
 

Abstract—Scanning Electron Microscopy (SEM) image plays 

a significant role in industrial, medical, and research fields. 

However, image defects, including existing noise will degrade 

the quality of the original image. In order to denoise the image, 

noise estimation is crucial. In the past, several noise estimation 

methods are designed, but they are not effective in estimating 

the noise level of the SEM images. Therefore, this paper presents 

a novel method to effectively classify noise variance of SEM 

images through a deep learning algorithm. The images are 

classified based on their respective noise variances. Before the 

classification process begins, the original SEM images are added 

with 4 categories of White Gaussian noises. To categorize the 

noise level of the image, a complex Gaussian-Noise 

Convolutional Neural Network (GN-CNN) method with encoder 

layer, convolutional layer, attention layer, decoder layer, and 

decision layer are adopted. In this study, a total of 1200 image 

data from different variety and complexity (720 images for 

training, 240 images for validation and testing respectively) are 

used. The experimental study shows the capability and 

reliability of the developed system in classifying noise variances 

of SEM images with the F1 score of 93.97% and testing accuracy 

of 93.8%. It has outperformed other baseline deep-learning 

models, including Long Short-Term Memory (LSTM), Residual 

Network 18 (ResNet18), and Residual Network 34 (ResNet34), 

and pure Convolutional Neural Network (CNN). Thus, the 

designed network can impressively surpass human-eye 

performance in noise variance categorization. 

 
Index Terms—Scanning Electron Microscopy, Convolutional 

Neural Network, Gaussian, Noise Variance Classification 

 

I. INTRODUCTION 

canning Electron Microscopy (SEM) image acts as a 

crucial and imperative role in industrial and research 

fields. Nevertheless, noises are always intrinsically 

introduced into a digital image during the transmission of an 

image [1]. These existing noises can trigger degradation to 

the quality of grayscale SEM images and cause corruption in 

the image information [2]. Consequently, some essential 

information on SEM images will be lost due to the 

interference of white noise.  

Thus, noise reduction procedure is a crucial preprocessing 

step to obtain a high-quality SEM image. In this regard, noise 

reduction acts as a fundamental step to recover the original 

image [3], [4], [5]. Several existing noise reduction methods 

are spatial domain filters and transform domain filters [6], [7], 

[8], [9]. Before the noise reduction process, the determination 

of the noise variance of an image would play a beneficial role 

in easing the noise reduction process. Subsequently, noise 

variance determination of an SEM image is mandatory to 

quantify the quality of the image, so that the noise reduction 

process can be easily carried out with a predetermined noise 

level. Accurate and precise measurement of noise level of a 

single SEM image brings useful information to the noise 

filtering process.  

In the past, several classical signal processing methods 

such as shape-preserving piecewise cubic hermite 

autoregressive moving average (SP2CHARMA) [10], cubic 

spline hermite interpolation with linear least square 

regression (CSHILLSR) [11], and adaptive slope nearest-

neighbourhood [12]  have been proposed for estimating noise 

level in SEM image. Although these methods can be used for 

estimation, more efficient methods are still needed. To 

appraise an image’s noise variance, recent research has 

demonstrated that deep learning algorithm has the capability 

in the classification of noise variance [1].  Deep learning is 

very useful for feature learning. This is opposed the classical 

signal processing methods that use handcrafted algorithms. 

The handcrafted algorithms apply a series of mathematical 

equations in features extraction. On the other hand, a neural 

network can learn related features which are necessary for 

executing a task. Besides, deep learning methods have shown 

a better accuracy of 5.4% over the traditional and classical 

baselines [13]. Moreover, the deep learning methods can 

detect a minor difference in images with different noises that 

are difficult to discover by human naked eyes. Thereby, deep 

learning architecture is applied to replace the manual 

measurement method.  

Convolutional neural network (CNN) is commonly applied 

in the recognition and classification field. For instance, CNN 

has been widely implemented in face recognition [14], 

handwritten recognition [15], image recognition, driving 

posture recognition [16], vehicle model recognition [17], and 

so on. Overall, CNN can perform well in the recognition and 

categorization of images and videos. The input feature for this 

hierarchical neural network is normally a digital image. By 

passing through a few convolutional layers with subsampling 

layers, features are extracted from the image and passed 

through a fully connected layer to classify noise level. 

This paper presents a novel method to effectively classify 
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noise variance of SEM images through a deep learning 

algorithm. Our work employs Gaussian-Noise Convolutional 

Neural Network (GN-CNN) method which is different from 

other deep learning architectures such as recurrent neural 

network (RNN), pure convolutional neural network (CNN), 

pure long short term memory (LSTM), and generative 

adversarial network (GAN). The conventional CNN has been 

converted and remodeled into GN-CNN that comprises the 

encoder layer, convolutional layer, attention layer, decoder 

layer, and decision layer. Bi-directional LSTM is employed 

in the encoder layer, ResNet34 is used in the convolutional 

layer, and LSTM cell is applied in the decoder layer. The key 

contribution of GN-CNN lies in solving the problem of 

classifying high nonlinearity images with different noise 

variances. The slight and insignificant difference in noised 

SEM images could be difficult to differentiate and classify 

visually. This research is conducted by first adding white 

Gaussian noise to an original SEM image. Gaussian is 

considered in this research because noise is often a result of 

summing a large number of independent and different factors, 

and the sum of many random variables can be well 

approximated by a Gaussian distribution, which is why the 

Gaussian noise is a simple yet powerful model [18]. 

