-model is also regarded as a sparse prior-based
regularization model because the piecewise continuity makes
image gradients sparse and the l1-norm is sparsity-induced.

The TV-model was the first l1-regularization model and
is one of the most significant regularization models in the
past 30 years. Currently, researchers continue to expand the
boundaries of its applications.

C. Transform-Sparsity Based Prior Models

Natural images are rarely sparse, but these nonsparse
images can be transformed into a set of sparse coefficients
with few nonzero components. This important discovery of
compressed sensing is subsequently introduced into image
processing, sparking a boom in the research and use of
transform-sparsity priors [24]. The tools that turn the images
into sparse coefficients are known as transform matrices
or dictionaries, which are generally redundant to fulfill the
requirements of sparse representation. Due to the excellent
properties of various wavelets, they have become the first
choices for transform tools.

Let D∈RC×M denote a dictionary; then, the IR models
based on the transform-sparsity priors can be uniformly
written as

min
x

1

2
∥Bx− y∥22 + λψ(Dx), (4)

where Dx is the sparse coefficient of image x. Since these
norms play the role of sparsity induction, the choices of ψ(·)
are normally lp-norms (0<p≤2). Currently, the fashionable
choice for ψ(·) is definitely the l1-norm, that is, ψ(Dx) is
∥Dx∥1. There are at least two reasons for employing the
l1-norm: the solutions of the l1-minimization problems are
sparse, and the l1-minimization problems are easy convex
optimization problems.

III. PRESENTED IR MODEL

Let G(Ax) be a regularization term; then, the regulariza-
tion algorithms generally regard IR as

min
x

1

2
∥Bx− y∥2 + λG(Ax). (5)

According to the discrepancy principle [25], the equivalent
constrained form of (5) is

min
x∈Φ

G(Ax), (6)

where Φ is defined as {x: ∥Bx − y∥22≤δ, ∀ x∈RM}, and
δ is the maximum constant related to the noise variance.
Compared with model (5), model (6) omits the parameter
selection, but most IR algorithms still prefer model (5).

To avoid nonconvexity and simplify IR, most modern
algorithms adopt single prior-based regularization models.

However, studies have shown that more beneficial image pri-
ors usually mean better outcomes. Therefore, using multiple
priors, we model IR as

min
x

1

2
∥Bx− y∥22 +

∑
i

λiGi(Aix), (7)

where Gi(Aix) is a regularization term and the operator
Ai∈RCi×M is bounded and linear.

A. Gradient-Sparsity Priors Induced by l0-Norm

Considering the powerful edge-preserving ability of the
gradient-sparsity prior represented by TV, we integrate it into
the image prior system of this paper. As mentioned above,
both the TV-model and its generalizations prefer using the
l1-norm to measure sparsity. From the perspective of sparse
coding, the l1-norm is the optimal convex relaxation of the l0-
norm under the premise of satisfying the RIP conditions [26].
For complicated IR problems, there are few cases that fully
satisfy the RIP conditions. Therefore, we adopt the l0-norm
to induce gradient sparsity, obtaining the first regularization
term G1(A1x)=λ1∥∇x∥0 with the l0-norm defined as

∥z∥0 = lim
p→0
∥z∥pp = lim

p→0

∑
i

|z|p = #(i : zi ̸= 0). (8)

Similar l0-norm-induced priors are also employed by other
image processing studies [27], [28], and the related results
explicitly demonstrate the powerful denoising and feature-
preserving abilities of the l0-norm.

B. Transform-Sparsity Priors Induced by l0-Norm

In addition to the gradient-sparsity prior, we incorporate
a transform-sparsity prior into our model. As mentioned
above, the regularization term representing the transform-
sparsity prior is usually formulated as ∥Dx∥1. Compared
to the l1-norm, the l0-norm can remove low amplitude
structures, strengthen the salient edges globally and obtain
more accurate sparse solutions. Therefore, we replace the l1-
norm with the l0-norm, obtaining the second regularization
term G2(A2x)=λ2∥Dx∥0. We next discuss how to select
dictionary D.

Usually, natural images have rich geometric structures
and textures, so sparse coding dictionaries should be able
to precisely characterize image components. According to
physiological research on the human visual system, the
optimal image coding tools should have the features of mul-
tiresolution, locality and directionality. Therefore, we choose
the fast discrete curvelet transform (FDCT) [29] as dictionary
D. It is a multiresolution, bandpass and directional analysis
tool that meets the requirements of the optimal image coding
tool. Moreover, the FDCT adopts directional strip-like basis
functions, so it is very suitable for characterizing significant
features and is competent in obtaining sparser representations
with fewer basis functions.

C. Formulation of Presented IR Model

Substituting l0-regularization terms into model (7), we
obtain

min
x

1

2
∥Bx− y∥22 + λ1∥∇x∥0 + λ2∥Dx∥0, (9)
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where ∥∇x∥0 and ∥Dx∥0 are lower and semicontinuous,
and f(x)= 1

2∥Bx − y∥22 is continuously differentiable. The
Lipschitz continuous gradient of f(x) is

∥∇f(x1)−∇f(x2)∥2 ≤ Lf∥x1 − x2∥2. (10)

In (10), the minimum value of the Lipschitz constant Lf is
the maximum eigenvalue of the BTB.

According to the philosophy of variable splitting [30],
to make the nondifferentiable and nonconvex problem (9)
solvable, we need to turn to its equivalent constrained form.

Given a minimization problem

min
u
g1(u) + g2(Au), (11)

variable splitting converts it into

min
u,z

g1(u) + g2(z)

s.t. z = Au
(12)

with an auxiliary variable z.
Applying variable splitting, the IR model (7) is finally

formulated as

min
x,w,v

1

2
∥Bx− y∥22 + λ1∥w∥0 + λ2∥v∥0

s.t. w = ∇x, v = Dx
, (13)

where w∈R2M and v∈RC are auxiliary variables, and w=
∇x and v=Dx are constraints. Problem (13) is obviously
equivalent to problem (9) in the sense of the feasible solu-
tions {(x, w, v): w=∇x, v=Dx}. However, compared with
problem (9), problem (13) is more flexible, convenient and
efficient to handle.

