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On a Resonant Fractional Order Multipoint and
Riemann-Stieltjes Integral Boundary Value
Problems on the Half-line with Two-dimensional
Kernel

Ezekiel K. Ojof, Samuel A. Iyase, and Timothy A. Anake,

Abstract—This paper investigates existence of solutions of a
resonant fractional order boundary value problem with mul-
tipoint and Riemann-Stieltjes integral boundary conditions on
the half-line with two-dimensional kernel. We utilised Mawhin’s
coincidence degree theory to derive our results. The results
obtained are validated with examples.

Index Terms—Banach spaces, coincidence degree theory, half-
line, resonance, Riemann-Stieltjes integral, two-dimensional
kernel.

I. INTRODUCTION

RACTIONAL differential equation serves as a powerful

tool for mathematical modelling of complex phenom-
ena, such as; viscoelastic media, epidemics, electromagnet-
ics, acoustics, control theory, electrochemistry, finance, and
materials science found in science and engineering (see
[5], [16], [21], [24], [26]. The interest of researchers and
scientists have significantly shifted to fractional-order models
because, they are more accurate and provide more degrees
of freedom than integer-order models.Valuable results have
been obtained in the literature on the existence of solutions
of fractional order boundary value problems (BVPs) by
using different methods.These methods include; coincidence
degree theory of Mawhin (see [2], [8], [10], [12], [16], [18],
[22], [27], [28], [29], hybrid fixed point theorem [6], Ge
and Ren extension of Mawhin coincidence degree theory
[9],extension of continuation theorem [25], monotone iter-
ative technique [11] and the references therein. A fractional
order BVP is at resonance if the corresponding homogeneous
equation has non-trivial solution.

Some scholars have studied resonant fractional order BVPs
on finite interval [0, 1] with finite point or integral boundary
conditions in which the dimker L = 1 and the order 1 <
a <2 (see [1], [7], [12], [15], [23], [31]).

Recently, Zhang and Liu [30] studied the following class
of fractional multipoint boundary value problem at resonance
with dimker L = 2 on an infinite interval, and established
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that solution exists by using coincidence degree theory
Dgvu(t) = f(t,u(t), D u(t), Dy u(t)), 0 <t < +oo,

subject to;

== Z O‘iDSLJr_Qu(é_i)a

i=1
ZﬂJDOz 1’LL

Y =1= Zj:l Bings ity ai& = 0 = Z?:l B;
are critical for resonance; where Déﬂr is the standard
Riemann-Liouville fractional derivative of order «,
2 <a<30<bHg <l <<y < Hoo, and
O<ny << - <My < F00.

u(0) = 0, , D u(0)

Dy Lu(400)

Howeyver, the existence of solutions for a resonant frac-
tional order boundary value problems on the half-line with
multipoint and Riemann-Stieltjes integral boundary condi-
tions where dimker L = 2 and 3 < a < 4 have not been
widely reported in the literature. We are motivated by this, to
focus on investigating existence of solution for the following
resonant fractional order boundary value problem

Dga(t) = f(t,xos),Dﬁ:%(t),Dg:%(twg:lx(t)),

Z /’L'LDO+ z(§

z(0)=0= Dg‘fgx(O), Dg:QJJ

n
Dg:lx(Jroo):/ D§2a(t)dA(t),
0
6]

where t € (0,400), 3 < a < 4,dimkerL =2,0< & <
& < & < - <&y <00, m € (0,400) and A(t) is a
continuous and bounded variation function on (0, 4+00).

Throughout this investigation, the following assumptions
are made:

m m n
) Y=t Yo =0, [ uaw) -
3 i=1

77 dA(t) =

0

(Hy) A= (1 _Zﬂz )(/ (2+t)e*tdA(t))
F(Jo e da0) (S w2+ e —2) £0

(Hs) There exist nonnegative functions
p1(t), p2(t), ps(t), pa(t), ps(t) € L' (0,+00) such that

and
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for all t € (0,+00) and p,q,7,v € R,

Ip| lq|
A t
1+t +”2()1+t2

|| |v]
t 5 (1),
Tt TPl e ®)

0 = ||plo|<|>L1 + llp2lliee + llpsllzy + floaflzr and
lpillr = [y~ Ipildt, i =1,2,3,4.

|f(t.p,q,m,0)| < pa(t)

+ ps(t)

(H,) There exist non-negative constants A; and A, such that,
for all x € dom L \ ker L, if one of the following is
satisfied:

(i) |D§; %z (t)| > As, for any t € (0, As);

(i) |D§*z(t)] > Ay, for any t € (0, As);
(i) |D§y'2(t)] > Ay, for any t € (As, +00),
then either IT; Nx:(t) # 0 or IIo Nxz(t) # 0.
(Hs) There exists B > 0 such that, for any c;,co € R
satisfying |c1| > B or |c2| > B, then either

T N (et 4 eot®™2) + Ty N (ert® ™ 4 e0t®™2) <0,

2
or
T N (et et ) + TN (et + cat®™2) > 0.
€)]

then, the BVP (1) has at least one solution in X

provided HO® < 1 where H = ﬁ + ﬁ + 12—1

and © = [[p1(t)[[x + lp2() L + [lps(®)ll2 + llpa(®)]]1-
This paper unlike most of the previous works , focuses on
two-dimensional kernel on the half-line with multipoint and
Riemann-Stieltjes integral boundary conditions.

