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Abstract—Crack is one of the most common structure

distresses which often appear in the engineering construction
systems, and thus crack detection and evaluation is particularly
important in structural health monitoring. However, defects in
the captured crack image occur frequently due to the complex
circumstance conditions, bringing difficulty to identification
work and observation of crack property. Therefore, it is
necessary to inpaint the crack before detection and evaluation.
In this paper, we propose a crack inpainting network based on
segmentation model. The network introduces segmentation
results as prior knowledge, which can improve the inpainting
results. The experimental results have demonstrated that the
proposed network can inpaint the crack structure with high
accuracy.

Index Terms—Crack Inpainting; Segmentation Model;
Generative Adversarial Network; Crack Segmentation
Perceptual Loss

I. INTRODUCTION
RACKS are the form of damages commonly appear in
the engineering construction systems. Large quantity of

manpower and material resources consumption have been
plunged into engineering construction system maintenance,
including inspection, repair and maintenance. Cracks are one
of the most significant performance indexes of safety
problems in road, bridge and other structures. Crack
detection is one of the effective ways to solve the
maintenance structure problems like roads and bridges.
However, visual defects often occur due to the terrible
environment, e.g. light insufficiency, structural ruins,
occlusion and so on. These defects demolish the crack and
increase the difficulty of crack detection and evaluation. It is
necessary to develop an approach to repair this information
that is missing for environmental reasons. Image inpainting
techniques are suitable for these tasks. Although crack
detection methods have become a hot topic over the past few
years, less attention has been paid on crack inpainting [1-3].
Traditional image inpainting methods cannot deal with

ruined crack images. Early works attempt to utilize
background patches close to the defect of crack regions to
solve this problem. Visual Memex [4] uses context
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information to nonparametrically model object relations and
predict mask objects in scenes, while [5] uses implemented
Bezier-exemplar hybrid based image inpainting method to
eliminate out the wrinkle of the image. However, as these
approaches assume the lost information can be found in the
background area, they cannot hallucinate complex and
non-repetitive structure contents, especially high-level
semantic features.
Recent years, deep learning methods make rapid

progresses in image processing. Convolutional neural
networks (CNN) [6] and generative adversarial networks
(GAN) [7] formulate the image inpainting as a background
conditioned generation problem. The high-level semantic
features produced by neural network are very likely to
replace the local and background features utilized in
traditional methods.
Contextual Autoencoder [8] introduces an encoder

-decoder architecture network and a code-to-code layer to
generate plausible inpainting results. GLGC [9] introduces
local and global discriminator to determine the quality and
global coherence of the local patches. Contextual Attention
[10] introduces contextual attention to consider the
patch-wise correlation, which enhances the image coherence
and quality. Partial Convolution [11] redesigns the
convolutional kernel and introduces an iterative mask
generation process to improve the inpainting performance.
Gated Convolution [12] adapts soft gating process to
adaptively learn the mask generation process, reducing
checkerboard effect and artifacts. Probabilistic Diverse GAN
[13] adapts a feature representation method to give
conditional information to a generator network to produce
pluralistic results. Edge Connect [14] introduces a two-stage
method which firstly generates edge map of the defect
regions and then utilizes this edge map to provide prior
information for the patch generation process. Furthermore,
these inpainting methods are designed for normal objects like
natural scene, faces, and so on. When it comes to crack, it is
not suitable and cannot get higher performance as they don't
take crack characteristics into account.
To this end, we present CrackSegConnect, a crack

inpainting network based on segmentation model. The
network include two stages. The first stage is an encoder
-decoder architecture network, noted as Crack Structure
Reasoning Network, which is used to reason the edge map of
the masked crack region. The second stage is a generative
inpainting network with gated convolutions and self-attention
branches, noted as Crack Image Completion Network, which
is used to generate high quality crack. Moreover, the network
introduces segmentation results as prior knowledge, noted as
Crack Segmentation Perceptual Loss, which can further
improve the inpainting results.
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Fig. 1. The overall network structure. CrackSegConnect consists of two stages, Crack Structure Reasoning Network and Crack Image Impletion Network. The
first one takes a crack image and mask as input and output the predicted structure. The second one concatenates the mask image and the predicted structure as

input and output the inpainting result.