  In this paper, the Gaussian noise variances used are 0, 0.01, 

0.02, and 0.03. Noise variance with 0 represents original SEM 

images. In other words, our proposed method is capable of 

differentiating corrupted SEM images at different noise 

levels. The noise variance range is set within 0 to 0.03 since 

the SEM images with noise variance of 0.035 or above are 

extensive blur images, which are not applicable in real-life 

examples. For experimental study purposes, the number of 

class categories is set to 4 to prove the practicality of GN-

CNN in dealing with noisy SEM images. All the SEM images 

with added noise are converted to a histogram. The deep 

learning model of GN-CNN is then trained by using the 

histograms of SEM images. Testing dataset is inserted into 

the system so that the classification on the histogram of 

images can be carried out.   

Section 2 explains the related works that utilize classical 

handcrafted formula methods and deep learning algorithms in 

the noise estimation process. Section 3 describes the proposed 

methodology of GN-CNN. Experimental results and 

discussions are included in Section 4 of this paper. Section 5 

concludes the findings in this paper. 

 

II. RELATED WORKS 

A. Noise Estimation Using Proposed Equations 

In 2001, Thong et al. [19] developed a method to predict 

the signal-to-noise (SNR) ratio of an SEM image. They used 

the autocorrelation function to process every pixel of an 

image. Sim et al. [20] presented a new model named as 

autoregressive (AR) model. The Nearest Neighbourhood 

(NN) method and Linear Interpolation (LI) method were 

applied by authors in the AR model to forecast the signal to 

noise (SNR) value. The LI method employed the points that 

were located before and after the noisy free peak, rint to 

execute SNR estimation. The NN method used the points that 

were the closest to the point at noisy free peak, rNF to predict 

the SNR.  

Sim et al. [10] proposed another new model of Shape-

Preserving Cubic Hermite Autoregressive Moving Average 

(SPCHAMA) in determining noise level. The robustness of 

the method was proven to supply optimum solutions in noise 

estimation. Sim and Teh [12] developed an adaptive slope 

nearest neighborhood (ASNN) method. The method added 

slope constants into SNR prediction to enhance the overall 

accuracy. Besides, Gao et al. [21] proved that linear 

regression was appropriate and suitable for noise prediction 

as all data points were considered in the graph. Recently, Sim 

et al. [11] further improved the SEM noise estimation by 

introducing Cubic Spline Hermite Interpolation with Linear 

Least Square Regression (CSHILLSR). The method could 

estimate SNR values that were very close to the actual ones.  

 

B. Noise Classification Using Deep Learning Algorithm 

Khaw et al. [11] presented a convolutional neural network 

principal components analysis (PCA) for noise type 

recognition (CPNTR) model to recognize images with 

different types of noises, which were Gaussian noise, Speckle 

and Poisson noise, impulse and mixture of those noises. The 

classic CNN was merged with PCA to shorten the training 

period. Besides, the model was equipped with a 

backpropagation algorithm and stochastic gradient descent 

optimization techniques to effectively classify classes of 

noise. The CNN model contained 2 convolutional layers, 2 

pooling layers, and a fully connected layer. Chuah et al. [22] 

used a baseline model of Convolutional Neural Network 

(CNN) model to recognize the different noise levels of 

Gaussian noise in images. The baseline CNN model 

contained 4 convolutional layers, 2 max-pooling layers, and 

a fully connected layer. Noise level classification had 

obtained an overall accuracy of 74.7% in classifying different 

noise levels of images. Momeny et al. [23] proposed a Noise-

Robust Convolution Neural Network (NR-CNN) to classify 

the noisy images which were corrupted by missing image 

samples, impulse noise, packet loss, tampered images and 

damaged images. An adaptive resize layer and a noise map 

layer were adapted before the CNN architecture. The CNN 

architecture belonged to baseline model, which consisted of 

2 convolutional layers, 2 pooling layers, and a fully connected 

layer. The research outcomes indicated that their proposed 

framework outperformed other methods such as VGG-Net-

Slow and VGG-Net-Medium in the classification of noisy 

images. Murphy et al. [24] presented a CNN method to 

classify the noise level of the input data. Roy et al. [25] 

developed a robust image classification system that could be 

used to effectively recognize images that were corrupted with 

zero, regular, and massive noises. They employed a regular 

CNN that comprised 2 convolutional layers and 2 

subsampling layers. The CNN was then integrated with two 

denoising auto-encoders (DAEs) to classify the images with 

massive noise 

III. MATERIAL AND METHODS 

This paper focuses on classifying noise variance of SEM 

images through a developed deep learning algorithm of 

Gaussian-Noise Convolutional Neural Network (GN-CNN). 