The rest of the paper is organized as follows. Section 2
presents some lemmas and definitions which are germane to
the study. Section 3 focuses on the main existence results.
Section 4 is concerned with examples to validate the results
while in section 5, we draw conclusion.

A. Preliminaries

In this section, we recall some basic knowledge of the
fractional calculus of Riemann-Liouville type and coinci-
dence degree theory of Mawhin. Some definitions, lemmas
and theorems that will be useful in the research study are
highlighted.

Definition 1: [10]. The Riemann-Liouville fractional in-
tegral of order av > 0 for a function f : (0,400) — R is
given by

@ 1 ! a—1

ol A IO
provided the right - hand side integral is point-wise defined
on (0, +00).

Definition 2: [10] The
derivative of order o > 0 for a function f : (0,+00) — R

Riemann-Liouville fractional

is given by

« d n—o
Dgy f(t) = Lo+ (t)

1 dr ! n—a—1
:mﬁ/o (t—s) f(s)ds

where n = [a] + 1, provided that the right-hand side integral
is point-wise defined on (0, 400).
Lemma 1: [18]. If « > 0 and f, Dy, f € L*(0,1), then

DS () = () + et et 4 eyt

where n = [a]+1, ¢ € R (i=1,2,---,n) are arbitrary
constants.
Lemma 2: [7]. Given that « > [ > 0. Suppose that

f(t) € L*(0,1), then
3+ I§+f<t) = fgfﬂf(t% D§+13+f(t) = Igfﬁf(t)-
In particular,

8‘+ I€+f(t) - f(t)

d
Lemma 3: [4]. Given that « > 0, n € Nand D = T

T
If the fractional derivatives (Dg, f)(t) and (D" f)(t) exist,
then

(D" Dg f)(t) = (DG ().

Lemma 4: [4]. Suppose that « > 0, A > —1, ¢ > 0, then

(A+1)
Ioc t)\ — Ao d
T T tatn "
. TA+1) . ,
DG th = M 7. In particular,
D t*=™ =0, form = 1,2,3,--- ,n where n = [a] + 1.

Definition 3: [19]. Let n € Ry and m =

operator

[rn]. The

n _ m ym—n
D0+f - DOJr IO+

is called Riemann-Liouville fractional differential operator
of order n.
If n =0, then D8+ = 1, the identity operator.

Lemma 5: [4] Let n € Ry and m € N such that m > n.
Then

m m—n

n o __
o+ — 0+ “o+

Definition 4: [17]. Let (X, || . ||) and (W,]| . ||) be real
Banach spaces.

A linear operator L : dom L C X — W is called a Fredholm
operator of index zero provided that

(i) Im L is a closed subset of W, and

(ii) dimkerL = codim ImL < +o0.

Definition 5: [22]. Let L : domL C X — W be a
Fredholm operator, then, there exist continuous projectors
P:X — Xand IT: W — W such that Im P = ker L,
kerll = ImL, X =kerL@&kerP, W =ImL& ImlIl
and the mapping
Lo Loker p * dom L0 kerP — Im L is invertible. We
denote the inverse of L’ dom Lkerp OY
K, :Im L — dom LNker P and the generalized inverse of
Lis Kpn: W — dom LNker P where Kp i = Kp(I—1I).

Theorem 6: [17]. Let L : domL C X — W be a
Fredholm operator of index zero and N : X — W is
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L-compact on ). Suppose that the following conditions are
satisfied.

(i) Lx # ANz for any
x € (dom L\ kerL) N 99, Xe€(0,1);

Nz ¢ ImL for any x € ker L N 9

deg (IIN|, ., ker LN, 0) # 0, where IT: W —
W is a projection such that ImL = kerIl. Then, the
equation Lz (t) =
domL N Q.

(ii)
(iii)

Nz(t) has at least one solution in

II. MAIN RESULTS

Lemma 6: Suppose (H1) holds. Then:
(1) ker L = {x(t) cdom L : x(t) = et ! 4 ot 2,
for all t € (0,+00), c1,c2 € R}.
(i) ImL = {w eW : ljw=0= ng} where

w = ZM/ — s)w(s)ds,

ngw:/ ds—//t—s

Proof: (i) Consider the homogeneous boundary value
problem, D, x(t) = 0. Since 3 < a < 4, let the solution
2(t) = et 1 4 cat® 2 4 3t 73 + eqt @4,

Using the initial condition £(0) =0 = ¢4 = 0.
Then, z(t) = c1t®* ™! + cot® ™2 + c5t* 3.

s)dsdA(t).

_ F(a)t?  col'(a—1)t  c3D(a—2)

De3a(t) = 2

or () T(3) e T
DS73x(0) = 0 =c3=0.