Experiments have demonstrated that the proposed network
can generate high-quality crack inpainting results. Our
contributions are summarized as follows:
1) We propose Crack Segmentation Perceptual (CSP) loss
which can facilitate crack inpainting. With the help of CSP
loss, our network can generate high-quality crack
inpainting results, and thus the missing crack information
can be effectively inpainted.
2) We introduce several techniques including gated
convolutional block and self-attention mechanism to
improve the inpainting method. Ablation studies show that
these techniques can improve the crack inpainting
performance.
3) Our unified feed-forward generative networks achieve
high inpainting performance and produce high-quality
results on cracks datasets.
The rest of this paper is organized as follows. Section II

introduces the proposed network architecture. Section III
presents experiment set and Section IV presents their results.
Finally, Section V summarizes the conclusions and future
work.

II. CRACKSEGCONNECT ARCHITECTURE

Our overall architecture follows the backbone network
similar to the method proposed by Kamyar Nazeri et al. [14].
We propose crack inpainting networks consist of two stages:
1) crack structure reasoning model that generates the crack
edge map of the mask region, 2) crack image completion
network that generates inpainting results of crack image via
generated edge map and background information. Each stage
consists of a generator and a discriminator. We introduce
several techniques such as self-attention block and
simultaneously propose a new loss function such as crack
segmentation perceptual loss to improve the crack image
inpainting performance. Fig. 1 shows the overall structure of
our method.

A. Crack Structure Reasoning Network
The Crack Structure Reasoning Network follows the

generator-discriminator architecture. The generator consists
of an encoder block, 8 layers residual block and a decoder
block. The discriminator is a patch-GAN discriminative
network consists of 5 convolution layers. Let Ge be the edge

generator, De be the edge discriminator, Igt be the input
ground truth image, Igray be the grayscale image of Igt, and Egt
be the edge maps. For the mask image, we set 1 for the mask
region, 0 for the background. Let the mask be M, then the
mask of ground truth grayscale (1 )gray grayMI I M  .
 denotes Hadamard product. The mask of ground truth
edge map is (1 )gray grayME E M  . Then, we use the edge
generator to predict the edge map Epred=Ge(MIgray, MEgt, M).
The Egt and Epred with conditional information Igray are the

inputs of the discriminator. The discriminator predicts
whether the generated edge map is of high quality. The
network is trained with an objective function, which is
comprised of adversarial loss, feature-matching loss and
smooth-L1 loss.

- - 1 1SRNG a SRN a SRN FM FM l lL L L L     (1)

where a-SRN=1, FM=10 , l1=0.05 are all regularization
parameters. The adversarial loss follows the conditional
GAN formulation and is defined as

- ( , ) log ( , )
log 1 ( , )
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I e gt gray

L D E I
D E I
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The feature-matching loss LFM compares the activation
maps in the intermediate layers of the discriminator. This
stabilizes the training process by forcing the generator to
produce results with representations that are similar to real
images. This is similar to perceptual loss [15], where
activation maps are compared with those from the pre-trained
VGG network. The feature matching loss LFM is defined as

( ) ( )
1 1

1 ( ) ( )L i i
FM e gt e predi

i

L D E D E
N

 
   

 
 (3)

where L is the final convolution layer of the discriminator, Ni
is the number of elements in the i’th activation layer, and

( )i
eD is the activation in the i’th layer of the discriminator.
Intuitively, if the output and ground truth images are

similar, their high-level semantic features are closer.
Therefore, we apply L1 distance to measure the similarity of
the feature maps.

B. Training-Testing Framework
The architecture of Crack Image Completion Network is
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similar to the Crack Structure Reasoning Network, that is the
generator-discriminator architecture. The generator consists
of an encoder block, 8 layers residual block and a decoder
block. The discriminator is a patch-GAN discriminative
network consists of 5 convolution layers.
Given the input ground truth image Igt, the input of

network is the mask image (1 )gt gtMI I M  with the

condition edge map (1 )merge pred gtE E M E M    . Epred
is the output of the crack structure reasoning network. Let Gim

be the inpainting generator of the crack image completion
network, and Dim be the discriminator, we get

( , )pred e gt mergeI G MI E .
Then our overall loss function of Crack Image Completion

Network is composed of adversarial loss, perceptual loss, L1
loss, style loss, and the proposed crack segmentation
perceptual loss.

- - 1 1ICNG a ICN a ICN perc perc l l st sty csp cspL L L L L L         (4)

where a-ICN=1, perc=0.1, l1 =1, st=250, csp=0.05 are
regularization parameters.

