
 

  
Abstract—Data processing and integrated forecasting 

strategy has always been a major obstacle to the development of 
wind power forecasting system. In view of this, a novel 
decomposition method with SSA and CEEMDAN is constructed 
to decompose the original data, and also a sample entropy 
parsimonious integration model is applied to achieve 
ultra-short term wind speed prediction. Considering the 
respective data characteristics of each subsequence, we divide 
the decomposed multiple subsequences into three parts: high 
complexity group, low complexity group and residual group. 
PSO-ELM, IHOA-LSSVR, and IHOA-LSTM are applied to 
predict them respectively. Compared with other models with 
high accuracy in this paper, our model has higher prediction 
accuracy. 
 

Index Terms—data processing, a sample entropy 
parsimonious integration model, ultra-short-term wind speed 
prediction, decomposition-ensemble, uncertainty analysis 
 

I. INTRODUCTION 
ITH the sustained growth of power demand, and the 
shortage of fossil energy, the single use of fossil fuel 

for power generation fails to comply with the development. 
As one of the renewable energy sources, wind energy has 
broad application prospects [1]. However, wind power 
generation technology is still facing the problem of grid 
connection and "Abandoned wind " at the moment. Even if 
some areas are rich in wind resources, it is also a serious 
waste of wind energy [2]. Wind power prediction technology 
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plays a considerable role in solving the problem of wind 
power grid connection and "Abandoned wind ".  

There are four common methods in wind power prediction: 
physical model, statistical model, artificial intelligence 
model and probability model [3]. The physical prediction 
method based the wind power prediction curve constructed 
by numerical weather prediction [4]. Statistical prediction 
method analyzes the relatively complete historical data with 
mathematical methods to predict the future trends. Artificial 
intelligence prediction method processes nonlinear data by 
constructing neural network model [5]. Statistical model and 
artificial intelligence model are used widely. Generally, they 
can be divided into three categories: individual model, hybrid 
model and integrated model. Individual model uses a single 
independent model to analyze and model. The hybrid model 
combines multiple single models to avoid the limitations of a 
single model. It is able to learn the characteristics of time 
series completely, and reduce training error. There are two 
ways to integrate: Combine with decomposition technology 
or Integrate prediction results by optimization algorithms [6]. 

Generally, the subsequence is acquired by decomposition 
model, and then the segmented prediction is carried out by a 
single prediction model or a mixed prediction model [7]-[8]. 
Finally, the final prediction value is obtained by adding all 
predictions directly or calculating weight coefficient of all 
predictions by optimization algorithm [9]-[13]. 

Although a single decomposition model can denoise or 
decompose data to a certain extent, at present, few models 
can perfectly combine the two operations [14]. In order to 
fully learn the characteristics of time series, some scholars 
use decomposition models with different properties to 
perform combinatorial decomposition [15]-[17]. Considering 
the respective data characteristics of the individual 
subsequence, we propose an SSA-CEEMDAN mixed 
decomposition model. Then, we classify the complexity of 
each decomposition subsequence according to the principle 
of sample entropy calculation, use different mixed models for 
predictions, and finally merge an integrated prediction model. 
Experiments show that our proposed model has better 
adaptability and higher accuracy. 

II. FUNDAMENTALS OF THE MODEL 

A. Apply SSA to Denoise Wind Speed Sequence 
The reconstructed sequence is selected by the contribution 
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rate of the subsequence, the lowest contribution rate is 
discarded as the noise sequence. It mainly includes two parts: 
decomposition and reconstruction [18]. The calculation 
process of SSA is as follows: 

Step 1. Suppose a time series has M  samples, and the 

Embedding dimension is L ,  1
3

L M≤ .  The sequence and 

the trajectory matrix can be expressed as (1-2), and then solve 
the SVD of the matrix G . 