Hence, x(t) = ¢t ' +cot* 2

Apply the boundary condition to obtain
D ?alt) = el (@)t + exl(a = 1)

Z,L% 0+ z 51,

el —1) = 10 («x Z pi i+ el (a = 1)
=1

D§72x(0) = o' (e — 1)

CQF(CY_].(]._Z[LZ) = '« ngz_o

domi=1, Y & =0. )
=1 =1

and

al(e) <1 - /On tdA(t)) =l — 1) /077 dA(t) =

n n;
/ tdA(t) = 1, / dA(t) = 0. )
0 0

To prove (ii), suppose w € Im L, then there exists
z(t) € dom L such that

Lx(t) =w (6)

Solving the equation (6)
z(t) = IS, w(t) + et 4 ot 2 fest® P+ egt® ™t (7)

Applying the initial condition z(0) = 0 =
equation (7) gives c3 = 0,c4 = 0, thus

De32(0) to

z(t) = I w(t) + et 4 et 2 (8)
Apply the boundary condition to equation (8),
DE72e(t) = DS (I w(t) + ext™™ o+ et
= /t(t —s)w(s)ds + c1T(a)t + o' — 1).
0
From the bounrcrllary condition

DS‘IQx(O) = Z uiDgJ:Qx(fi), we have
i=1

col'(a—1) Z“l(/ — s)w(s)ds+ )

al(@)é; + col'(a — 1))

hence,

(10)

Z,ul/ (& — s)w(s)ds =0 = w

To obtain IIyw, apply the boundary condition
n
Dy a(+o00) = Dy *x(t)dA(t)
0
to z(t) = I, w(t) + et + et 2,

then, D '2(t) = Ig, w(t) + el () + M.
¢
Dy a(+00) = tiigloo (/0 w(s)ds + 1T ()
N CQF(OL - 1))

[ L

+aT(a) /0 tdA(t) + exT (o — 1) /0 " aAq).

s)dsdA(t)

Hence,

/ w(s)ds+ciT(a //t s)w
0 o Jo

and

v [ fic-om

Conversely, for any w € W satisfying (10) and (11),

take x(t) = I§, w(t), then x(t) € dom L and DF, x(t) =
w € Im L. Thus, we have shown that InL = {w € W :
le = HQ’UJ = 0} |

Definition 7: Determinant

(s)dsdA(t)+ci T ().

Y

Hle*t
Hlte_t

HQBit
Hgte_t

A= a1l a2 (12)

a21  a22
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We apply (10) and (11) to (12) to obtain
m n

ay] = Zuie_& —1, a2 = —/ e_tdA(t).
i=1 0

m n

ag = Zui(2 +&)e S =2, ag = —/ (2+t)e "dA(t)
i=1 0

A = aj1a22 — a12a21

Deﬁnition 8: Let ¢1, P2 W — W such that

¢1w = (a22H1w — Cl21H2w) t, gbgw = %(CLHHQ’U) —
a2Iliw)e™t. Tt is easy to show that: ¢1(p1w(t)) = ¢1(¢),
P1(g2w(t)) = 0, p2(P1w(t)) = 0 and ga(dow(t)) = ¢2(?).

Lemma 7: Suppose (H7) holds, then L : dom L C X —
W is a Fredholm operator of index zero.
Proof: We show that dim ker I, = codim ImL.
Let P: X — X and II : W — W be linear projections
defined as

Px(t) = ﬁDgﬂ:lx(O)t‘l_l + ﬁng%(o)t&—?,
Mw = $rw(t) + (p2w(t))t, for any = € ker L.
P?x(t) = P(Px(t)) = Px(t).

P is a continuous linear projection operator such that

kerL = ImP, x = x — Px + Px, where Px € kerL ,
x — Pz € kerP then X = ker P @ ker L. From the way the
operators ¢ and ¢ are defined, II is a linear operator. From
(8), we can deduce that, given TTw = ¢1w + (dow)t

Tw = (1w + (pow)t = ¢1(Tw) + ¢o((Mw))t = Mw.
(13)

Thus, II is a projection operator. Given w € W such that

w = w + (w — Iw), then ITw € I'm II and

O(w — Hw) = Tw — M?w = w — Hw = 0. Similarly,

IT; (w — Hw) = y(w — Mw) = 0.

Therefore, (w—Tw) € ImL = ker II. If w € ImLNIm 11,

then w = Ilw = 0. Consequently, W = ImIl & ImL and

dimker L = codim ImL = 2. Therefore, L is a Fredholm

operator of index zero.

|
Let (X, | - |) and (W,]| - ||) be real Banach spaces. Let
x = {a(t) 200, D5 (o). D 2000,
|lz(8)]
Dy e C(0, < )
or La(t) (0, 4+00), §1>1181+ta 400
| D5 ()] | D5 *x(t)]
< +00, 00,
oo 1412 N ERTE
Dy a(t
50 o)
t>0 1+te72
and W = L'(0, +oc) with norms
lz(®)l|x = max{||z(t)llo, 1D53=(#)llo, 15>z (t)]lo,
IDg ()0}, Ilwllw = w]r: where
l=(0)] Dy Pa(t)]

— |
lz(®)llo = sup;so 157e- 1055 2 (t)llo = supso —z—

|Dg 2 (t)]
HD0+ z(t)|o = SupP;~o fﬁtj’

|Dog "z()]
HD0+ (t )|_!_0 = SUP¢>o fﬁﬁ and
wllzr = [ [w(t)|dt.