IV. PROPOSED DRALM ALGORITHM

Due to the l0-norm, the IR problem (13) is a nonconvex
optimization problem. Unlike convex optimization problems,
the optimal solutions for nonconvex optimization problems
are often difficult to obtain, which poses a great challenge to
the designs of numerical computation schemes. To eliminate
the dilemmas of nonconvex optimization problems, early
schemes relaxed them to convex optimization problems.
However, convex relaxations change the original problems,
and the obtaining solutions may be trivial to the original
problems.

For separable convex optimization problems, the current
modish and effective optimization methods decouple them
into simpler subproblems and find the appropriate meth-
ods for these subproblems. In fact, this divide-and-conquer
mode is also applicable to separable nonconvex optimization
problems to find satisfactory solutions [31]. Therefore, for
stability and convergence, we solve the IR model in (13) by
the ALM. Notably, the ALM converges without assuming
that objective functions are finite or strictly convex, and it
is very simple and practical for multivariate optimization
problems.

A. ALM

Given a constrained minimization problem

min
x
g(u)

s.t. z = Au
, (14)

Algorithm 1 ALM.

Input β > 0 and α0 ∈ Ω
Set k = 0
Do

Step 1: uk+1 ← argmin
u

ξβ(u, α
k)

Step 2: αk+1 ← αk + β(Auk+1 − z)
Step 3: k = k + 1

Loop until the criteria are fulfilled
Output uk+1

ALM first turns it into

min
u,α

{
ξβ(u, α) = g(u)+αT (Au−z)+ β

2
∥Au−z∥22

}
, (15)

where α∈RS is the Lagrange multiplier. Then, the ALM
solves problem (15) by alternately iterating between

uk+1 = argmin
u

ξβ(u, α
k) (16)

and
αk+1 = αk + β(Auk+1 − z). (17)

Therefore, let Ω∈Rmn denote the Euclidean space; then
the ALM is summarized in Algorithm 1.

The optimality conditions of problem (14) are{
Au∗ − z = 0 primal feasibility

0 ∈ ∇g(u∗) +ATα∗ dual feasibility
. (18)

Let uk+1∈argmin
x

ξβ(u, α
k); then, we have

0 ∈
{
∇uξβ(u, α

k) = ∇g(uk+1)

+AT
(
αk + β(Auk+1 − z)

)} (19)

From (19), it can be observed that the optimality condi-
tions in (18) are satisfied with (Huk+1-z)→0 and αk→αk+1.

B. Solving Subproblems

Applying ALM to the IR model (13), we obtain

min
x,w,v,α1,α2

{
J(x,w, v) + αT

1 (∇x− w) +
µ1

2
∥∇x− w∥22

+ αT
2 (Dx− v) +

µ2

2
∥Dx− v∥22

}
,

(20)

where J(x,w, v)= 1
2∥Bx− y∥

2
2+λ1∥w∥0+λ2∥v∥0; µ1

2 ∥∇x−
w∥22 and µ2

2 ∥Dx−v∥
2
2 are the penalty terms; and µ1 and µ2

are the penalty parameters.
Using ordinary mathematical operations, problem (20)

equates to

min
x,w,v,d1,d2

{
J(x,w, v) +

µ1

2
∥∇x− w + d1∥22

+
µ2

2
∥Dx− v + d2∥22

}
,

(21)

where d1=α1

µ1
and d2=α2

µ2
.

The philosophy of ALM is to obtain the solution to
problem (13) by solving the following independent and
tractable subproblems:

wk+1 ← argmin
w

{
L(xk, w, vk, dk1 , d

k
2)
}
, (22)
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vk+1 ← argmin
v

{
L(xk, wk+1, v, dk1 , d

k
2)
}
, (23)

xk+1 ← argmin
x

{
L(x,wk+1, vk+1, dk1 , d

k
2)
}
, (24)

dk+1
1 = dk1 + (∇xk+1 − wk+1), (25)

dk+1
2 = dk2 + (Dxk+1 − vk+1), (26)

where the objective function L(x,w, v, d1, d2)=J(x,w, v)+
µ1

2 ∥∇x− w + d1∥22+µ2

2 ∥Dx− v + d2∥22.
1) wk+1 Subproblem and vk+1 Subproblem: The com-

plete form of the wk+1 subproblem (22) is

wk+1 = argmin
w

∥w − zk1∥22 + ρ1∥w∥0, (27)

where ρ1= 2λ1

µ1
and zk1=∇xk+dk1 .

Proposition 1: The solution to the wk+1 subproblem (27)
is

wk+1
i =


(zk1 )i if (zk1 )

2
i > ρ1

0 if (zk1 )
2
i < ρ1

0 or (zk1 )i if (zk1 )
2
i = ρ1

, (28)

where wi is the ith component of w and (zk1 )i is the ith
component of zk1 .

Proof: We observe that problem (27) amounts to the
2M minimization problems

wk+1
i = argmin

wi

{
F (wi) =

(
wi − (zk1 )i

)2
+ ρ1∥wi∥0

}
.

(29)
According to the definition of the l0-norm, F (wi) can be

further written as

F (wi) =

{(
wi − (zk1 )i

)2
+ ρ1 if wi ̸= 0

(zk1 )
2
i if wi = 0

. (30)

From (30), we obtain

min
wi ̸=0

{
F (wi) =

(
wi − (zk1 )i

)2 − ρ1} = ρ1. (31)

Therefore, when (zk1 )
2
i>ρ1, F (wi) takes the minimum value

ρ1 at wi=(zk1 )i; when (zk1 )
2
i<ρ1, F (wi) takes the minimum

value (zk1 )
2
i at wi=0; when (zk1 )

2
i=ρ1, F (wi) takes the min-

imum value (zk1 )
2
i or ρ1 at wi=0 or wi=(zk1 )i, respectively.