 [ ]1 2= , ,..., MS s s s   (1) 

 

1 2 1

2 3 2

1

M L

M L

L L M

s s s
s s s

G

s s s

− +

− +

+

 
 
 =
 
 
 




   


  (2) 

Step 2. Reconstruct time series. We rank all subsequences 
from large to small by the contribution rate, and select the 
first 1M −  subsequences as refactor by diagonal average. 
Then we can get a new sequence * * *

1 2, ,.., MS s s s∗  =   . *
ts  is 

expressed as (3-6). The detailed derivation process can be 
seen in [19]-[20]. 
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 1K M L= − +   (4) 
 ( )1 min ,p L K=   (5) 

 ( )2 max ,p L K=   (6) 

B. Decompose of New Data by CEEMDAN 
Get a new time series through part A, and decompose the 

new sequence by CEEMDAN. 1 nIMF IMF−  are obtained. 
Then, through processing, we can get the residual RES. 
CEEMDAN is grateful for its sustainable in nonlinear time 
series. It adaptively adds Gaussian white noise in the EMD 
decomposition process for many times, which can decrease 
the effects of modal aliasing and noise. It improves the 
operation efficiency of the model and becomes one of the 
more popular decomposition models at present [21]. The 
wind speed decomposition process as below: 

Step 1. For simplicity, we write the new sequence S ∗  as 
( ) ,  1,...,s t t M= , and set adaptive Gaussian noise with 

different signal-to-noise ratios as ( )ig tτ . The original data is 
transformed into (7). 

 ( ) ( ) ( ) , 1, 2,3,..,i ix t s t g t i nτ= + =   (7) 
Step 2. The subsequence is obtained by the decomposition 

of ( )ix t . Calculate the mean of  n  first components as the 
first component. Get the first residual component in (9). 
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1
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i
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 ( ) ( ) ( )1 1r t s t IMF t= −   (9) 

Step 3. Set ( )lD   as the EMD decomposition process in 
j  phase. As in step 2, we can get the component of 1j +  

phase in (10). 
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Step 4. Repeat step 3 until the residual component cannot 
be decomposed, so we can get the residual in (11). 
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=
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C. Introduction to Sample Entropy Parsimonious Model 
Sample entropy is one of the measurement forms of 

entropy, which both has good robustness and strong 
anti-interference ability. It is applied to calculating the 
complexity of time series and measuring the probability of 
the system generating new patterns. The calculation 
processes of sample entropy are as follows. 

Step 1. Suppose a time series as ( )s t , and transform it into 
a matrix of N M×  dimension. 
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Step 2. Calculate the distance between two vectors. Take 
( )S a  and ( )S b  as examples, and the distance formula is 

expressed as follows. 
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Step 3. Set a threshold 0r , and record ( ) 0,D a b r≤  as iQ . 
Get the mean of the ratio of iQ  to the total number of vectors, 
recording as ( )0

MQ r . 
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Step 4. Suppose the reconstruction dimension is 1M + , 
and repeat step 1-3 to get the result ( )1

0
MQ r+ . 

Step 5. The sample entropy of the finite time series in 
M-dimension is calculated as follows. 
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1
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0
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We propose the parsimonious criteria: suppose the sample 
entropy of k-th subsequence is kSE , and the sample entropy 
of raw data is rawSE . We get a percentage value by the 
following formula. 

 ( ) 100%k raw
k

raw

SE SE
se

SE
−

= ×   (16) 

It is expressed as high complexity sequence when kse   is 
positive. It is expressed as low complexity sequence when 

kse  is negative. Because the nature of the residual is unstable, 
we cognizance it as a special sequence for special treatment. 
As shown in Table Ⅰ and Table Ⅱ. 
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According to the fitness principle of models for the 
nonlinear complexity of subsequence, the prediction models 
are matched for different types of complexity. 

PSO-ELM is suitable for high complexity sequences, 
IHOA-LSTM is suitable for residual sequence, and 
IHOA-LSSVR is suitable for low complexity sequences. 
Next, we describe the general calculation process of models. 