The adversarial loss and L1 loss are similar to the Crack
Structure Reasoning Network (Section II.A). The perceptual
loss and style loss [15, 16] are two common loss functions in
the image generation field. Perceptual loss uses VGG-19
network to extract feature maps to compare semantic
similarity. It is defined as

1 1

1 ( ) ( )perc i gt i predi
i

L I I
N

 


 
   

 
 (5)

where i is the activation map of the pre-trained network
layer i. We use activation maps from different layers of the
VGG-19 network pre-trained on the ImageNet dataset [17] as
i. These activation maps are also used to compute style loss
which measures the differences between covariances of the
activation maps. Given feature maps of sizes Cj×Hj×Wj, style
loss is computed by

1
( ) ( )style j j pred j gtL G MI G MI      (6)

where jG
 is a Cj×CjGram matrix constructed from activation

maps i. Style loss is shown by Sajjadi et al. [18] and it is an
effective tool to combat “checkerboard” artifacts caused by
transpose convolution layers [19].
The proposed crack segmentation perceptual loss Lcsp

compares the activation maps output of the intermediate
layers of U-net crack segmentation model. It plays as a metric
to the accuracy of the generated crack. The details of crack
segmentation perceptual loss will be discussed in Section
II.C.

C. Crack Segmentation Perceptual Loss
1) Crack Segmentation Network as a Feature Extractor
High-level crack semantic information is complex and

hard to evaluate. The most common methods are pixel-wise
metrics like MAE and SSIM [20]. However, these metrics are
designed for comparison of clear crack images, lacking
guidance on the process of crack image generation.
Pixel-wise metrics might be good as indices at evaluation
stage. However, during training stage, low quality inpainting
results have extremely low scores on these metrics. These
indices also fail into translation invariance and rotation

invariance. Recently, high level semantic information is
widely applied for image generation. This high-level
semantic information is feature maps extracted from a
well-pretrained network, like VGG [21] and inception [22]
network. Therefore, the high-level information of crack
image can also be represented by a pre-trained feature
extractor. Fig. 2 shows that crack segmentation network
works as a feature extractor through weighted sum of the
feature maps.

Fig. 2. Feature extractor of crack images.

VGG and inception network are two classical
classification models. When it comes to crack images,
classification model may not be available. For convenience,
self-supervised methods like semantic segmentation should
be taken into account. Semantic segmentation aims to
consider the position and distribution of objects in images,
and thus it can learn feature maps for representing the shape
of objects. Therefore, trace and structure of the crack can be
learned by a segmentation model. The feature maps extracted
by a well pre-trained crack segmentation model can be
utilized as a fine high-level semantic information of crack
images.
There are many semantic segmentation methods like U-net,

Ladder-net and Deep Lab-v3 etc. In this paper, we choose
U-net owing to its high efficiency. We adapt U-net model
pre-trained on crack image dataset as the feature extractor,
noted as CrackUnet. The CrackUnet architecture consists of a
symmetric multi-scale encoder and decoder. The multi-scale
encoder uses convolution layers to extract the feature and
down-samples the input image, then outputs the multi-scale
feature codes. The decoder up-samples and transforms the
multi-scale code information from source domain to target
domain and uses transpose convolution layers to calculate the
output images. The U-net is trained by L1 loss, BCE loss, and
dice loss [23]. We adopt crack image and its segmentation
label as mask pair of train images.
2) Crack Segmentation Perceptual Loss
Image segmentation models aim to capture the position

information, so crack image segmentation models can
provide relatively accurate information of crack and
background. Feature maps extracted from U-net models can
be an evaluation metric for inpainting results and real images.
Given predicted image Igt and its ground truth image Ipred,

both feed them into the model. Let ibe the ith layer activation
feature map inferred by CrackUnet, we define the crack
segmentation perceptual (CSP) loss by weighted sum of
distance i as

1

1 ( ) ( )csp i gt i predi
i

L I I
N

 
 

   
 
 (8)
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Fig. 4 shows the illustration of CSP loss through
CrackUnet. If the inpainting images and ground truth images
are closer at high-semantic feature space, the intermediate
embedding of the feature extractor should be the same. The
intermediate layer feature maps are similar, proving that
high-level information represented by the CrackUnet is the
same. It could work as a superior metric for crack inpainting
quality. Experimental results show that the crack inpainting
results can be improved with the CSP loss, as discussed in
Section IV.

Fig. 3. Illustration of CSP loss through crack U-net.

Moreover, inspired by the superiority of gated convolution
and self-attention, we adapt gated convolution and
self-attention for crack inpainting, which also discussed in
Section IV.

III. EXPERIMENTS SET

A. Dataset
The dataset used in this paper is Concrete Crack Images for

Classification Dataset and Crack Segmentation Dataset.
Concrete Crack Images for Classification Dataset

(http://dx.doi.org/10.17632/5y9wdsg2zt.1) is proposed by
the researchers from Middle East Technical University. It
contains 20000 images of road cracks and is separated into
training set of 16000 images and validation set of 4000
images. Crack Segmentation Dataset (https://www.kaggle.
com/lakshaymiddha/crack-segmentation-dataset) contains
around 11300 images. We divide it into training set of 9600
images and validation set of 1700 images. Fig.4 shows some
typical examples of the datasets.