Lemma 8: Let L, = L|gom Lrker p : dom L Nker P —
ImL and Kp : ImL — domL Nker P such that
ﬁ fot(tfs)o‘*lw(s)ds7 w € I'mL, then,
Kp is the inverse of Lp and | Kpw|x < |Jw|L:-

Proof: To Show that Kp = L;,l. Given any w €
ImL Cc W, let Kpw = I§, w. Then,

Kpw=I§w=

(LyKr)wlt) = D, (Kpuw(t) = DE, I, w(t) = w(). For
x(t) € dom L Nker P, we have
(KpLp)a(t) = ﬁ /O (t — 5)*LDg, a(s)ds

= x(t) + e t® ™t + ot 2

It follows that P(KpLpz(t)) = 0 since z(t) = c1t* 1 +
cot® 2 € ker L = ImP.

Px(t) = x(t) and (KpLp)x(t) = x(t) — Px(t). Therefore,
z(t) € dom L Nker P, hence (KpLp)x(t) = x(t). Thus,
Kp is the inverse of L|jom 1.0 kerp = Lp.

Next we show that || Kpw||x < ||wlL:.

/t (t—s) !
o 1+t

1
< s llwllee < flwllzs,

ey

1 bt —s)?
DYTPK = d
D87 Kpulo =sup s | [ 50w

[ Kpw|lo = sup
t>

P o) w(s)ds

< Hy”Lla
)
o 14ta-t

t
/ _wls)
o 1+to2

We conclude that ||Kpwl||x < ||w| 1 for any w € ImL. &
Lemma 9: Assume that (H3) holds and €2 C X is an
open bounded subset such that dom L N Q # 0, then N is

L-compact on 2 where N : Q — W.

Proof: We first show that IIN () is bounded. Given
that  is bounded in X, there exists a constant M > 0 such
that ||x||x < M for any x € Q. Then by (Hj3), we obtain

|H1Nx| = ’Z“’/
Da_zx(s) Dgﬁ:lx(s))ds‘

< Sl [ ozl

| DG (s)]
145272

w(s)ds

1Dg* K pwllo = sup < lwllzr,

1
o I'(2)
and

IDg; ' K pwllo = sup
t>0

< flwlzr

i = 8)f(s,2(s), Dg*a(s),

+ pas) + p;,(s)‘)ds

<> Ll ((lealiza Dozl os e,
=1

lpallzs ) max{lie®llo, DG 2 (®)llo,

1057200, I D5 2(t) o} + psl 22
< Olzflx + llpsller = M,
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|H2Na:|=\ / f(s,2(s), Dy *x(s), Dy 2 (s), Dy ta(s)  Hence,
0

n ot |[KpnNz(t), | 1 Lt —s)! _ z(s))ds
s — [ [ €= 95 (500, 057000, D), T o, e mNaGe
0 Jo 1 +o0
D3 a(s) ) dsd (D) < (M) nNa(s)s
o0 1
< ‘/0 f(s,{E(S),Dg;sx(s),DS‘:QZ'(S),DS[J:lx(S) < @(Ml +M)7
as| +| [ [ = )7 (s.25), Do), DS KpuNa(®)] | 1 [ (t— s>
) ‘ /0/0 ( 0 + 1?;2 _'F(?’)/o (I~ I)Na(s)ds

Dg:2x(s), Dg‘flx(s))dsdA(t)‘ < /+M(|Nx(s) + |IINz(s)|)ds
0

S/ ’f(&x(S),DSI?’JC(S),DSIQm(S),D(?le(S) = (INz(t)[|zr + [TINz(t)|| 1)
0 < M, + M.

)ds+/0n/0t

1 (s, 2(s), Dg2a(s), DgT2a(s),

DS 2KpuNax(t 1 [T (t—s)!
a1 D6 Prnfial) ’ / =™ (1 m)Na(s)ds
De: x(s)) dsdA(t) 11 to- T@) J, 1+to-
—+oo
< Ollzllx + o5l L2 g/ (INz(s)| + |[IINz(s)|)ds
n rt 0
[ [ ] (sa(6), D5 (). D5 (), <M+ M
0o Jo
DY (s )‘dsdA t and
or () (t) DS K Na(h) C
< GLLJ:H);_'— 1z (P 15 02 = AT (I —II)Nz(s)ds
a—3 a—2 t
+/O /0 ‘f<37x(3)aD0+ x(s)vDoJr J,‘(S), S/ \(I—H)Nx(sﬂds
0
a—1
+ Dia(s)) | dsdA() = (INa(®)]|12 + [TN(®)] 1)
K <
§M1+/ MydA() _ sSMAM
o Therefore, Kp N (€2) is bounded.
— M, since / dA(t) =0 (43) Next, we show that KpyiN is equicontinous on any
0 subcompact interval of (0,+00). Let x € €2, by hypothesis
Thus, (H3),