The above statements indicate that

wk+1
i = argminF (wi) =


(zk1 )i if (zk1 )

2
i > ρ1

0 if (zk1 )
2
i < ρ1

0 or (zk1 )i if (zk1 )
2
i = ρ1

(32)
is the solution to the wk+1 subproblem.

Remark 1: The above equation indicates that wk+1 is
computed component by component, so the wk+1 subprob-
lem has a cost of O(2M).

The complete form of the vk+1 minimization subprob-
lem (23) is

vk+1 = argmin
v
∥v − zk2∥22 + ρ2∥v∥0, (33)

where ρ2= 2µ2

µ2
and zk2=Dxk+dk2 . Since the vk+1 subproblem

and wk+1 subproblem belong to the same problem, we

immediately deduce that the solution to the vk+1 subproblem
is

vk+1
i =


(zk2 )i if (zk2 )

2
i > ρ2

0 if (zk2 )
2
i < ρ2

0 or (zk2 )i if (zk2 )
2
i = ρ2

. (34)

Similarly, (34) indicates that vk+1 is also computed com-
ponent by component, so the vk+1 subproblem has a cost of
O(C).

2) xk+1 Subproblem: The complete form of the xk+1

subproblem (24) is

xk+1 ∈ argmin
x

{
Q(x) = ∥Bx− y∥22

+ µ1∥∇x− sk+1
1 ∥22 + µ2∥Dx− sk+1

2 ∥22
}
,

(35)

where sk+1
1 =wk+1-dk1 and sk+1

2 =vk+1-dk2 .

Proposition 2: The solution to (35) is

xk+1 =M−1
(
BT y + µ1∇T sk+1

1 + µ2D
T sk+1

2

)
(36)

with M=BTB+µ1∇T∇+µ2D
TD.

Proof: According to proposition 16.2 in [32], we have

xk+1 ∈ argmin
x

Q(x)⇔ 0 ∈ ∂Q(xk+1). (37)

It is known that

∂Q(x) =Mx−
(
BT y + µ1∇T sk+1

1 + µ2D
T sk+1

2

)
. (38)

Therefore, let 0∈∂Q(xk+1); then we obtain

xk+1 =M−1
(
BT y + µ1∇T sk+1

1 + µ2D
T sk+1

2

)
.

Remark 2: As a Parseval tight frame, the FDCT D sat-
isfies DTD=I (I is an identity matrix). Hence, M is
an invertible positive definite matrix whose inverse always
exists.

With the help of FFT, xk+1 can be computed by

xk+1 =

ϕ−1
(ϕ(B)ϕ(y) + µ1ϕ(∇)ϕ(sk+1

1 ) + µ2ϕ(D)ϕ(sk+1
2 )

ϕ(B)ϕ(B) + µ1ϕ(∇)ϕ(∇) + µ2ϕ(D)ϕ(D)

)
(39)

where ϕ, ϕ−1 and ϕ are the FFT, inverse FFT, and conjugate
FFT, respectively.

Once the constants in (39) are precomputed, computing
xk+1 requires only two forward FFTs and one inverse FFT
per iteration. Since the computational cost of an FFT or
an inverse FFT is O(n2logn), the efficiency of exactly
computing xk+1 is very high.

C. Description of Proposed DRALM Algorithm

According to steps (22) to (26) and their solutions, we
summarize the proposed IR algorithm as Algorithm 2. It
is observed that the closed-form solutions of all subprob-
lems are efficiently obtained without inner iterations, and
subproblems of the same type and same structure can be
solved in parallel. Therefore, in general, Algorithm 2 (i.e.,
the proposed DRALM algorihtm) has many advantages that
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Algorithm 2 Proposed DRALM Algorithm.

Input regularization parameters λ1, λ2 and penalty pa-
rameters µ1, µ2

Initialize x0 = y, w0 = ∇x0, v0 = Dx0, and d01 = d02 =
0
For k = 0toK

Computing wk+1 according to (28)
Computing vk+1 according to (34)
xk+1 ←M−1

(
BT y + µ1∇T sk+1

1 + µ2D
T sk+1

2

)
If ∥xk+1−x∥2

∥x∥2
≤ τ

Stop the iterations
EndIf
dk+1
1 = dk1 + (∇xk+1 − wk+1)
dk+1
2 = dk2 + (Dxk+1 − vk+1)

EndFor
Output xk+1

enable the IR problem (13) to be solved with high efficiency.
Considering the convergence and efficiency, we adopt the
relative errors and the fixed number of iterations as the
stopping criteria for DRALM, whichever comes first. In the
relative error, the tolerance τ is a very small constant, and
x is the original clear image.

D. Analysis of the Proposed DRALM Algorithm

In this subsection, we prove that the fixed point of
DRALM is a local minimizer of problem (21) and discuss
the convergence of the sequences obtained by DRALM under
certain conditions.

Proposition 3: Suppose that {x∗, w∗, v∗, d∗1, d∗2} is a
fixed point of DRALM; then, it is a local minimizer of
problem (21).

Proof: Assume that ι0 and ι1 are two sets and are
defined as {

ι0 = {i : w∗ = 0, v∗ = 0}
ι1 = {i : w∗ ̸= 0, v∗ ̸= 0}

. (40)

Then, according to the solutions to the wk+1 minimization
subproblem and the vk+1 subproblem, we have{
|(∇x∗ + d∗1)i| ≤

√
ρ1, |(Dx∗ + d∗2)i| ≤

√
ρ2 for i ∈ ι0

(∇x∗ + d∗1)i = w∗
i , (Dx∗ + d∗2)i = v∗i for i ∈ ι1

.