Fig.4. Sample of crack. Line 1: Concrete Crack Images for Classification
Dataset. Line2,3: images and their masks in Crack Segmentation Dataset.

Concrete Crack Images for Classification Dataset (dataset
1) doesn’t provide segmentation labels while Crack
Segmentation Dataset (dataset 2) provides segmentation

labels. For dataset 1, we apply canny operator to get the edge
map of crack image. For dataset 2, we use the segmentation
labels as edge maps.

B. Training Strategy
We use PyTorch to implement the network and run the

experiments. The input size to the model is set to 256×256.
The model is optimized using Adam optimizer. Generators
G1, G2 are trained separately using edge map learning rate
10-4 until the losses plateau. We decrease the learning rate to
10-5 and continue to train G1 and G2 until convergence.
Finally, we fine-tune the networks by removing D1, then
train G1 and G2 end-to-end with learning rate 10-6 until
convergence. Discriminators are trained with a learning rate
one tenth of the generator.

IV. EXPERIMENTS AND ANALYSIS

In order to demonstrate the inpainting performance of our
proposed network, we compare the quantitative and
qualitative results with several baseline models, including
Edge Connect [14], Gated Convolution [12], Contextual
Attention [10] and Patch Match [24]. For ablation study, we
explore the property of our techniques, including CSP loss,
gated convolution and self-attention.
For the crack inpainting results, they are evaluated by the

following metrics: 1) peak signal-to-noise ratio (PSNR), 2)
structural similarity index (SSIM), 3) mean average error
(MAE).

A. Qualitative Comparison and Quantitative evaluation
Results compared with several image inpainting models

are shown in Fig. 5. The edge map of the mask crack is
generated clearly and sharply by the crack structure
reasoning network. By introducing self-attention, the crack
structure can be reasoned well, providing better precondition
to the crack image completion network. The completion
network takes generated crack structure as precondition and
can achieve high-quality crack. One-stage methods [12, 10,
24] only concentrate on the background information and loss
the information of crack traces. These one-stage methods
obtain unsatisfactory inpainting results with many residual
masks, as shown in Fig.5 (e~g). In contrast, two-stage
methods, including EdgeConnect [14] and our method, can
obtain satisfactory results by implementing crack structure
reasoning network and crack image completion network, as
shown in Fig.5 (c~d). Moreover, by introducing CSP loss,
our method can produce both precise and high-quality
inpainting results. Especially when masks are relatively large
and only very limited crack information is visible, our
method can generate more accurate crack information. As
CSP loss forces the network to consider the accuracy of the
crack structure, lost crack information of the mask area can
be reconstructed at a great extent. Obviously, the thin cracks
can be inpainted in Fig.(c), but they are defective in Fig.(d).
More comparative samples with EdgeConnect [14] are
shown in Fig.6.
The evaluation values for crack inpainting results from

dataset 1 and dataset 2 are respectively shown in Table 1 and
Table 2. Obviously, our method can achieve relatively higher
scores than other methods, which demonstrates that our
proposed method is very successful in crack inpainting.
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(a) (b) (c) (d) (e) (f) (g)
Fig. 5. Result samples by our method and comparative methods. (a) original images, (b) mask images, (c) our method, (d) EdgeConnect [14] , (e) Gated

Convolution [12], (f) Contextual Attention [10], (g) Patch Match [24]

TABLE I
QUANTITATIVE RESULTS FROM CONCRETE CRACK IMAGES FOR

CLASSIFICATION DATASET (DATASET 1)
(* HIGHER IS BETTER, † LOWER IS BETTER)

Model/metric PSNR* SSIM* MAE †

CrackSegConnect (Ours) 32.18 0.82 0.0176
EdgeConnect [14] 29.93 0.79 0.0184
Gated Convolution [12] 27.65 0.74 0.0203
Contextual Attention [10] 26.45 0.76 0.0210
Patch Match [24] 24.30 0.67 0.0304

TABLE II
QUANTITATIVE RESULTS FROM CRACK SEGMENTATION DATASET (DATASET

2) (* HIGHER IS BETTER, † LOWER IS BETTER)

Model/metric PSNR* SSIM* MAE †

CrackSegConnect (Ours) 30.56 0.89 0.0385
EdgeConnect [14] 26.80 0.84 0.0404
Gated Convolution [12] 25.82 0.62 0.0448
Contextual Attention [10] 24.37 0.68 0.0472
Patch Match [24] 21.65 0.54 0.0243