- INa(s)] = £(s.p. 07 0)] < pr(9) T2 4 o) 1
||HNJ?||L1 = . ‘HN.’E(S)‘dS yD, 45T, > M 1+ s@ P2 1+82
+oo +oo |T| |U|

g/ \Hle(s)|ds+/ Mo Nz (s)s|ds +p3(8) T samt T Pa(8) T pam s (s)
0 0 o
1 _ (8) |1’($)| (S) |D0+ 3$(S)|
< K(|a22|M1+|a21\M1) PRI sa 1+ s2
-2 a—1
1 | DGy " (s)| | Doy (s)|
i WGawlMl + |ai [ My) T e T s es(s).
1 Suppose w > 0 is any real number in (0, +00).
= W(ml” + larz] + [az1| + |ag2|) My := M. Let t1, to € [0,w] such that ¢; < to, then
Thus, TIN () is bounded. KpuNx(tz)  KpuNu(t)
Next we prove that KpN(f2) is compact on (0, +00). It L+t5 L+ tf )
. . AN\ . 1 2 (t — a—1
is .sufﬁc1ent to show that KppN(Q) is: _ (/ (t2 —s) (I — TH)Na(s)ds
(i) bounded; L) \ Jo L+1t5
(ii) equicontinuous on any subcompact interval of (0, +00); t (t; —s)~1
(iii) equiconvergent at infinity. - /0 1+to (I —IN z(s)d‘9>‘
(i). Given any x € Q, g 1 /t2 (ts — s)@1 (I — IO Na(s)/d
- x(s)|ds
Na(t) = f (s.x(s), Dy *(s), Dy %e(s), Dy "e(s) ST )y | 111
t _ a—1
“+o00 + i/ ' &
IN2(8)| 1 :/ (s, 2(s), D= 3a(s), Dy e (s), @ o | 1+13
0 (tl _ 8)(1—1
Dy tx(s))|ds T iy [(I = I)Nx(s)|ds — 0
< Ollzllx + llpsllzr := M. as ty — ty.
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Dy’ KpnNa(t:) Dy’ KpuNa(ti)
1+ 3 1+ 3
1 b2 (tz — 8)2
= =L (I -T)Nxz(s)d
F(3)</0 g~ IDNe(s)ds
bt (tl — 8)2
— | = (I -T)Nxz(s)d
| S - masas)

to o
< [ =oF i - matos
o | 1+t
N /tl (tQ _ 8)2 B (tl _ 8)2
o | 1+13 1+ t3

|[I —TI)Nz(s)|ds —0ast; —to

'DS‘;QKRHNx(tQ) B Dy ?KpnNz(ty)
1+ty7! 1+t
| [
145"
ty
tl — S
— ——— (I —II)Nz(s)ds
|- mate

(I —I)Nx(s)ds

ta
to — s
< ———||(I = II)Nz(s)|ds
< [T v - vt
b tQ—S tl—S
+ a—1 a—1
o |1+15 1+

|[I —II)Nz(s)|[ds — 0asty — to

and
Dy ' KpnNxz(ty)
14072

Dy KpnNa(ts)
1 + ta72

/t2 (I —T)Nux(s )d
S
1_|_t062

7/ (I —T)Nz(s )ds‘
0

ds

1442
- /t2 (I —)Nx(s)
t1
N /tl 1 1
o |1+t 144972

1+t572
[((I —T)Nz(s)|ds — 0 ast; — to.

Thus, KpnN (Q) is equicontinuous.
(49t) To show that Kp N () is equiconvergent
at infinity, consider

+o0 +oo
/ (I =) Nz(t)|dt < / |Nz(t)|dt
0 0

+oo
+ / IIIN(t)|dt
0

S INz(8)][Lr + [[TINz ()] Lo
=M+ M.

Thus, given € > 0 there exists a positive real number K such
that oo
/ (7 — T Na(t)|dt < e.
K
With the given ¢ > 0 there exists a constant {1 > K > 0
such that for any ¢;, to > K; and 0 < s < K,

(t— K)ot . (t—K)?
—_— = m ——— =
1+te t—oo 142

)
t—o0

(t-—K) _ L
M0y e = O and i e =0
(th—s)*"" (ta—s)"" (th — K)* (ta — K)? <
_ , — €,
1+t¢ 1+1t§ 1+ 3 1+ t3
t1 — K to — K 1 1
’(1 _1)—(2 _1) < € and — = — €.
T+t971 141t T4+t972 1415
Therefore, for any t1,t5 > K1 > K >0,
KpﬂHNl'(tl) _ KpﬁnN%(tg)
14t¢ 1415
1 t1 t, — a—1
< / (=" 1y Na(s)ds

2] (t2 _ 5)0471
—/0 W(I—H)Nx(s)ds

€

K
<5 / (I = T)Na(s)|ds

e [T
2 / (I —II)Nz(s)|ds

+
() Jk
€ 2¢e (M + M + 2)e
—— (M, + M —
ST M M+ 505 T(a)
Similarly, we establish that
DS ?KpnNa(t DS KpnNa(t
‘ 0+ Pgilx( 1) DGy P’g,lx( 2) < (My 4 M+ 2)e
1417 1+t5
Di *KpnuNu(t)) D *KpnNu(ta)| _ (My+ M +2)e
1+t 1+ 13 2
and
’D& 'KpnNa(t)  Dii'KpnNa(ts)
14572 1+t57°
< [T= i~ Ny
- - r\Ss S
I S N T
< (My 4+ M)e.

We conclude that KpN(Q) is ‘equiconvergent at infinity.
Hence, it follows that Kpy/N(f2) is relatively compact.
Hence, N is L-compact on €. [ |

Lemma 10: Suppose that (H3) and (Hy) hold, then the
set Q) = {z € dom L|ker L : Lx(t) = ANz(t), A € (0,1)}
is bounded in X provided HO < 1.