D. Introduction to PSO-ELM 
PSO algorithm is a population intelligent evolutionary 

algorithm proposed by Kennedy and Eberhart [22]. It is used 
to fall into local optimization. Therefore, many scholars are 
committed to exploring the methods to improve PSO 
algorithm and make PSO algorithm have better global 
convergence. However, Suganthan means a better solution 
can be obtained when c1 and c2 are constants [23]. The 
velocity position update formula of particle i is expressed in 
(17-19). 

Where weight is a variable weight coefficient, max 0.9w = , 

min 0.3w = , max 100iter = , and 1 2 1.8c c= = . 
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 ( ) ( ) ( )1 1i i iX t X t V t+ = + +   (18) 
 max max min max- (( - ) / )*weight w w w iter iter=   (19) 
ELM is an improved version of feedforward perceptron 

neural network. It is composed of input layer, hidden layer 
and output layer. ELM has higher convergence and better 
generalization of gradient than BPNN. It can effectively 
prevent over fitting and local optimization. Weight and 
threshold are two key factors affecting network structure 
[24]-[25]. The objective function of ELM can be expressed as 
(20-24). 

 ( )O H Input w b ρ= ∗ + ∗   (20) 
where ρ  is the weight factor between hidden layer and 
output layer, ( )H   is the activation function, and ∗  is the 
convolution. Such as “sigmoid” and “Relu” function, etc. 
“Sigmoid” is selected in our article. The expression is shown 
in (25). 
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The procedures of ELM calculation are listed [26]. 
Randomly assign weights and thresholds to fixed shapes, and 
select the appropriate activation function firstly, and then 
determine the weight matrix by Moore Penrose inverse 
function. We can see ELM has good prediction performance. 
However, the weight and threshold of the model will be great 
limitations under the condition of manual selection. Thus, we 
apply PSO to adaptively selecting the parameters of ELM. 

E. Introduction to IHOA-LSTM 
IHOA is an improved hybrid optimization algorithm, 

which greatly makes up for the shortcomings of a single 
algorithm. It draws on the excellent characteristics of PSO 
and GA algorithms. Therefore, IHOA has obvious 
advantages in both local search and global search. It can 
better conduct global search in the initial period, and will not 
fall into local optimization too early. In the later period, it can 
converge better even the scope of the search is very small. 
The overall process is shown in Figure 1. 

 
 

 

TABLE Ⅱ  
SEQUENCE COMPLEXITY CALCULATION BY SSA-CEEMDAN 

Subsequence IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 RES 

SSA-CEEMDAN 1.14  1.32  1.35  0.90  0.63  0.54  0.21  0.29  0.05  0.03  0.00  \ 

Raw 0.95  0.95  0.95  0.95  0.95  0.95  0.95  0.95  0.95  0.95  0.95  \ 

sek (%) 19.62 38.43 41.17 -6.04 -34.01 -43.87 -78.38 -69.52 -94.85 -96.41 -1 \ 

TABLE Ⅰ  
SEQUENCE COMPLEXITY CALCULATION BY CEEMDAN 

Subsequence IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 RES 

CEEMDAN 1.35 1.18 1.36 0.83 0.63 0.56 0.24 0.24 0.05 0.01 \ 

Raw 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 \ 

sek (%) 41.60 24.04 42.10 -12.81 -33.77 -41.06 -75.14 -75.01 -94.71 -98.84 \ 
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The key optimization steps of IHOA are as follows. 
Step 1. Initialize the parameters randomly. 
Step 2. Update the speed according to (17), and update the 

location, which is shown in (26). 
 ( ) ( ) ( )1 * 1i i iX t X t p V t+ = + +   (26) 
The inheritance probability p  is added here, and it can be 

set as needed. Keep formula (19) inconvenient for weight 
coefficient. 