This research is conducted by first adding white Gaussian 

noise to an original SEM image [26]. The images with added 
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white Gaussian noise are then each converted into a 

histogram image so that all the images are in the same format. 

Images with an identical format can ease the deep learning 

algorithm in categorizing the noise variance. Next, the images 

in a histogram format are adopted to train the GN-CNN. New 

noisy images (testing datasets) are inserted into the system to 

test its performance. 

A. Adding White Gaussian Noise 

The equation that is used to corrupt the grayscale SEM 

images with White Gaussian noise is stated in Equation (1). 

 

𝑒(𝑥, 𝑦) = 𝐴(𝑥, 𝑦) + 𝑊(𝑥, 𝑦), (1) 

 

where A(x,y) denotes the actual image signal, W(x,y) denotes 

the White Gaussian noise, and e(x,y) denotes image function 

[11]. This equation indicates that the summation of the actual 

image signal and White Gaussian noise can gain image 

function.  

Noise variance is a determination of existing Gaussian 

noise level in an SEM image. Generally, the noise variance 

of a grayscale SEM image ranges from 0.001 to 0.035. The 

higher the noise variance of the image, the greater the amount 

of image information lost. In general, the image with noise 

variance of greater than 0.035 turns the Signal-to-Noise ratio 

(SNR) value close to 0 [11]. It induces significant losses of 

essential information and results in a highly blurred image. 

SEM images with extensive blurriness are rarely applicable 

in real life, so the noise variance categories are set to 0, 0.01, 

0.02, and 0.03. The SEM image with noise variance of 0 

represents an original SEM image. The noise variance of 0.01 

refers to the low amount of Gaussian noise added, whereas 

the noise variance of 0.03 refers to the high amount of 

Gaussian noise added. Equation (2) is utilized to calculate 

noise variance of a corrupted image.  

 

𝑁𝑜𝑖𝑠𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
𝑟(0, 𝑦) − 𝑟𝑁𝐹(0, 𝑦)

𝐼𝑚𝑎𝑔𝑒 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 

(2) 

 

where 𝑟(0, 𝑦)  is noisy image and 𝑟𝑁𝐹(0, 𝑦)  is noise-free 

image. Image resolution at the denominator part of the 

equation indicates the pixel size of an SEM image. For 

consistency purposes, the resolution of all the SEM images in 

this paper is set at a pixel size of (256x256) [27]. The SEM 

images are provided in a bitmap (BMP) image format. 

B. Histogram Image Conversion 

The grayscale SEM images are then converted to the 

histograms. A histogram describes the relationship between 

the intensity value of image and the frequency of occurrence 

at each specified intensity value. The histogram can be used 

to address image issues such as overexposure images and 

noisy images. All the grayscale SEM images with added 

white Gaussian noise are converted into histogram images so 

that all the images with identical format ease the deep 

learning algorithm in clustering the noise variance. Thereby, 

the input dataset of the proposed neural network method is in 

a histogram image format. The process is executed in 

MATLAB software by applying a built-in function of 

imhist(). The horizontal axis of a histogram plot refers to pixel 

numbers. Equation (3) states the range of pixel value lies in a 

histogram.  

 

𝑝(𝑢, 𝑣) ∈ [0, 𝐾 − 1], (3) 

 

where p(u, v) denotes the range of pixel values and K denotes 

maximum pixel size. In this case, an 8-bit grayscale SEM 

image represents the K value of 256 with the mathematical 

calculation of 28=256. The vertical axis of histogram refers to 

frequency of occurrence where the frequencies of SEM 

images range from 0 to at most 4500. Fig. 1 simplifies the 

process of adding Gaussian noise and the process of 

converting to histogram in one flowchart.  

 

     
Fig. 1 Image preprocess before application of GN-CNN 

 

C. Gaussian-Noise Convolutional Neural Network 

The key contribution of GN-CNN lies in solving the 

problem of classifying high nonlinearity images with 

different noise variances. Deep learning algorithms are 

expected to tackle the problem of human visual classification. 

Hence, the conventional CNN has been remodeled into GN-

CNN. 

 

1. Overall GN-CNN architecture 

The GN-CNN comprises 5 major layers of encoder layer, 

convolution layer, attention layer, decoder layer, and decision 

layer. The encoder layer consists of bi-directional Long 

Short-Term Memory (LSTM), whereas the convolutional 

layer contains Residual Networks 34 (ResNet34). The bi-

directional Long Short-Term Memory (LSTM) intends to 

perform feature extraction on the input images. The 

convolution layer that consists of ResNet34 can further 

convolute the features and pass them to the next attention 

layer. The attention layer includes a soft attention mechanism 

to focus on essential features to prevent resources wastage. 

The next layer of decoder layer consists of a Long Short- 
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Term Memory (LSTM) cell. The Long Short-Term Memory 

(LSTM) cell has 3 important gates in managing the 

information flow. 