B. Ablation Study
For ablation study, we conduct controlled trials which

study the effect of CSP loss, gated convolution, as well as
self-attention for crack image completion network and crack
structure reasoning network. Results show that both these
techniques can improve the performance of the inpainting
quantitatively and qualitatively.
1) The ablation study on CSP loss for crack image

completion network
CSP loss is a precise evaluate metric totally designed for

crack images, and thus it benefits the training a lot and can
generate clear and sharp crack inpainting images. For
different layers of crack segmentation model, guidance of the
loss to the network training process is different. We study the
inpainting performance by using different layers of model.
For experiment convenience, we only use the crack image

pair, including its edge map and ground truth, to train the
crack image completion model.
To explore the effects of CSP loss in different layer, we

respectively use each single layer and some layer
combination to train our model (CrackSegConnect Network).
More detailed results are shown in Fig.7. It’s shown to us that
the network obtain best PSNR using the 3rd and 7th layer of
CrackSegConnect. We observed that 3rd layers and 7th
layers are respectively the final layers of encoder and decoder.
The reason of this phenomenon is that the final layers can
represent high-level global information, which can guide the
inpainting network to form better results.
2) The ablation study on gated convolution and

self-attention for crack image completion network
Gated convolution can handle the defect regions better

than vanilla convolution. Self-attention layers have powerful
capacity to associate information of different positions. The
experiment shows that it can achieve better inpainting results
with self-attention layers. We compare the baseline model
and the improved model with self-attention and gated
convolution. Moreover, to measure the upper bound of the
crack image completion network’s capacity, we only train the
network with ground truth crack edge information (ground
truth label), rather than generated edge information by crack
structure reasoning network. The quantitative results are
shown in Table III.

TABLE III
QUANTITATIVE RESULTS OF CRACK IMAGE COMPLETION NETWORK WITH
GATED CONVOLUTION AND SELF-ATTENTION (TRAINED WITH GROUND

TRUTH LABEL). (* HIGHER IS BETTER, † LOWER IS BETTER.)

Model/metric SSIM* MAE †

Crack Image Completion Network 32.30 0.0138
Crack Image Completion Network +
Self-attention + Gated Convolution 32.93 0.0128
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(a) (b) (c) (d)
Fig. 6. Result samples from our models and EdgeConnect. (a) original images, (b) mask images, (c) CrackSegConnect (our method), (d) EdgeConnect [14].

Fig. 7. Left: effects of different CSP loss. Right: learning curves of CSP loss compared with baseline model.

3) The ablation study on self-attention for crack structure
reasoning network.
Self-attention layers have powerful capacity to associate

information of different positions, and thus are very suitable
for edge model to generate clear edge maps. For comparison,
we test the effects of Crack Structure Reasoning Network

with and without self-attention. For generated edge maps, we
measure the quality of our results using three metrics,
including precision, recall, and F1 score. The quantitative
results are shown in Table IV, which presents our model can
achieve better edge structure reasoning results.

Engineering Letters, 31:1, EL_31_1_26

Volume 31, Issue 1: March 2023

 
______________________________________________________________________________________ 



TABLE IV
QUANTITATIVE RESULTS FROM CRACK SEGMENTATION DATASET

(* HIGHER IS BETTER, † LOWER IS BETTER)

Model/metric Precision* Recall* Dice(F1-score)*
Crack Image Completion

Network 0.1104 0.0836 0.0950

Crack Image Completion
Network + Self-attention
+ Gated Convolution

0.1325 0.1565 0.1435

V. CONCLUSION
In this paper, we propose CrackSegConnect, a crack

inpainting network based on segmentation model. The
network firstly reasons the crack structure of the defect
regions and then generates inpainting results. It can generate
sharp crack structure and high-quality inpainting results.
Qualitative results and quantitative comparisons demonstrate
that our methods can achieve superior performance.
In addition, we propose CSP loss, a powerful loss function

to extract high level representation of crack images by a
pre-trained semi-supervised crack segmentation model. With
the help of CSP loss, we can generate high quality crack
images while comparative methods tend to ignore some
important thin crack information.
For future works, there are two main aspects. The main

shortcoming of our method is that the model size is relatively
large. Furthermore, it relies on large amount of training data.
Therefore, one of the future works is the lightweight model
that reduces the reliance on training data without degrading
performance. The other aspect is crack segmentation
perceptual loss. How to train more efficient segmentation
models based on very limited data remains a challenging
issue. Meanwhile, how to effectively utilize middle layers of
segmentation models that can represent abundant layer
information to assist inpainting process is also worth
exploring.
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