(41)
Let {∆1, ∆2, ∆3, ∆4, ∆5}∈Ω be the tiny perturbation

vectors of {x∗, w∗, v∗, d∗1, d∗2}, respectively.
Substituting {x∗+∆1, w∗+∆2, v∗+∆3, d∗1+∆4, d∗2+∆5}

into L(x, w, v, d1, d2), we obtain

L(x∗ +∆1, w
∗ +∆2, v

∗ +∆3, d
∗
1 +∆4, d

∗
2 +∆5)

=
∥B(x∗ +∆1)− y∥22

2
+ λ1∥w∗ +∆2∥0 + λ2∥v∗ +∆3∥0

+
µ1∥(w∗ +∆2)−∇(x∗ +∆1)− (d∗1 +∆4)∥22

2

+
µ2∥(v∗ +∆3)−D(x∗ +∆1)− (d∗2 +∆5)∥22

2

=
∥Bx∗ − y∥22

2
+ ⟨B∆1, Bx

∗ − y⟩+ ∥B∆1∥22
2

+ λ1∥w∗ +∆2∥0 + λ2∥v∗ +∆3∥0

+
µ1∥w∗ −∇x∗ − d∗1∥22

2
+
µ1∥∆2 −∇∆1 −∆4∥22

2
+ µ1 ⟨∆2 −∇∆1 −∆4, w

∗ −∇x∗ − d∗1⟩

+
µ2∥v∗ −Dx∗ − d∗2∥22

2
+
µ2∥∆3 −D∆3 −∆5∥22

2
+ µ2 ⟨∆3 −D∆3 −∆5, v

∗ −Dx∗ − d∗2⟩

=
∥Bx∗ − y∥22

2
+
∥B∆1∥22

2
+ λ1∥w∗ +∆2∥0 + λ2∥v∗ +∆3∥0

+
µ1∥w∗ −∇x∗ − d∗1∥22

2
+
µ1∥∆2 −∇∆1 −∆4∥22

2

+
µ2∥v∗ −Dx∗ − d∗2∥22

2
+
µ2∥∆3 −D∆3 −∆5∥22

2
+ µ1⟨∆2 −∆4, w

∗ −∇x∗ − d∗1⟩
+ µ2⟨∆3 −∆5, v

∗ −Dx∗ − d∗2⟩
+ ⟨∆1, B

T (Bx∗ − y) + µ1∇T (∇x∗ + d∗1 − w∗)

+ µ2D
T (Dx∗ + d∗2 − v∗)⟩

≥ ∥Bx
∗ − y∥22
2

+ λ1∥w∗ +∆2∥0 + λ2∥v∗ +∆3∥0

+
µ1∥w∗ −∇x∗ − d∗1∥22

2
+
µ2∥v∗ −Dx∗ − d∗2∥22

2
+ µ1⟨∆2 −∆4, w

∗ −∇x∗ − d∗1⟩
+ µ2⟨∆3 −∆5, v

∗ −Dx∗ − d∗2⟩
+ ⟨∆1, B

T (Bx∗ − y) + µ1∇T (∇x∗ + d∗1 − w∗)

+ µ2D
T (Dx∗ + d∗2 − v∗)⟩. (42)

From (35), we know that

⟨x− x∗, BT (Bx∗ − y) + µ1∇T (∇x∗ + d∗1 − w∗)

+ µ2D
T (Dx∗ + d∗2 − v∗)⟩ ≥ 0

(43)

for all x∈Ω.
Therefore,

L(x∗ +∆1, w
∗ +∆2, v

∗ +∆3, d
∗
1 +∆4, d

∗
2 +∆5)

≥ ∥Bx
∗ − y∥22
2

+ λ1∥w∗ +∆2∥0 + λ2∥v∗ +∆3∥0

+
µ1∥w∗ −∇x∗ − d∗1∥22

2
+
µ2∥v∗ −Dx∗ − d∗2∥22

2
+ µ1 ⟨∆2 −∆4, w

∗ −∇x∗ − d∗1⟩
+ µ2 ⟨∆3 −∆5, v

∗ −Dx∗ − d∗2⟩

=
∥Bx∗ − y∥22

2
+
µ1∥w∗ −∇x∗ − d∗1∥22

2

+
µ2∥v∗ −Dx∗ − d∗2∥22

2

+
∑
i

(
λ1∥(w∗ +∆2)i∥0 + λ2∥(v∗ +∆3)i∥0

+ µ1⟨(∆2 −∆4)i, (w
∗ −∇x∗ − d∗1)i⟩

+ µ2⟨(∆3 −∆5)i, (v
∗ −Dx∗ − d∗2)i⟩

)
. (44)

According to (41), (44) can be written as

L(x∗ +∆1, w
∗ +∆2, v

∗ +∆3, d
∗
1 +∆4, d

∗
2 +∆5)

≥ ∥Bx
∗ − y∥22
2

+
µ1∥w∗ −∇x∗ − d∗1∥22

2

+
µ2∥v∗ −Dx∗ − d∗2∥22

2

+
∑
i∈ι1

(
λ1∥(w∗ +∆2)i∥0 + λ2∥(v∗ +∆3)i∥0

)
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+
∑
i∈ι0

(
λ1∥w∗

i ∥0 + λ2∥v∗i ∥0

− µ1⟨(∆2 −∆4)i, (∇x∗ + d∗1)i⟩

− µ2⟨(∆3 −∆5)i, (Dx
∗ + d∗2)i⟩

)
. (45)

When |(∆2)i| and |(∆3)i| are small enough, the equation{
∥(w∗ +∆2)i∥0 = ∥w∗

i ∥0
∥(v∗ +∆3)i∥0 = ∥v∗i ∥0

,∀i ∈ ι1 (46)

holds.
Hence, from (45), we obtain

L(x∗ +∆1, w
∗ +∆2, v

∗ +∆3, d
∗
1 +∆4, d

∗
2 +∆5)

≥ L(x∗, w∗, v∗, d∗1, d
∗
2)

+
∑
i∈ι0

(
λ1∥(∆2)i∥0 − µ1⟨(∆2 −∆4)i, (∇x∗ + d∗1)i⟩

+ λ2∥(∆3)i∥0 − µ2⟨(∆3 −∆5)i, (Dx
∗ + d∗2)i⟩

)
.