The output from the decoder layer is passed to the final 

layer of the decision layer to efficiently classify the SEM 

images to the correct noise variance category. The decision 

layer contains fully connected layer. Fig. 2 illustrates the 

overall flow chart of the proposed GN-CNN approach which 

consists of 5 layers from the encoder layer until the decision 

layer. 

 

2. Encoder Layer 

Encoder is implemented at the beginning process of neural 

network architecture to perform feature extraction on the 

input dataset. In this regard, LSTM network is a powerful tool 

in encoding input information since it can remember precious 

information and estimate the next result [28]. A bi-directional 

LSTM is used as an encoder as it encodes sequences in both 

forward and backward directions [29]. All the SEM images 

in the histogram format are resized to a size of 700 x 700 for 

consistency purposes [30]. Image of 700 x 700 in size is a 

squared size image. For simplicity purposes, usually deep 

learning models prefer a squared size image as input to the 

architecture. Before proceeding to the bidirectional LSTM, 

the image will initially go through the convolutional block to 

apply the kernel to the 2-dimensional image and extract the 

features. Since the image is in grayscale, only 1 input channel 

is used. The kernel size used is 3x3 with a stride of 2. The 

output of the channel is set to 64 which means that it will 

extract 64 feature maps using 64 kernels. After that, these 

feature maps will be inserted into the bidirectional LSTM. 

The number of the layer is set to 1 and the hidden size is set 

to 64. As the LSTM is bidirectional, there will be a forward 

LSTM and a backward LSTM, so the output of feature maps 

will be 128. Fig. 3 displays the architecture of the encoder 

layer that consists of convolutional block and bi-directional 

LSTM. 

 

 
Fig. 3 Encoder layer consists of convolutional block and 

bi-directional LSTM 

 

3. Convolutional Layer 

The outcome features in the encoder layer will be passed 

to the convolutional layer. This layer consists of Residual 

Networks 34 (ResNet34). We opt to use ResNet34 in this 

layer since it is one of the most commonly used convolutional 

neural networks. Besides, ResNet34 is selected rather than 

ResNet18 since the training error of ResNet34 is lower than 

that of ResNet18 [31]. ResNet34 architecture can also reduce 

computational cost and training time as compared to other 

 
Fig. 2 Overall flow chart of the proposed GN-CNN architecture 
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deeper residual networks such as ResNet50. ResNet34 

comprises learned rich features that bring advantageous 

benefits to the classification of images with a wide range of 

variety. By creating shortcut connections to constantly skip 

two convolution layers, it can enhance the dimensions [31]. 

The convolution kernel size in the first layer of ResNet34 is 

fixed at 7 x 7, followed by 3 × 3 in the pooling layer. The last 

layer of processing feature map is the average pooling layer. 

Table 1 describes some parameters of ResNet34 in each layer.  

 

Table 1 Parameters of ResNet34 in each layer (He et al. 

2016) 

Layer Name ResNet34 

conv1 7 x 7, 64, stride = 2, padding = 3 
pool1 3 x 3, max pool, stride = 2 

conv2_x [
3 𝑥 3, 64
3 𝑥 3, 64

] 𝑥 3 

conv3_x [
3 𝑥 3, 128
3 𝑥 3, 128

] 𝑥 4 

conv4_x [
3 𝑥 3, 256
3 𝑥 3, 256

] 𝑥 6 

conv5_x 
[
3 𝑥 3, 512
3 𝑥 3, 512

] 𝑥 3 

average pool 7 x 7 average pool 

 

4. Attention Layer 

Next, the convoluted features are passed to the next 

attention layer. A soft attention mechanism is a common 

technique to aid in the image classification process. It is 

employed to isolate the content of images in a better 

performance [32]. An image usually possesses unnecessary 

background which acts an insignificant role in the deep 

learning classification mechanism. The conventional CNN 

provides an equivalent amount of computational resources to 

the whole part of the image. This would waste enormous time 

and effort in recognizing an image. Consequently, the 

attention layer is adopted to supply additional attention by 

introducing an attention gate that provides assistance in 

concentrating on the selective part. Chu et al. [33] have 

proven that the classification model with an attention layer 

has higher accuracy than the model without an attention layer. 

In this layer, 3 single feed-forward networks, rectified linear 

unit (ReLu) function, and softmax function are applied in 

sequence to obtain the attention weighted vector. This vector 

is computed for the usage in the decoder layer. Equation (4) 

to Equation (7) explain the method in calculating the attention 

weighted vector. Equation (6) indicates the softmax function. 

 

𝑓𝑘 = 𝑐𝑘 + ℎ𝑘−1 , (4) 

𝑎𝑘 = {
0 𝑓𝑜𝑟 𝑓𝑘 < 0
𝑓𝑘  𝑓𝑜𝑟 𝑓𝑘 ≥ 0

 , 
(5) 

𝜃𝑘 =
𝑒𝑎𝑘

∑ 𝑒𝑎𝑘
𝑘

 , 
(6) 

𝑊𝑘 = ∑ 𝜃𝑘𝑐𝑘
𝑘

 , (7) 

 

where ck represents convoluted features, hk-1 refers to hidden 

state in the previous layer, ak indicates aggression value, ϴk 

denotes the weight of aggression value, and Wk represents 

attention weighted vector. 