Step 3. Calculate the fitness of the population as if , and 
perform crossover and mutation. 

Step 4. Evaluate the optimal fitness of the population, and 
update the individual extreme value pbestX  and population 
extreme value gbestX  of the population. 
 Step 5. Judge whether the iteration termination conditions 
are attained. When the conditions are met, it is output as the 
best fitness value. Otherwise, return to step 2. 

LSTM is an improved model of RNN, which can 
effectively solve the problems of gradient disappearance and 
gradient explosion, and the network structure diagram is 
shown in Figure 2. 
 

 
 

LSTM can learn the long-term dependent information in 
the sequence. That is why LSTM has been widely used in 
various fields since its emergence [27]. 
The derivation formula is in (27-32). 

 [ ]( )1,t F t t FF W H X Bσ −= +   (27) 

 [ ]( )1,t I t t II W H X Bσ −= +   (28) 

 [ ]( )1tanh ,t P t t PP W H X B−= +   (29) 

 1* *t t t t tC F C I P−= +   (30) 

 [ ]( )1,t O t t OO W H X Bσ −= +   (31) 

 ( )* tanht t tH O C=   (32) 
 tF , tI , tC , tO  represent forgetting gate, input gate, cell 
state and output gate respectively. FW , IW , PW , OW  
represent the corresponding weights, and FB , IB , PB , OB  
represent the bias term. tX  is the input variables, and tH  is 
the output of the hidden layer at time t . Learning rate is an 
important factor, affecting the prediction results of LSTM. In 
this paper, IHOA is used to optimize the learning rate and the 
drop factor of learning rate in LSTM network. The prediction 
results of LSTM after parameter optimization are compared 
with those of LSTM. The experimental results show the 
prediction accuracy of IHOA-LSTM is better and more 
suitable for wind speed prediction [28]. 

F. Introduction to IHOA-LSSVR 
SVR is widely used in classification and regression 

prediction tasks. That is attributed to its better generalization 
ability. SVR converts the complex calculation process in 
low-dimensional space to high-dimensional space, so we 
only need to calculate the linear model [29]. LSSVR is a 
variant model of the combination of SVR and PLS. It can 
effectively transform the quadratic programming problem  

into a linear equation to solve, which reduces the 
computational complexity of the traditional SVR [30]. 

The constrained optimization problem of LSSVR can be 
expressed as (33), and the regression formula established is 
shown in (34). 
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Where J   is loss function, w  is weight vector, ε  is 

error, and η  is regularization. ( )O x  is output function of 

regression equation, ( )κ   is kernel function, and b  is bias. 
The RBF kernel function is selected as the kernel function, 
and the expression is shown in (35). 
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For more detailed mathematical derivation processes of 
LSSVR is shown in [31]-[32]. Regularization parameter η  
and kernel function C  are two hyper parameters of LSSVR 
[33]. They are also the target parameters of our optimization. 
Experiments show that the prediction result of IHOA-LSSVR 
is better than LSSVR. Through the above steps, we get a 
sample entropy parsimonious model. There are two 
differences: the number of subsequences decomposed before 
and after denoising is distinct, and the Figure 3 shows the 

 
Fig.1.  Flow chart of IHOA 

 
Fig.2.  Neuron structure diagram of LSTM 
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overall planning. Where the MODEL 1, ..., MODEL X 
represent three of the prediction models in this experiment. 
See Table Ⅲ for details.  

The parsimonious method is mainly to calculate the 
sample entropy of each series, divide all the series into three 
categories according to the threshold of sample entropy. Then, 
we randomly select a series from each category as the 
representative of this category, and select an appropriate 
prediction model for it. Finally, we can use this prediction 
model as the prediction model of all the sub series of this 
category. 
 