(47)

We next demonstrate that, for i∈ι0 and sufficiently small
{∥∆j∥∞}5j=1, the equation{

λ1∥(∆2)i∥0 − µ1⟨(∆2 −∆4)i, (∇x∗ + d∗1)i⟩ ≥ 0

λ2∥(∆3)i∥0 − µ2⟨(∆3 −∆5)i, (Dx
∗ + d∗2)i⟩ ≥ 0

(48)

holds.
When (∇x∗+d∗1)i=(Dx∗+d∗2)i=0, (48) immediately holds.
When (∇x∗+d∗1)i ̸=0 and (Dx∗+d∗2)i ̸=0, (48) holds as long

as 
λ1

µ1|(∇x∗ + d∗1)i|
≥ |(∆2 −∆4)i|

λ2
µ2|(Dx∗ + d∗2)i|

≥ |(∆3 −∆5)i|
. (49)

In summary, we conclude that there exists a small positive
constant ϵ that satisfies max(∥∆1∥∞, ∥∆2 −∆4∥∞, ∥∆3 −
∆5∥∞)<ϵ; then, L(x∗+∆1, w∗+∆2, v∗+∆3, d∗1+∆4, d∗2+∆5)
≥ L(x∗, w∗, v∗, d∗1, d∗2) holds.

Remark 3: Since the pixel values of an image are in a
fixed range (e.g., 0 to 255), the sequence {xk+1, wk+1,
vk+1, dk+1

1 , dk+1
2 } is bounded [33]. Given that the sequence

{xk+1,wk+1, vk+1, dk+1
1 , dk+1

2 } is bounded, then a con-
vergent subsequence {xs, ws, vs, ds1, ds2} exists, which is
verified by the experiments.

V. EXPERIMENTAL RESULTS

We perform IR experiments to demonstrate the effective-
ness, convergence and advantages of the proposed DRALM.
The criteria for evaluating the performance of the algorithms
are ISNR, SSIM, speed and visual effects. The main config-
urations of software and hardware for the experiments are
as follows: Windows 7 OS and MATLAB platform; Core i5-
3230M (2.60GHz), 8GB of memory and a SSD. The popular
benchmark images shown in Fig. 1 are employed as the clear
images.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 1: Clear Images. (a) Bird, (b) Boats, (c) Bridge, (d)
Cameraman (abbreviated CM), (e) Couple, (f) House, (g)
Lake, (h) Lena, (i) Car, (j) Female, (k) Splash, and (l) Tree.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 2: Degraded Gray Imags. (a) to (h) GD gray images,
and (i) to (p) AD gray images.

A. Restoration of Degraded Gray Images

To generate the Gaussian-degraded (GD) and average-
degraded (AD) gray images in Fig. 2, the clear gray images
are blurred and polluted by Gaussian noise (std=2). The
two blur kernels imposed on the clear images are gener-
ated by MATLAB functions fspecial(’Gaussian’, 15, 5) and
fspecial(’average’, 15), respectively. The images in Fig. 2
are severely degraded, so restoring them is a challenge
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TABLE I: ISNR (dB) of Restored GD Gray Images.

Algorithms Bird Boats Bridge CM Couple House Lake Lena
SURELET 5.40 3.39 2.81 3.55 3.41 5.64 3.88 3.46
DADMM(C) 4.78 2.17 2.03 2.96 2.22 4.77 2.83 2.95
DADMM(H) 4.51 2.09 1.87 2.51 2.11 4.37 2.80 2.86
WFPS 4.38 1.76 1.57 2.38 1.68 3.96 2.57 2.77
WLPADMM 6.29 3.85 2.88 4.14 3.98 6.83 4.31 3.97
MSWNNM 4.31 2.81 2.43 2.67 2.97 4.40 2.77 3.01
SAPG(T) 6.00 3.20 2.67 3.73 3.27 6.18 3.43 3.73
SAPG(W) 3.03 1.72 1.45 1.57 1.76 3.07 2.09 2.26
IDBP 6.33 3.81 2.93 4.04 4.01 6.47 4.26 4.14
DRALM 6.66 4.50 3.57 4.44 4.62 6.77 4.93 4.27

TABLE II: SSIM of Restored GD Gray Images.

Algorithms Bird Boats Bridge CM Couple House Lake Lena
SURELET 0.8602 0.6670 0.5249 0.7125 0.6645 0.7814 0.7007 0.6898
DADMM(C) 0.8558 0.6157 0.4546 0.7149 0.5944 0.7763 0.6624 0.6725
DADMM(H) 0.8598 0.6155 0.4521 0.6986 0.5902 0.7699 0.6654 0.6738
WFPS 0.8602 0.6016 0.4319 0.6974 0.5656 0.7603 0.6587 0.6716
WLPADMM 0.8659 0.6931 0.5455 0.7403 0.6987 0.7991 0.7146 0.7115
MSWNNM 0.7808 0.6407 0.5069 0.5304 0.6416 0.7102 0.5440 0.6543
SAPG(T) 0.8643 0.6611 0.5072 0.7419 0.6547 0.7925 0.6939 0.7009
SAPG(W) 0.8179 0.5969 0.4439 0.6319 0.5793 0.7100 0.6406 0.6394
IDBP 0.8718 0.6838 0.5315 0.7180 0.6931 0.7643 0.7000 0.7205
DRALM 0.8771 0.7197 0.5934 0.7405 0.7286 0.8039 0.7210 0.7326

TABLE III: ISNR (dB) of Restored AD Gray Images.