 

5. Decoder Layer 

In the final layer of GN-CNN, the Long Short Term 

Memory (LSTM) cell is opted to serve as decoder 

architecture. LSTM acts a crucial role to perform the 

classification of noise variance by providing a final 

categorization value (either true or false). The LSTM cell 

consists of a sigmoid function which serves as fundamental 

in the control of information flow [34]. Besides, it has the 

ability to ignore insignificant information, so it saves some 

computational resources. The LSTM cell comprises 3 logical 

gates of input gate (ik), output gate (ok), and forget gate (fk) as 

demonstrated in Fig. 4.  

 
Fig. 4 Working mechanism of 3 gates in LSTM cell 

 

Analog signals available in these 3 gates are ranged from 0 

to 1. In the forget gate, LSTM decides which information to 

forget or to maintain. On this account, the output of LSTM 

cell of 0 signifies that the piece of information can be 

completely forgotten, whereas 1 denotes that the piece of 

information is essential, and it has to be maintained. Equation 

(8) to Equation (10) show the formulas of the three gates in 

details.  

 

𝑓𝑘 = 𝜎(𝑀𝑓𝑊𝑘 + 𝑀𝑓ℎ𝑘−1 + 𝑏𝑓), (8) 

𝑖𝑘 = 𝜎(𝑀𝑖𝑊𝑘 + 𝑀𝑖ℎ𝑘−1 + 𝑏𝑖), (9) 

𝑜𝑘 = 𝜎(𝑀𝑜𝑊𝑘 + 𝑀𝑜ℎ𝑘−1 + 𝑏𝑜), (10) 

 

where fk, ik and ok refer to notation for forget, input and output 

vector respectively. M represents weight metric, Wk 

represents attention weighted vector, hk-1 represents hidden 

state, and b represents bias. 

 

6. Decision Layer 

Decision layer is allocated at the last layer of GN-CNN to 

decide the classification of SEM images according to the 

respective noise variance. A dropout rate of 0.5 is applied in 

this layer. Fully connected layer is implemented in this layer 

to recognize the images and classify them into 4 main 

categories. The output of the GN-CNN system is termed in 

predictive score with a range from 0 to 3.  The range of the 

predictive score targets to categorize the 4 classes of noise 

variance. The possible predictive scores that correspond to 

respective noise variance are shown in Equation (11). 
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𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑐𝑜𝑟𝑒

= {

0     𝑁𝑜𝑖𝑠𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 0.00
1     𝑁𝑜𝑖𝑠𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 0.01
2     𝑁𝑜𝑖𝑠𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 0.02
3     𝑁𝑜𝑖𝑠𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 0.03

 

 

(11) 

 

D. Experimental Materials 

Experimental materials are mandatory tools in evaluating 

the performance of the proposed GN-CNN approach. A 

training dataset is essential to train the neural network so that 

the proposed neural network can execute classification in the 

correct way. Besides, a validation dataset is applied for the 

tuning purpose in training the neural network. Some 

hyperparameters such as batch size, epoch number and 

learning rate are tuned by reference to the validation accuracy 

to obtain the highest accuracy. A testing dataset is employed 

to efficiently interpret the effectiveness of a neural network 

in predicting an outcome result. In this paper, there are a total 

of 1200 SEM images. The SEM images are obtained from 

EUDAT Collaborative Data Infrastructure [35]. Since the 4 

main category classes of noise variance are 0, 0.01, 0.02, and 

0.03 so each class of noise variance contains 300 images. The 

training dataset, validation dataset and testing dataset that are 

applied in this paper are divided into a percentage ratio of 

60%, 20%, and 20% respectively. On this account, 720 

images are used to train the neural network, whereas 240 

validation images and 240 testing images are employed to 

evaluate the accuracy of classification. To assure the fairness 

and justice of result, the training datasets are not used 

repeatedly in validation and testing datasets. The repeated 

usage of images in the training and testing process would lead 

to high accuracy results. The architecture can easily recognize 

the images in testing phase since the identical image is trained 

before. Fig. 5 displays the numerical distribution of the 

dataset. 

 

 
Fig. 5 Distribution of SEM dataset 

 

IV. RESULTS & DISCUSSION 

A. Results of Gaussian-Noise Convolutional Neural 
Network 

1. Training and Validation 

There are some training hyperparameters (batch size, 

epoch number and learning rate) that need to be declared in 

the GN-CNN. The neural network will execute training 

according to those predefined parameters. A total of 240 

validation images are applied in the experimental study to 

adjust the hyperparameter values of the neural network. The 

number of epochs, dataset batch size, and learning rate had 

fine-tuned with different values to obtain the highest 

validation accuracy in the experiment. 