 
 

III. EXPERIMENT 
In part Ⅱ, we introduce the main idea of this paper. This 

part describes experiments to verify the reliability of our 
model. The experimental dataset is from Penglai wind farm, 
Shandong Province. It is the wind speed data at ten-minute 
intervals. In order to verify the model effectively, we select a 
small amount of data for our experimental. This experiment 
is simulated in MATLAB 2021a. 

A. Experimental Design 
In this paper, four groups of contrast experiments are 

designed: the first group of experiments is to predict directly 
without using decomposition model; The second group of 

experiments is to predict directly with a single decomposition 
model; The third group of experiments is to use SSA- 
CEEMDAN model to predict after decomposition; The 
fourth group of experiments is to select the models that 
perform well in the first three groups for comparison. Here 
we focus on the fourth group of experiments and present the 
models with high prediction accuracy in the form of graphs. 

B. Error Calculation Method 
It is also used to evaluate the prediction performance of the 

integrated model. We assume that the predicted value is y  
and the real value is x  in i-th, i N∈ , MSE expression is as 
(36). 
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M E y
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xS
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Of course, it is far from judging the prediction effect of our 
model only according to MSE, on this basis, this paper adopts 
two other measures: mean absolute error (MAE) and mean 
average percentage error (MAPE). 
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where N  is number of the sequence. We can use these 
evaluation indicators to measure the wind speed prediction 
effect of the model, which are also commonly used 
measurement indicators. The higher the value of these three 
indicators, the higher the prediction accuracy of the model. 

C. Analysis of Experimental Results 
To prove the rationality of the re-decomposition model 

proposed in this paper. The same prediction model 

 
Fig.3. Flow chart 

TABLE Ⅲ 
NAME OF MAIN FORECAST MODEL 

MODEL 1 PSO-ELM 
MODEL L IHOA-LSSVR 
MODEL X IHOA-LSTM 
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IHOA-LSSVR is selected, and the following four operations 
are performed on the data: no decomposition, with SSA 
decomposition, with CEEMDAN decomposition, and with 
SSA-CEEMDAN decomposition. Based on the statistical 
table of prediction errors of TABLE IV to TABLE Ⅶ, the 
four prediction models were analyzed and comprehensively 
sorted according to MSE, MAE and MAPE. The errors are 
sorted from large to small as follows: IHOA-LSSVR, 
SSA-IHOA-LSSVR, CEEMDAN-IHOA-LSSVR, SSA 
-CEEMDAN-IHOA-LSSVR. Looking at other models, we 
can also see that the decomposition effect of a single 
decomposition model is not good sometimes, but the 
prediction accuracy of the model after SSA-CEEMDAN 
re-decomposition can steadily decrease. Therefore, the 
re-decomposition model proposed in this paper plays a very 
important role in reducing the prediction model error.  
 

 
 

 
 

 
 

 

 
From TABLE Ⅵ and TABLE Ⅶ, we can find that the 

reduced sample entropy integration model is also critical to 
improve the accuracy of wind speed prediction. Since 
SSA-CEEMDAN decomposition is more effective than 
CEEMDAN decomposition, we will only discuss the 
SSA-CEEMDAN decomposition corresponding to the left 
half of TABLE V. From it, we can find that the prediction 
error of SampSE and IHOA-LSSVR models is very small, 
the error of SampSE is the smallest. Specifically, compared 
with IHOA-LSSVR, the MSE of SampSE decreases by about 
14%, the MAE decreases by about 6%, and the MAPE 
decreases by about 3%. In conclusion, the reduced sample 
entropy integration model proposed in this paper can 
effectively reduce the prediction error. It is of great practical 
significance for ultra-short term wind speed prediction. 

To more intuitively see the prediction effect of each model 
after SSA-CEEMDAN decomposition, a multi curve fitting 
effect diagram is drawn as shown in Figure 4. From it, we can 
see that the curve called SampSE has better coincidence with 
the real curve, and the curve named IHOA-LSSVR has only 
second fitting effect to SampSE curve, while other curves 
have average fitting effect. 