Algorithms Bird Boats Bridge CM Couple House Lake Lena
SURELET 6.55 4.89 4.01 4.64 5.03 7.22 5.34 4.61
DADMM(C) 6.48 4.05 3.37 4.58 4.18 6.99 4.48 4.34
DADMM(H) 6.51 3.93 3.29 4.20 4.06 6.57 4.35 4.10
WFPS 6.49 3.31 2.81 3.92 3.26 6.37 3.99 4.08
WLPADMM 7.05 4.98 3.93 5.15 5.10 7.78 5.35 4.81
MSWNNM 5.15 4.15 3.50 3.45 4.48 5.74 3.26 4.04
SAPG(T) 7.07 4.76 3.93 5.30 4.71 7.40 5.31 4.96
SAPG(W) 6.15 4.24 3.33 3.34 4.42 6.19 3.96 4.15
IDBP 8.28 5.41 4.20 5.71 5.77 8.64 5.82 5.48
DRALM 8.54 6.16 4.85 5.91 6.35 9.10 6.63 5.72

TABLE IV: SSIM of Restored AD Gray Images.

Algorithms Bird Boats Bridge CM Couple House Lake Lena
SURELET 0.8457 0.6993 0.5710 0.6937 0.7102 0.7811 0.7145 0.6978
DADMM(C) 0.8562 0.6692 0.5162 0.7454 0.6746 0.7964 0.6899 0.6965
DADMM(H) 0.8606 0.6681 0.5126 0.7326 0.6712 0.7922 0.6886 0.6906
WFPS 0.8646 0.6333 0.4630 0.7212 0.6153 0.7889 0.6760 0.6895
WLPADMM 0.8323 0.6998 0.5883 0.7275 0.7126 0.7788 0.7026 0.6936
MSWNNM 0.6970 0.6395 0.5458 0.4745 0.6742 0.6746 0.4982 0.6384
SAPG(T) 0.8396 0.6933 0.5679 0.7662 0.6947 0.7741 0.7216 0.7000
SAPG(W) 0.8503 0.6851 0.5302 0.6669 0.6898 0.7596 0.6742 0.6859
IDBP 0.8863 0.7275 0.5912 0.7474 0.7414 0.7857 0.7205 0.7377
DRALM 0.8888 0.7602 0.6455 0.7825 0.7765 0.8293 0.7599 0.7553

and the results of their restoration are very suitable for
comprehensively evaluating the performance of IR algo-
rithms. In other words, an IR algorithm that can successfully
and efficiently restore the degraded images in Fig. 2 is
highly robust, stable and competitive in various applications.
Therefore, our results obtained by restoring these severely
degraded images are of significance. Since the pixel values
of an image generally range from 0 to 255 and mapping
outcomes to the above range contributes to high IR quality,
per iteration, we rescale xk+1 to the range from 0 to 255 after
computing xk+1. Our DRALM competes with outstanding
IR algorithms of mainstream types, including SURELET
algorithm [11], DADMM(C) algorithm [5], DADMM(H)
algorithm [5], WFPS algorithm [12], WLPADMM algo-
rithm [13], MSWNNM algorithm (initialized with Wiener
filter) [17], SAPG(T) algorithm (using the TV prior) [19],
SAPG(W) algorithm (using a sparse wavelet prior) [19], and
IDBP algorithm (using BM3D as the denoiser) [20].

Theoretically, dynamically adjusting the parameters ac-

(a)

(b)

(c)

(d)

Fig. 3: Mean ISNR and SSIM of Restored Degraded Images.

cording to the degraded images is beneficial to the restored
results, but frequent adjustments undoubtedly reduce the
practicability and efficiency of the proposed DRALM. More-
over, empirically speaking, these fixed parameters are not
too sensitive to different degraded images. Therefore, we fix
the parameters as (λ1, λ2, µ1, µ2)=(1.2, 0.9, 0.05, 0.05). For
efficiency and convergence, the maximum iterations of the
proposed DRALM is 200, and τ is set to 10−4. All parame-
ters and settings of the comparison algorithms are their own
default values to accurately evaluate the performance.

After handling the degraded images in Fig. 2, the values
of ISNR and SSIM are recorded in TABLEs I to IV and
shown in Fig. 3, and the corresponding visual effects are
shown in Figs. 4 and 5. The experimental results explicitly
imply that DRALM successfully accomplishes IR tasks and
efficiently restores clear images. In terms of ISNR and SSIM,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 4: Visual Examples of Restored GD Gray Images. (a)
and (b) SURELET, (c) and (d) DADMM(C), (e) and (f)
DADMM(H), (g) and (h) WFPS, (i) and (j) WLPADMM,
(k) and (l) MSWNNM, (m) and (n) SAPG(T), (o) and
(p) SAPG(W), (q) and (r) IDBP, and (s) and (t) proposed
DRALM.

the data definitely indicate that DRALM outperforms the
comparison algorithms. ISNR is a full-reference criterion of
image quality, and SSIM focuses on image brightness, image
contrast and image structure. Therefore, the numerical results
of these two criteria also show that our DRALM algorithm
not only has overall advantages, but also has advantages in
some specific aspects. In Figs. 4 and 5, we show some of the
restored images with local magnifications. Compared with
other algorithms, the images obtained by DRALM illustrate
more important features and fewer artifacts, which confirms
the results of ISNR and SSIM. The visual comparisons indi-
cate that double l0-regularization balances edge sharpening
and noise suppression.

In terms of speed, we run each algorithm ten times and
record the mean time in TABLEs V and VI. Although
DRALM is not the fastest, its speed is on the same order
of magnitude as the fastest algorithms, so the practicality of
DRALM does not decrease. Moreover, for DRALM, more
time is also an inevitable tradeoff to pay when adopting
double l0-induced priors to promote restoration quality.