The stopping criterion is defined to halt the training 

session. Generally, the number of epochs is set to be at least 

25 epochs by the reference to validation set [36]. The number 

of epochs is set at an optimum value of 38 as this value gives 

the highest validation accuracy. Fig. 6 illustrates the graph of 

validation accuracy at each training epoch. Besides, the batch 

size of the dataset in each training iteration is set at 25. It 

signifies that the system will randomly select 25 images for 

training purposes, and the process is duplicated 38 times. 

Moreover, the learning rate of neural network is termed at 

0.0003. In other words, the highest validation accuracy is 

obtained with the number of epochs of 38, data batch size of 

25, and learning rate of 0.0003. 

 

 
Fig. 6 Graph of validation accuracy at each training epoch 

 

2. Testing Dataset 

A total of 240 SEM images are employed as the testing 

dataset to verify the effectiveness of the proposed GN-CNN 

method. Fig. 7 illustrates the ability of the GN-CNN in 

predicting the noise variance of the sample SEM images. 

Out of 240 images utilized in the testing phase, only several 

SEM images are opted to be displayed in Fig. 7. Obviously, 

the proposed method can effectively recognize the noise level 

of the grayscale SEM images and classify them into correct 

classes of noise. As illustrated in Fig. 7, the slight and 

insignificant difference in SEM images with different noise 

is hard to be differentiated by naked eyes. Besides, few 

assessment tools are adopted to further evaluate the proposed 

method. Assessment metrics such as recall, precision, F1 

score, and accuracy are used to demonstrate the capability of 

the proposed method. The recall is termed as the ratio of 

correctly forested samples to the total number of samples in 

an expected class. On the other hand, precision is the ratio of 

correctly forested samples to the total number of samples in a 

predicted class (Hattori et al. 2018). F1 score creates a 

relationship between recall and precision as expressed in 

Equation (12). Accuracy is the ratio of correctly forecasted 

samples to the total number of samples in a class, as shown 

in Equation (13). Table 2 tabulates the computation of 

precision and recall in a multiclass classification system, 

whereas Table 3 shows the evaluation metrics of GN-CNN. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(12) 

𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

 
(13) 
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Table 2 Calculation of recall and precision of testing 

datasets in GN-CNN architecture 

 
 

Table 3 Evaluation metrics of GN-CNN architecture 

 
 

The model of data classification in this paper belongs to 

multiclass classification. To ease the computation purpose, 

we use a tabulation approach to calculate the overall recall 

and overall precision of GN-CNN. Overall recall is the 

average recall of estimated classes, whereas overall precision 

is the average precision of the predicted classes. As 

aforementioned, there are a total of 240 images used for 

testing purposes, so the estimated class contains 60 images. 

Table 2 demonstrates that the noise variance NV = 0.01 and 

NV = 0.02 classes have the highest recall value of 0.9667, NV 

= 0.03 (0.9333), and NV = 0.00 (0.8833). In the classes of 

noise variance with 0.01 and 0.02, only 2 samples are 

wrongly predicted. It can be concluded that the designed 

method has better recognition capability in classifying noise 

variance of SEM images with intermediate noise levels since 

the second (NV = 0.01) and third (NV = 0.02) classes have 

better recall and accuracy values. From Table 2, it is obvious 

that the system performs wrong prediction only in the next 

class or previous class of the noise variance. For instance, 

wrong prediction only occurs in the second class (NV = 0.01) 

in the prediction for first class (NV = 0.00). In other words, 

the framework does not recognize the SEM images with NV 

= 0.00 as NV = 0.02 or NV = 0.03. This implies that the 

proposed system can efficiently differentiate the images with 

insignificant differences in noise level.  

Table 2 exhibits that the class of NV = 0.00 has the highest 

precision of 1, followed by NV = 0.03 (0.9825), NV = 0.02 

(0.9063), and NV = 0.01 (0.8788). F1 score and testing 

accuracy are computed by employing Equation (12) and 

Equation (13) respectively. It results in an F1 score of 0.9397 

and testing accuracy of 93.8%, which are demonstrated in 

Table 3. There is only a slight difference of 0.8% between the 

testing accuracy (93.8%) and the validation accuracy 

(94.6%). The minor difference denotes that the proposed 

method is suitable for all the SEM datasets, including 

validation and testing datasets. Overall, the testing datasets 

show a high F1 score and testing accuracy of more than 90% 

reveal the capability and applicability of GN-CNN to classify 

the SEM images with different noise variance. 

 

B. Comparison with Other Architectures 

To prove the efficacy and potency of the proposed GN-

CNN in executing noise variance classification task, 4 

baseline models are designed to provide a comparison with 

our method. The 4 baseline algorithms are existing 

algorithms, including Long Short-Term Memory (LSTM), 

Residual Network 18 (ResNet18), and Residual Network 34 

(ResNet34), and pure Convolutional Neural Network (CNN). 

Those models are the most basic architecture employed to 

perform classification.  

The first baseline is Long Short-Term Memory (LSTM). It 

is one of the artificial Recurrent Neural Network (RNN) 

architecture which comprises input gate, output gate, and 

forget gate to regulate the information flow in a cell [34]. It is 

normally employed for generating classification and making 

a prediction. This is a conventional LSTM cell. It is not a 

bidirectional LSTM as used in GN-CNN. The number of 

inputs features and features in the hidden state are set as 700. 

