
Hybrid Algorithm to Find Minimum Expected
Escape Time From a Maze

Sheinna Yendri, Rully Soelaiman, Member, IAENG, and Yudhi Purwananto

Abstract—Expected value is one of the important factors used
in scenario analysis and decision makings. The most commonly
known method in finding expected value of a probability
problem is using deterministic approach to formulate and solve
a system of linear equations that represent the given problem.
This method, nonetheless, requires unrealistic conditions for
it to be executable which are knowing all the scenarios that
might happen and the probability for each scenario to happen.
In real life situations, most problems do not have a definite
scenarios provided with each of their probabilities. This is
a major loophole in deterministic approach for finding an
expected value of certain problems. One specific probability
problem that has this issue is to find the minimum expected
time needed to escape from a two-dimensional maze without
any information given for the escape path and the movement
probabilities. In this paper, we propose a novel solution for
the aforementioned problem using hybrid algorithm which is
a combination of deterministic and heuristic approach. In our
hybrid algorithm, the heuristic method is for optimizing the
assembly of possible path scenarios, while the deterministic
method is for counting and finding the minimum expected time
for each path scenario. Based on the case study testing result,
the solution using this hybrid algorithm requires an average
time of only 2.4 seconds which is seven times faster than the
required time limit, and an average memory of 5.31MB which
is only using 0.3% resources from the required memory limit.

Index Terms—expected value, hybrid algorithm, linear alge-
bra, and path scenario.

I. INTRODUCTION

EXPECTED value has a significant role in statistics
because it describes where the probability is centered

[1]. It indicates the anticipated value of an investment in
the future which can help to decide whether an action is
beneficial or detrimental [2]. In order to find an expected
value, all possible scenarios and each of their probability
must be provided [3]. This is the only way for an expected
value to be calculated using a deterministic approach, such
as linear algebra. However, most of real life problems do not
have exact definition of all possible scenarios, let alone each
probability. One particular problem that faces this issue is
finding the minimum expected time needed to escape a two-
dimensional maze without knowing any escape path and the
movement probabilities. In this problem, a blind agent tries
to escape a two-dimensional maze with movements limited to

Manuscript received July 14, 2022; revised January 12, 2023. This
work was supported in part by Sepuluh Nopember Institute of Technology,
Surabaya, Indonesia.

Sheinna Yendri is a graduate student at Sepuluh Nopember Institute
of Technology, Department of Informatics, Surabaya, Indonesia (e-mail:
6025212005@mhs.its.ac.id)

Rully Soelaiman is an associate professor at Sepuluh Nopember Institute
of Technology, Department of Informatics, Surabaya, Indonesia (e-mail:
rully130270@gmail.com)

Yudhi Purwananto is an associate professor at Sepuluh Nopember Institute
of Technology, Department of Informatics, Surabaya, Indonesia (e-mail:
purwananto@gmail.com)

four directions, namely North, East, South, and West. Making
a move to an adjacent cell takes exactly one unit of time. If
the agent attempts to move out of the grid or attempts to
move into an obstacle, he will stay in his current location
but it will still cost him one unit of time. There is exactly
one exit in the maze, located in one of the free cells. Since
the agent is blind, to avoid confusion while making a move,
his starting movement probabilities is fixed to four unknown
real numbers for each of the direction (North, East, South,
and West). Regardless of his position in the maze, he will
always attempt to move North with probability PN , East
with probability PE , South with probability PS , and West
with probability PW . In other words, the sum of all four
probabilities must equal to one. The challenge is to help the
agent escape the maze as soon as possible with the following
information provided; the agent starting position, the exit cell
location, and the maze configuration itself. This paper will
elaborate on how we approach this challenge to minimize the
escape time by finding the optimal values of PN , PE , PS , and
PW [4].

Fig. 1. Various path possibilities of a blind agent trying to escape from a
maze. (a) Example of a 3×3 two-dimensional maze. (b) One possible escape
path with inefficiency. (c) One possible escape path with more inefficiency.
(d) One possible escape path where the agent stumbled to obstacles. (e) One
possible escape path with the most efficiency.

One conventional way to approach this problem is to
simply iterate all possible scenarios by trying all possible
movement probabilities one at a time. From there, for each
scenario, the expected escape time can easily be obtained
using deterministic method. However, this naı̈ve approach
is actually impossible to be done, knowing that the blind
maze-escapee’s movement probabilities are real numbers
which have infinite possible values. Even if we limit the
precision to nine decimal places, the time complexity will
be O(1027) and takes 1018 seconds which is equivalent to
31.7 billion years, and thus not an ideal solution for real life

Engineering Letters, 31:1, EL_31_1_37

Volume 31, Issue 1: March 2023

__

applications. Figure 1 shows the various possibilities of a
blind agent trying to escape from a 3 × 3 two-dimensional
maze (Figure 1(a)). In Figure 1(d), it is shown that the path
taken by the agent might stumble to obstacles or walls before
finally reaching the destination cell. Figure 1(b)(c)(e) shows
other path possibilities that might be either an efficient or a
inefficient one.