Proof: Let x € 1 and Nz € ImL

I, Nz(t) = I, Nxz(t) = 0.

Hence, from assumption (Hy), there exist tg € (0, A3] and
t € (A27—|—oo) such that | D 0r 32(to)] < A1,
|D§; %2 (to)| < Ay and |D§y'z(t1)| < A;. Combining this
with the additive rule of fractional derivative,

t
D8 a(0)] = [P aten) + [ Do)
¢ . 14
<A+ [ |Na(s)|ds (14
ty
= A1 + |[Nz| 1

Volume 31, Issue 1: March 2023



Engineering Letters, 31:1, EL._31 1 14

| D5 2(0)] = |DG (ko) — D' D a(t)]

< |Dg % (to)| + ] / D a(s)ds| (5)
=24, + ||Nz| 1
DGy *2(0)| = | DG *a(to) — DM D 2u(t)|
<|D0+xt0+’/ D¢ ?x(s)ds|  (16)
=34, + ||Nz| 1
From the definition of P, we get
1Pl = g a0y
LS T [(a) OF
1
+ 7DOJr 2r(0)t2
F(a— 1) a17)
@(z‘h + [Nz 1)
1
— (24 N
+F(a—1)( 1+|| ‘r"Ll)
DS (b))
Da—lp t _ ‘ 0+
Dot Pz(t)]lo B T (18)
S Al + ||NIHL1
|D§y 2 (0)t + DG %z (0)]
Da 2P _ + +
” 0+ x( )HO §l>1p 1+ ta— 1 (19)

< Ay + [Nzl 4 241 + || N

and

51DG 2 (0)2 + Dy (0)t|
Da 3P _ + +
| z(t)]lo Sup Ty
1
< 5(141 +[[Nzl|z1) + 241 + [Nz 2
(20)
1Pe(t)x = max{IPx(®)llo, | DEF*Pa(®)l,
1Dg2Pa(t) o, D55 Pa(t) o}
< 1Px(®)lo + | DES* Pa(t)o
D2 Pl + D55 Pt o

5 1
_ (2 . F(a)) (As + |Nal| 1)

2y

" (2+ ml_l)) (24, + | N1,

Observe that (I — P)x € dom L Nker P and LPx = 0. By
definition, the operator Kp : ImL — dom LNker P is such
that for any w € ImL, Kpw = I§, w. Thus

I(I = P)z|lx = [[KpL(I = P)z|/x
<AL = Pzl 1
= ||| s
<INz

(22)

Combining (21) and (22) we get

lellx = 1Pzllx + (I - P)z|x

5 1
< (2 + F(Oé)> (A1 + [[Nz|[ 1)

1
2+ —-—1](24 N 1 N 1
+ (24 oy ) @+ INel) + el

- (123 * ) * T 1>) 4

11 1 1
+ (3 + 1 * sy ) el

= GAy + H|[Nz|[p < GAL + H(O|z[[x + lpslz)

Hence,
(1—-HO)|z|x < GAy + H|ps|| 12
||37H GAl +H||p4||L1
X="1-H6

where

13 1 2

G=|—
( 2 T " r<a1>)

and

H— <” TR LR — )
2 T(a) T(a-1)
. Hence, €27 is bounded provided HO < 1 [ |
Lemma 11: Suppose that (H5) holds, then the set
Oy ={zxe€kerL: Nz € ImL} is bounded in X.
Proof: Let x € Qa, where x(t) = ¢t + cot* 72,

¢1, c2 € R and IT; Nx(t) = o Nz(t) = 0. Since

Nz € ImL = kerII. By (Hs), it follows that |¢;| < B and
|C2| S B.

|D§; 'z (t)]

T+ o2 < |eil ()| < BT ()

IDG (t)]lo = sup
t>0

|lz(t)]
Tlp = su < le1| + |eo| < 2B.
lello = sup =50 < el + feo] <
DG ()]

DS 2%z =su
155 2a(0)l0 = sup o5

< ler|l(@) + |e2|I(a — 1)
= ([(a) + I(a - 1))B.
DG (8o = sup Wﬁiﬂtﬂ)'

< gF(a) + BT'(a—1)

= (F(;‘) + (o — 1)) B.

]| x = max{[|z[lo, [ D§ >0, | D50
1D55 o}
r
< 2B+ ((;)+r(a1))3

+ (I'(a) + (v — 1)) B + BI'(«)
_p+ gf(a) +2T(a — 1)]B.

We conclude that €25 is bounded in X. [ |
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Lemma 12: Suppose that the assumption (H5) holds, then
the set

Q3 ={x €ker L : vAJz(t)+(1-MNIINz(t) =0, A € [0,1]}.

—1, if 2 holds

+1, if 3 holds
and J : ker L — I'mll is a linear isomorphism defined by

is bounded in X, where v =

>

J(clto‘_1 + czta_Q) = —(aglci| — agi|ea|)e™

+

=] =

(—arz|cr| + arr]ea|)te ™,
C1,Co € R.