We apply stacked LSTM by stacking three recurrent layers 

Evaluation Metrics of GN-

CNN 

Score 

Overall Recall 0.9375 

Overall Precision 0.9419 

F1 Score  0.9397 

Testing Accuracy 93.80% 

 

 
Fig. 7 GN-CNN architecture in predicting the noise variance of sample images 
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together. The second baseline model is basic Residual 

Network 18 (ResNet18). The predefined parameters of 

ResNet18 which consists of CNN with 18 layers deep are 

used without modification. The third baseline model is 

Residual Network 34 (ResNet34), which is another image 

classification method. It comprises 34 CNN layers to further 

convolute the features. Even ResNet34 has been adopted in 

the convolution layer of GN-CNN, but the stand-alone 

accuracy of standard ResNet34 is still an unknown value.  

Next, we employ 2 layers of Convolutional Neural 

Network (CNN) as the fourth baseline model. According to 

studies in Section 2.2, Khaw et al. [37], Momeny et al. [23], 

Murphy et al. [24], and Roy et al. [25] used 2 convolutional 

layers and 2 pooling layers in their studies. As a consequence, 

we use two layers CNN to represent the 4 studies as 

aforementioned. Thereby, the effectiveness of CNN can be 

determined when the comparison between GN-CNN and the 

CNN (4 studies) is made. The parameters used in the 2 layers 

CNN are described in Fig. 8. 

 

 
Fig. 8 Architecture of 2 layers CNN 

  

To prevent bias of result, all the datasets (training, 

validation, and testing) used in all these 4 models are exactly 

the same as the datasets used in the GN-CNN model. To 

appraise the classification performance of the 4 standard 

models, evaluation metrics such as recall, precision, F1 score, 

and accuracy of each model are computed. The evaluation 

metrics are calculated so that a comparison can be made 

between the proposed GN-CNN and 4 standard metrics. 

Table 4 displays the comparison of 4 evaluation metrics 

between GN-CNN and 4 basic models.  

Table 4 demonstrates that GN-CNN owns the highest 

recall value of 0.9375, followed by CNN (0.8625), ResNet34 

(0.6208), ResNet18 (0.5583), and LSTM (0.2542). The 

maximum recall value is 1, while GN-CNN has obtained a 

recall value (0.9375) of close to 1. Hence, it means the GN-

CNN method has a high ratio of correctly forested samples to 

the total number of samples in an expected class. Besides, 

GN-CNN also performs with the highest precision value of 

0.9419, followed by CNN (0.8784), ResNet34 (0.6560), 

ResNet18 (0.6192), and LSTM (0.3627). It indicates that GN-

CNN has correctly predicted a large number of samples in a 

predicted class. F1 score established a relationship between 

recall and precision. Similarly, GN-CNN also owns the 

highest F1 score of 0.9397 with its highest recall and 

precision value, followed by CNN (0.8704), ResNet34 

(0.6379), ResNet18 (0.5872), and LSTM (0.2989). High F1 

score reveals that the model has higher training accuracy. The 

recall, precision, and F1 score have linear relationships since 

the evaluation metrics of all models are ranked in order. GN-

CNN has obtained the highest values in all the evaluation 

metrics, followed by CNN, ResNet34, ResNet18, and LSTM. 

Besides, the proposed method of GN-CNN is more effective 

than the 4 existing baseline models, i.e., LSTM , ResNet18, 

ResNet34, CNN that are represented by CNN as all the 

evaluation metrics of GN-CNN are better than that of CNN. 

The F1 score of GN-CNN is 7.37% better than the F1 score 

of the 4 studies which are 2 layers CNN. Overall, our 

proposed method of GN-CNN model has the highest value of 

F1 score, recall, and precision. 

  Accuracy is another common metric to quantify the 

classification ability of the models. Table 4 shows that GN-

CNN has obtained the highest accuracy of 93.8%, followed 

by CNN (86.3%), ResNet34 (62.1%), ResNet18 (55.8%), and 

LSTM (25.4%). Higher accuracy implies that the model has 

greater capability to successfully classify the SEM images 

into the correct noise variance class. In this regard, LSTM has 

the lowest classification capability because it only correctly 

classified a quarter of samples. One most possible contributor 

for this scenario is that the LSTM is normally well-suited to 

perform classification or prediction on data which is 

dependent on time. The prediction of time series data tasks 

cannot be solved by other feed-forward neural networks as 

they process features using time windows with a fixed size 

[38]. SEM images with different noise variance are 

independent of time because they are not time-series data. 

LSTM provides better applicability in classifying time series 

data or sequential data, such as electroencephalogram (EEG) 

classification, electromyography (EMG) classification, and 

so on. This is due to the reason of EEG and EMG are 

biological signals that are measured with respect to time. 