In summary, the proposed DRALM has a full range of

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 5: Visual Examples of Restored AD Gray Images. (a)
and (b) SURELET, (c) and (d) DADMM(C), (e) and (f)
DADMM(H), (g) and (h) WFPS, (i) and (j) WLPADMM,
(k) and (l) MSWNNM, (m) and (n) SAPG(T), (o) and
(p) SAPG(W), (q) and (r) IDBP, and (s) and (t) proposed
DRALM.

competitive advantages over other algorithms. Regardless of
what type of degraded gray images are processed, the overall
performance of DRALM is stable, and it also performs better
in the consistency of the evaluation results of various criteria.
This should be attributed to our well-designed IR model and
corresponding efficient solution.

Below, we verify the convergence of DRALM by the
evolutions of relative errors ∥xk+1−x∥2

∥x∥2
. As revealed by the

curves in Figs. 6 and 7, there exists a positive integer K and a
sufficiently small positive constant τ such that ∥xk+1−x∥2

∥x∥2
≤τ

holds when (k+1)≥K, that is, {xk+1} converge to x with
sufficient iterations. It is noteworthy that the first several
iterations converge quickly and approach the optimization
target, so even if the stopping criteria are relaxed, the
DRALM can still obtain satisfactory solutions.

B. Restoration of Degraded Color Images

To generate the degraded color images shown in Fig. 8,
the clear color images are blurred by fspecial(’Gaussian’,
15, 5) and fspecial(’average’, 15), and polluted by Gaussian
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6: Evolutions of Relative Errors When Dealing with GD Gray Images.The red dots represent the first iteration and last
iteration, respectively; the values next to the red dots are the relative errors; the numbers in parentheses represent the total
iterations.

TABLE V: Mean Time (seconds) Needed for Handling GD
Gray Images.

Algorithms Bird Boats Bridge CM Couple House Lake Lena
SURELET 0.68 2.24 2.27 0.70 2.24 0.68 2.25 0.66
DADMM(C) 2.10 13.76 13.87 2.12 13.80 2.11 13.75 2.11
DADMM(H) 0.73 4.50 4.56 0.69 4.43 0.73 4.40 0.72
WFPS 45.42 292.35 326.47 34.82 302.20 49.16 224.99 44.10
WLPADMM 666.17 3468.36 2403.62 1236.21 2694.16 982.74 2657.11 740.05
MSWNNM 523.01 2277.08 2260.51 520.00 2048.05 515.29 2231.43 495.89
SAPG(T) 27.87 172.74 174.16 27.94 174.76 27.93 179.12 28.30
SAPG(W) 15.69 54.14 58.18 16.44 56.54 16.21 54.30 16.18
IDBP 23.61 103.26 120.06 23.15 102.63 23.90 100.69 23.56
DRALM 6.63 41.87 40.65 6.82 48.85 8.52 26.05 6.41

TABLE VI: Mean Time (seconds) Needed for Handling AD
Gray Images.

Algorithms Bird Boats Bridge CM Couple House Lake Lena
SURELET 0.69 2.26 2.36 0.69 2.25 0.72 2.26 0.68
DADMM(C) 2.12 13.86 13.94 2.08 13.96 2.13 13.87 2.10
DADMM(H) 0.73 4.22 4.18 0.69 4.17 0.68 4.04 0.69
WFPS 49.29 297.75 333.39 43.50 308.55 54.61 309.66 50.44
WLPADMM 288.92 1474.67 1154.09 730.66 1039.44 520.62 1668.75 469.99
MSWNNM 524.91 1962.18 1972.77 416.33 1948.89 459.18 2012.80 456.85
SAPG(T) 27.65 186.99 189.59 28.39 179.44 28.05 178.98 30.23
SAPG(W) 17.36 74.58 83.08 20.42 83.88 19.72 70.11 20.09
IDBP 23.77 104.21 108.61 23.91 104.97 24.50 102.71 23.75
DRALM 3.61 20.61 24.81 5.19 22.96 3.85 24.71 4.12
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7: Evolutions of Relative Errors When Dealing with AD Gray Images. The red dots represent the first iteration and
last iteration, respectively; the values next to the red dots are the relative errors; the numbers in parentheses represent the
total iterations.

TABLE VII: ISNR (dB) of Restored GD Color Images.

Algorithms Car Female Splash Tree Mean Val.
ST-TV 2.11 2.49 3.18 3.01 2.70
ST-NLTV 2.39 2.61 3.46 2.68 2.79
RS 4.79 4.41 6.02 4.80 5.01
newBM3D 3.52 3.84 5.62 4.21 4.30
DRALM 5.57 5.31 8.76 6.08 6.43

noise (std=2). The images in Fig. 8 are severely degraded,
so restoring them is a challenge and the results of their
restoration are very suitable for comprehensively evaluating

TABLE VIII: SSIM of Restored GD Color Images.

Algorithms Car Female Splash Tree Mean Val.
ST-TV 0.5860 0.6395 0.7216 0.5114 0.6146
ST-NLTV 0.5861 0.6401 0.6742 0.5241 0.6061
RS 0.6942 0.7243 0.8076 0.6503 0.7191
newBM3D 0.6986 0.7455 0.8485 0.6489 0.7354
DRALM 0.7691 0.7954 0.8829 0.7210 0.7921

the performance of IR algorithms. In other words, an IR
algorithm that can successfully and efficiently restore the
degraded images in Fig. 8 is highly robust, stable and
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Fig. 8: Degraded Color Images. (a) to (d) GD color images,
and (e) to (h) AD color images.

TABLE IX: ISNR (dB) of Restored AD Color Images.