Proof: If (Hs) holds, x € {23 can be written as
2(t) = 1t 1 + cot® 2, with ¢1,¢0 € R.
If v = —1,\Jz(t) = (1 — \)IINz(¢), A € [0,1]. By using
similar argument as in the proof of lemma 11, it is required
only to show that |¢;| < B and |co| < B.
For instance, in AJz(t) = (1 — M)IINz(t) =0, X € [0,1];
if A=0, then IINz(¢t) = 0, then

1
Z (aggnle(t) — a21H2Nx(t))e_t
1
+ Z( — a12H1Nx(t) + aquNm(t))te_t =0.

Thus,
aggﬂle(t) — (I21H2N.’L‘(t) = 0,
—algﬂle(t) + a11H2Na:(t) =0.

Since A # 0, then IIy Nz(t) = 0 = IIo Nz (t).
By assumption (Hj), we have
Suppose A = 1 then Jz(t) = 0, thus

a22\01| — a21|02|)e_t + —a12|01‘ + a11|02|)te_t =0.

Al al

Since A # 0, it follows that
022|01| - a21|62| =0,
—asler| + arrlea| =0

and we get ¢c; = co = 0.

With A € (0, 1), by the equation A\Jz(t) =

we obtain

(1 — AIINz(t)),

1 _ 1 _
)\[A(a22|01 — 0,21|CQ|)6 t 4+ — 7(112|Cl‘ + a11|62|)t6 t:|

Al
= (1 — /\) [i(aggnle(t) — aglﬂng(t)eft

1
+ Z(—CngHlNI(t) + Cl11H2N$(t)t€t:|

from which we obtain

= (]. — )\)aQQHle(t)

—(1 — )\)amHng(t),

—/\a12|01| =+ )\all\cQ\ = —(1 — )\)amHle(t)
—|—(1 — /\)aHHng(t).

AGQQ‘Cl‘ — )\a21|02|

Since A # 0, then

{ Aler| = (1 = NI Na(t),
Aes| = (1= M Na(t)

Then, if |c1| > B and |c3| > B, then by (2)
0 < A(ler] + Jez2]) = (1 = AL Nz(t) + o Na(t)) <0

a contradiction.

If v = +1, then AJz(t) = —(1 — N)IIN=z(t)), A € [0,1]. We
claim that |c1| < B and |cz| < B.

If this claim would not hold, then by (3),

0<Aer] +ea]) = —(1 = A)(II; Nx(t) + o Nx(t)) < 0
is also a contradiction. Hence, €23 is bounded in X. [ |

Theorem 9: Assume (H;) — (Hjs) hold, then, the BVP
(1) has at least one solution in X provided H® < 1 where
H = (b5 + iy + ) and © = o1 (0) 1+l 2 (011 +

s (®)] + loa(O)ll:

Proof: . Assume 2 C X is a bounded open set such
that U3_,Q; C Q, i = 1,2,3, then by lemma 9 we have
shown that N is L-compact on Q. By applying lemma 10
and lemma 11, we get

(i) Lxz(t) # ANz(t) for any & € (dom L|ger ) N 092,
A€ (0,1);
(i) Nz(t) ¢ ImL for any = € ker L N OS2 where 0f2 is
the boundary of
Lastly, we show that deg{IIN|xe; 1,2 Nker L,0} # 0. To
verify this, we define

H(z,A) = AJz(t) + (1 = MIINz(t).

From lemma 11, we assert that H(xz, \) # 0 ie. if A =0,

then H(z,0) = IINz(t).

If A =1, we obtain H(z,1) = Jx(t).

For any x € kerL N 99, A € [0,1], by the homotopy

property of the Brouwer degree, we obtain

deg{IIN|ker ., 2 Nker L,0} = deg{H(-,0),2Nker L,0}
=deg{H(-,1),2Nker L,0}
= deg{vJ, Q2 Nker L, 0}
# 0.

By theorem 6, it follows that Lx(t) = Nz(t) has at least
one solution in dom LN in X. [ ]

III. EXAMPLE

Example 1. Consider the boundary value problem:

D () = f(t:2(t), Dgya(t), D, a(t), Diyat)).

1 3 1 32
2(0) = 0 = Dg, (0), D§+x(0) — 4D, a(3) 3D} a(3)
(H_a: +00) / D0+$ A(t), t € (0,400),
(23)
A(t) = 6(t* —t), and
1 3 5
£ (t.2(t), D, 2(t),Dg, (1), D, (1))
1 _ysinz(t)
B0 14¢3
. 1
1 _,,sin (D&x(t))
¢ 1+1t2
1 D0+I( )
Z et 0T e (0,1
N 10° 1+1¢2 (0.1
1 g cos(D(?er(t))
306 e (1, 400)
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Corresponding to the BVP (1), here

7

a=g, =4 =

5 m=2,n=1

1 2
_3751 = 5752 =5

, We check assumptions H;
a solution for the BVP.
H,: Resonance assumption.

— Hy for the existence of at least

We see that
Siamo= 1 Yl m& = 0, [ tdA(t) = 1, and
fol dA(t) = 0. So ,assumption H; holds, the BVP is a

resonant problem.
Next, we show that A = aj1a99 — a12a21 # 0

A = (—0.1091)(31.2437) —
= —3.3834 # 0

(0.6218)(—0.0407)

The assumption Hy holds.
Assumption Hs: We show that HO < 1. Let,

pl(t) = ?1()6_4t>p2(t) = %8_42[)3“) - 106_5t7
pa(t) = g5¢ %, ps(t) =0

© = 0.00491 + 0.01227 + 0.01987 + 0.00055 = 0.0376.
H = 6.5532.