ResNet18, ResNet34, CNN, and GN-CNN have obtained 

accuracy of more than 50%. These models have correctly 

classified more than half of the images with different noise 

variances. ResNet18, ResNet34, CNN, and GN-CNN are 

Table 4 Comparison of evaluation metrics between GN-CNN and 4 existing baseline models 

 

Model Evaluation Metrics 

Recall Precision F1 Score Accuracy 

LSTM 0.2542 0.3627 0.2989 25.4% 

ResNet18 0.5583 0.6192 0.5872 55.8% 

ResNet34 0.6208 0.6560 0.6379 62.1% 

CNN  0.8625 0.8784 0.8704 86.3% 

GN-CNN 0.9375 0.9419 0.9397 93.8% 
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under the category of convolutional neural network, whereas 

LSTM is under the category of recurrent neural network. 

Therefore, the convolutional neural network is more feasibly 

used to perform noise classification, as compared to the 

recurrent neural network. Most of the recurrent neural 

networks are well-suited for training data that are related to 

time.  

The accuracy results of ResNet18 and ResNet34 are quite 

close to each other with only 6% difference between them. 

ResNet34 has a higher accuracy because it has deeper layers 

of architecture as compared to ResNet18. The higher number 

of convolutional layers of ResNet34 has enhanced the 

accuracy of the result. Nevertheless, ResNet18 and ResNet34 

are still not applicable for performing noise classification for 

the reason of low accuracy percentage of not exceeding 80%. 

Besides, 2-layer CNN gives the highest accuracy of 86% 

among all the standard baseline models. This is the best 

accuracy that we obtain after experimenting with the CNN 

algorithm with different parameters such as filter size, 

padding size, stride size, and fully connected layer. This has 

proven that the CNN (4 existing studies in Section 2.2) offers 

better efficiency in classifying noised images as compared to 

residual networks. Nevertheless, the proposed GN-CNN 

provides a better performance than the classical CNN in 

classifying a noisy image. The accuracy of GN-CNN is 7.5% 

higher than the accuracy of the 2 layers classical CNN.  

Overall, the GN-CNN approach outperforms all the 4 

baseline models. In this way, GN-CNN has a better 

performance owing to the reason that it consists of the most 

complicated and complex neural network architecture. 

Architecture of encoder layer (bi-directional LSTM), 

convolutional layer (ResNet34), attention layer, decoder 

layer (LSTM cell), and decision layer (fully connected layer) 

make it powerful in training raw images and giving 

classification outcomes. Therefore, GN-CNN undoubtedly is 

the most efficient and effective tactic in classifying the SEM 

images with 4 different noise variances. The outcome of 

assessment has ascertained that the proposed method serves 

as a better classifier of noise image. 

V. CONCLUSION 

To summarize, the determination of noise variance of a 

Scanning Electron Microscopy (SEM) image is crucial to 
ease the noise reduction process. Before the noise level 

classification process, the SEM images are added with White 

Gaussian noise in 4 different noise variance classes of 0, 0.01, 

0.02, and 0.03. The images with added noise are then 

converted to histogram images. Subsequently, the 

convolutional neural network has been modified to a more 

advanced and complex architecture, called Gaussian-Noise 

Convolutional Neural Network (GN-CNN) in this paper. GN-

CNN is developed with an intention to effectively classify the 

SEM images with added White Gaussian noise into 4 

different noise variance categories. GN-CNN architecture 
consists of encoder layer (bi-directional LSTM), 

convolutional layer (ResNet34), attention layer, decoder 

layer (LSTM cell), and decision layer (fully connected layer) 

in sequence. This paper has employed a total of 1200 images 

for experimental study, with 60% for training, 20% for 

validation and testing respectively. 4 basic baseline models, 

including LSTM, ResNet18, ResNet34, and CNN are 

implemented to make a comparison with our proposed 

method. The CNN is used to represent 4 existing studies 

(Khaw, Momeny, Murphy, and Roy). As a result, the 

proposed GN-CNN has outperformed the other basic baseline 

models in terms of recall, precision, F1 score, and accuracy. 

GN-CNN has acquired recall of 0.9375, precision of 0.9419, 

F1 score of 0.9397, and accuracy of 93.8%. The results have 
demonstrated that the GN-CNN outperforms the 4 existing 

studies that use 2 layers CNN as their architecture. Therefore, 

the experimental study has shown that the GN-CNN can 

effectively classify the SEM images with different noise 

variance through the deep learning model. Nevertheless, the 

accuracy still can be enhanced in a few ways. More sets of 

data should be implemented in the experimental study so that 

more features will be trained and the neural network system 

is able to recognize more noisy images with different 

features. Besides, it is expected that higher accuracy can be 

achieved if a classical CNN or a ResNet34 is used in the 

convolutional layer.  
Overall, the experimental study has evidenced the 

capability and reliability of the developed system in 

classifying noise variances of SEM image. In future, the 

number of classification classes can be further increased to 8 

or 10, instead of 4 classes. The positive results also reflect 

those images with higher noise variance are also applicable 

for use in the future experimental study. Thus, it brings 

numerous benefits since the designed network has 

impressively surpassed human-eye performance in noise 

variance categorization. 
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