Then, select the models with the highest prediction 
accuracy in this experiment, and draw the curve as shown in 
Figure 5. It can be seen from the sub graph that the fitting 
effect of the curve with five pointed stars is still the best. 
Although the performance effect in the middle section is poor, 
the fitting effect of other models at this stage is not as good as 
that of the curve with five pointed stars. 

Finally, we observe the MSE and MAE prediction error 
histograms of the seven selected models with high accuracy. 
We rank them from large to small, they are shown in Figure 6 
and Figure 7. We can find that the MSE and MAE of M7, the 
model proposed in this paper is the smallest of the seven 
models. It has the highest accuracy. The model proposed in 
this paper has a good advantage in improving the accuracy of 
wind speed prediction. 

This is roughly the same as we can see from the prediction 
curve. Through various comparisons, it is found that our 
model has high prediction accuracy in this training process, it 
is proved that our method is feasible. 

IV. CONCLUSION 
We compared the prediction effects of models in this part. 

Through the above experiments and the analysis of 
experimental results, we can summarize the following points: 

The prediction effect of IHOA-LSSVR is the best when the 
experiment is conducted with undecomposed data. 

The model has better prediction accuracy when the 
sequence decomposed by CEEMDAN. At this time, the 
prediction accuracy of IHOA-LSSVR is still high, but not as 
good as that of SampSE. 

When SSA-CEEMDAN is used for re-decomposition, the 
prediction accuracy of SampSE is further improved and 
becomes the model with the highest accuracy in this 
experiment. 

Through this experiment and the comparative analysis of 
the experimental results, the correctness and effectiveness of 
the proposed model are obtained. 

TABLE Ⅶ 
FORECAST RESULTS AFTER CEEMDAN DECOMPOSITION 

Model CEEMDAN 
MSE MAE MAPE 

SampSE 0.206116 0.361672 0.205433 
IHOA-LSSVR 0.327163 0.454635 0.231166 
IHOA-LSTM 0.853059 0.757642 0.300487 

LSTM 0.778552 0.705615 0.29373 
ELM 3.439253 1.400244 0.453066 

PSO-ELM 0.402416 0.502124 0.248672 
LSSVR 2.331407 1.157242 0.397885 

TABLE Ⅵ 
FORECAST RESULTS AFTER SSA-CEEMDAN DECOMPOSITION 

Model SSA-CEEMDAN 
MSE MAE MAPE 

SampSE 0.189589 0.351794 0.204401 
IHOA-LSSVR 0.221827 0.374722 0.211115 
IHOA-LSTM 0.482889 0.556050 0.261559 

LSTM 0.578778 0.620219 0.271190 
ELM 2.197941 1.150787 0.386133 

PSO-ELM 0.306853 0.444027 0.231996 
LSSVR 2.592575 1.243551 0.413146 

TABLE Ⅴ 
NONDENOISED EXPERIMENTAL RESULTS OF RAW DATA 

Model Raw data 
MSE MAE MAPE 

IHOA-LSSVR 0.233888 0.384914 0.483938 
IHOA-LSTM 0.282527 0.640103 0.649365 

LSTM 0.291590 0.745826 0.679293 
ELM 0.378644 3.097865 1.335095 

PSO-ELM 0.298603 0.907867 0.770949 
LSSVR 0.511766 5.417281 1.887729 

TABLE Ⅳ 
DENOISED EXPERIMENTAL RESULTS OF RAW DATA 

Model SSA-Raw data 
MSE MAE MAPE 

IHOA-LSSVR 0.378191 0.480192 0.233888 
IHOA-LSTM 0.674732 0.639986 0.282527 

LSTM 0.808759 0.709656 0.291590 
ELM 2.404935 1.178880 0.378644 

PSO-ELM 0.794808 0.716776 0.298603 
LSSVR 5.415059 1.887088 0.511766 
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