Algorithms Car Female Splash Tree Mean Val.
ST-TV 3.37 3.46 4.95 3.94 3.93
ST-NLTV 3.86 3.77 5.40 4.53 4.39
RS 5.96 5.57 7.39 6.69 6.40
newBM3D 5.41 4.91 7.83 5.97 6.03
DRALM 7.79 7.40 12.15 8.69 9.01

TABLE X: SSIM of Restored AD Color Images.

Algorithms Car Female Splash Tree Mean Val.
ST-TV 0.6237 0.6451 0.7975 0.5508 0.6543
ST-NLTV 0.6350 0.6583 0.7937 0.5772 0.6661
RS 0.6943 0.6988 0.7518 0.6638 0.7022
newBM3D 0.7315 0.7431 0.8581 0.6834 0.7540
DRALM 0.8208 0.8285 0.8990 0.7829 0.8328

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 9: Visual Examples of Restored GD Color Images. (a)
and (b) ST-TV, (c) and (d) ST-NLTV, (e) and (f) RS, and (g)
and (h) proposed DRALM.

competitive in various applications. Therefore, our results
obtained by restoring these severely degraded images are
of significance. Considering the differences between gray
images and color images, few gray IR algorithms (including
the comparison algorithms in the gray IR experiments) have
been extended to color images. Therefore, when restoring

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 10: Visual Examples of Restored AD Color Images. (a)
and (b) ST-TV, (c) and (d) ST-NLTV, (e) and (f) RS, and (g)
and (h) proposed DRALM.

TABLE XI: Mean Time Needed (seconds) for Handling GD
Color Images.

Algorithms Car Female Splash Tree
ST-TV 635.13 228.50 658.62 178.52
ST-NLTV 2052.25 556.21 1873.10 498.61
RS 154.89 31.64 163.27 35.41
newBM3D 28.34 7.63 38.48 7.36
DRALM 57.36 17.52 61.38 14.10

TABLE XII: Mean Time (seconds) Needed for Handling AD
Color Images.

Algorithms Car Female Splash Tree
ST-TV 652.94 209.00 675.03 193.80
ST-NLTV 2086.24 567.61 2002.52 570.55
RS 151.59 31.46 142.65 31.74
newBM3D 25.88 8.08 26.51 6.84
DRALM 47.45 14.94 52.21 12.99

degraded color images, our DRALM competes with out-
standing color IR algorithms of mainstream types, including
the ST-TV algorithm [18], ST-NLTV algorithm [18], RS
algorithm [21] and newBM3D algorithm [16]. For color
images, we stack their R(ed), G(reen), and B(lue) channel
images together to form single channel images like gray
images. In this way, the DRALM is able to directly handle
color images. It can also reduce the difficulty and improve the
speed, and avoid processing the R(ed), G(reen) and B(lue)
channel images one by one.

Theoretically, dynamically adjusting the parameters ac-
cording to the degraded images is beneficial to the restored
results, but frequent adjustments undoubtedly reduce the
practicability and efficiency of the proposed DRALM. More-
over, empirically speaking, these fixed parameters are not
too sensitive to different degraded images. Therefore, we fix
the parameters of DRALM as (λ1, λ2, µ1, µ2)=(2.8, 5.5, 0.7,
0.3). For efficiency and convergence, the maximum iterations
of DRALM is 100, and τ is set to 10−3. The ST algorithm,
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(a) (b)
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Fig. 11: Evolutions of Relative Errors When Dealing with GD Color Images. The red dots represent the first iteration and
last iteration, respectively; the values next to the red dots are the relative errors; the numbers in parentheses represent the
total iterations.

(a) (b)

(c) (d)

Fig. 12: Evolutions of Relative Errors When Dealing with AD Color Images. The red dots represent the first iteration and
last iteration, respectively; the values next to the red dots are the relative errors; the numbers in parentheses represent the
total iterations.

RS algorithm and newBM3D algorithm adopt their own
default settings and parameters to ensure true evaluations.

The results in Figs. 9 and 10 and TABLEs VII to X
explicitly show the effectiveness of the proposed DRALM
and its advantages over other algorithms in ISNR, SSIM
and visual effects. Similarly, in colr IR experiments, the
numerical results of these two criteria also show that our
DRALM algorithm not only has overall advantages, but also

has advantages in some specific aspects. Visually, compared
to other algorithms, the images obtained by DRALM have
more salient features and fewer artifacts, which is consistent
with the performance of DRALM in ISNR and SSIM.

In terms of speed, we take the mean time for each
algorithm to process each degraded image ten times as the
final results and record them in TABLEs XI and XII. As
shown by the data, our DRALM is significantly faster than
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the ST algorithm and RS algorithm but slightly slower than
BM3D algorithm. Therefore, the proposed DRALM also has
strong competitiveness in color IR, especially considering its
superiorities under other criteria.

In color IR experiments, we also employ evolutions of
relative errors to verify the convergence of DRALM. As
shown by the curves in Figs. 11 and 12, the relative errors de-
crease continuously with iterations, which indicates that with
(k+1)≥K and ∥xk+1−x∥2

∥x∥2
≤τ , {xk+1} obtained by DRALM

converge to x. It is also noteworthy that the first several
iterations converge quickly and approach the optimization
target, so even if the stopping criteria are relaxed, the
proposed DRALM can still obtain satisfactory solutions in
color IR.

VI. CONCLUSION

We built a novel model with double l0-regularization for
IR and proposed an efficient solution to solve the model. The
proposed DRALM algorithm first obtains several subprob-
lems by equivalent decomposition and then uses effective
methods to obtain their closed-form solutions. Subsequently,
the convergence of DRALM is analyzed. In the experiment,
Our DRALM is applied to IR, and its effectiveness, conver-
gence and advantages are verified by the results. Moreover,
the experimental results also show the advantages of l0-
induced sparse priors and multiple-prior models. In the
fut ure, we will apply DRALM to image denoising and
inpainting.
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