HO =0.2464 < 1
Hence, the assumption Hj is satisfied.
Next, we verify assumption Hy.

HlNﬂf t
31 &2
= (&1 — s)Nz(s)ds + ug/ (&2 — s)Nxz(s)ds
0 0
3 1 1 3 5
—4 / &~ 9)f(s.2(), DF 2(s), Dy a(s), D (s))ds
2 3 5 3
-3 (3 - ya(s), Dgya(s), Dgyx(s), Dgya(s))ds.

If D0+m( s) > A, then

f(s z(s), D0+x( ) D0+$( ),Dngx(s))
> 6—55A1 N e —4s
10 100

If D0+x( s) < —Aj, then
1 3 5
1(s,2(s), Dg, (), Dg, x(s), Dj, x(s))

7 —4s
me )dS

1
—4s = —5€A
/ 100 10 1)ds

—5sA1 _

Setting A; = 3 then Iy Nz (t) # 0.
Next, we show that IIo Nz (¢) # 0

ngsz):/ ds—/ / (t— s)w
[k
+/w—1

/ / (t — )(zge > )dsdA(1)

where A(t) = 6(t% — t),
= 0.01987A1 —0.01718 # 0.

(s)dsdA(t)

e 1)ds

1_7

100

3sd8

So, the assumption H, holds.
Lastly, we verify assumption Hs.

1

Bl 7 1 7
M Nz(t) =4 ——s) (e —eT (T (5
1Nz (t) /O G=(qpe "+ ¢ " @r G

+ ch(g)))ds - 3/0(52% - s)(%e

1 . 7 5
+ 1o (clf(i)s—&—cQF(g)))ds

= —0.0029 — 0.0030c; + 0.6267cs.

—4s

1
7 1

Iy Nz (t) = / —e L —e
; (100 10

+ eI (= )))ds—l—%/ e 3%ds

- 3—10/0 /1 (t — s)e 3%dsdA(t)

= 0.01276¢; + 0.02641cy 4 0.00662.
IT; Na(t) + TIo Nz (t) = 0.00372 + 0.00976¢;1 + 0.65311¢5.

Let B = 10. Then if |¢;| > 10 or |ca| > 10 then,

HlNl‘(t) + HQNZC(t) >0

Hence, the assumption H5 holds.

Since conditions (H; — Hj) of theorem (9) hold, the
boundary value problem (23) has at least one solution in X.

Ty

_58(01F( 5

Example 2. Consider the boundary value problem:

Dé,a(t) = f(t2(), Dy a(t), Diya(t), Do (1)),

subject to:

1 3 5 3 2 2 3
2(0) = 0= Dg,z(0), Dg,2(0) = 3 Dg, () — 3 Dg.=(1)
(H_a: +00) / D0+$ A(t),t € (0,400)
(24)
where A(t) = 4(t3 — t),
1 3 5 1 x(t)
7 (. 2(). D, 2(0). D (1), D (1)) = gge¥eos( 7
1 0;+5U(t)
+1gM®e Dy (t) + Tha(t)e sin( e )
_ [ 1, telo,1] .
M =10 e to00) °
[0, te]o,1]
R =11, te (1, +o0)
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Corresponding to the BVP (1),
7 5 2
o= 57,“1 = ga:uQ = _5751 = 5
We can easily verify that (H;) — (Hs3) are satisfied .
© = 0.06842, H = 6.55309 and HO = 0.4484 < 1.
Also,

A = (—0.1293)(0.8923) —
=1.4538 #£ 0

(28.74)(—0.0546)

Next, we verify the assumption (Hy). Take A; = 10. Then,
3
if |Dg, a(t )| > Ay holds for any t € [0,1], then we have

f(six(s) Do+x( s), ?{)er( s), D()+a:( s))

If D0+:c( s) < -4 holds for any t € [0, 1], then
F(s,2(s), 0-51- z(s), D§,a(s), D5y (s))

< 206 - SAl So
HlN{E(t)
&1 &2
:Ml/ (& —S)Nl‘(s)dS-i-uz/ (&2 — s)Nxz(s)ds
0 0
5 (%2 1, 1 .,
>§/0 (5 s)(l—oe A - 20¢ )ds

2 ! 1 738 1 725

=0.02922A4; — 0.01219 > 0.
Therefore, II; Nx(t) # 0.

—3s
10 30¢ 4

00 7 —3s
+/1 @e ds
1 t 7
— —8)(— ‘——A At
| [ e=age™ - Avasaaw

=0.07429A4; — 0.04299 # 0.

1o, 1
H2N$(t)> (76 A1

So, the assumption H, holds.

Choosing B = 25, if |¢1| > B,|ca| > B, then (Hj) also
hold. Since conditions (H; — Hj) of theorem (9) are satisfied,
the boundary value problem (24) has at least one solution in

X.

IV. CONCLUSION

The study has established existence of solution for a
resonant fractional order multipoint and Riemann-Stieltjes
integral boundary value problem on half-line with the
dim ker L = 2 using coincidence degree theory. The result
was illustrated with examples. The outcome of the research

will further enrich the existing literature in the field.
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