By taking previous researches with similar topics of pro-
cess optimization problem solving as reference [5] [6] [7]
[8], it can be deduced that merging heuristic approach with
deterministic approach makes this maze-escaping problem
possible to solve. Therefore, in this paper, we proposed
a novel solution that only needs an average time of 2.39
seconds to count the minimum expected escape time from
a maze sized 8 × 8, which is approximately four hundred
million times faster compared to the conventional way and
satisfies the problem time limitation of 16 seconds. This
result can be achieved by using deterministic and heuristic
hybrid approach to optimize the escape path finding and also
count the expected escape time.

The rest of the paper is organized as follows: Section
II presents our novel hybrid method: the combination of
deterministic and heuristic methods, which is proposed to
find the minimum expected escape time. Section III presents
the experimental results and analysis. Finally, the conclusion
is stated in Section IV.

II. METHODOLOGY

The hybrid algorithm that we propose as a solution to find
the minimum expected escape time from a two-dimensional
maze is a combination of deterministic and heuristic meth-
ods. Similar to how it is used in naı̈ve approach, the
deterministic method is for calculating the expected escape
time by solving a system of linear equations. On the other
hand, the heuristic method holds the key to overcome the
issue of finding the most optimal escape path probability
that was not achievable in naı̈ve approach. In general, the
hybrid algorithm is divided into three main steps:

1) Determine movement probability values randomly (or
intuitively) as the starting point that will be used in the
deterministic part.

2) Calculate the expected escape time by solving the
linear equation system formed by the predefined move-
ment probabilities.

3) Improve the expected escape time until the minimum
value is achieved by updating the movement probabili-
ties according to the objective function and recalculate
the expected escape time.

The three main steps above are described in more details
through the flowchart shown in Figure 2.

Taking into account that hybrid algorithm is constructed
by two major parts: deterministic and heuristic, the following
discussion will also consisted of two major sections to
elaborate each method, Section II-A and Section II-B, and
closed with Section II-C which will show how these two
parts are combined and used alternately to find the minimum
expected escape time.

A. Deterministic part
As mentioned in the Section II, the deterministic part is

for computing the expected escape time. To compute the

Fig. 2. Flowchart of the proposed hybrid algorithm. This algorithm will
keep running until the global minima is reached, which means the minimum
expected escape time is already obtained.

expected value of a certain problem, we must know the
possible scenarios with its respective probabilities. Since
this problem does not have any of the required information
for expected value calculation, we will first assume that all
possible movement probabilities made to escape the maze are
already obtained. Therefore, in this section, we can eliminate
the needs to find the optimal movement probability, because
it will be covered in Section II-B. Starting from this point, we
will assume that PN , PE , PS , and PW are valid movement
probabilities, which satisfy both equations (1) and (2).

0 ≤ PN ≤ 1, 0 ≤ PE ≤ 1, 0 ≤ PS ≤ 1, 0 ≤ PW ≤ 1 (1)

PN + PE + PS + PW = 1 (2)

Expected value is calculated by using the probability
distribution which is obtained from a multiplication of each
possible outcomes by its occurrence likelihood and then
summing all of those values [1]. Generally, expected value
of the random variable X is denoted as E(X), which is

Engineering Letters, 31:1, EL_31_1_37

Volume 31, Issue 1: March 2023

__

formulated in equation (3) if X is discrete, and in equation
(4) if X is continuous.

E(X) =
∑
x

xf(x) (3)

E(X) =

∫ ∞

−∞
xf(x) dx (4)

In calculating the expected value of time to escape from
a two-dimensional maze, the possible outcomes depend on
the movement possibilities. From one cell to another, we
have multiple scenarios that might happen and each of it
has different probabilities to happen. Thus, to calculate the
expected escape time for this problem, we can focus on
calculating the expected time based on each cell. Each cell’s
expected value will influence the expected values of its
neighboring cell from all four directions. The reason behind
this is because the expected value represents the total escape
time that will be added as the agent travels through the
maze. This process is illustrated in Figure 3. Each cell will
have four possible next steps, namely the North, East, South,
and West with each direction has its own probability to be
chosen. As mentioned before, expected time is calculated
by multiplying each possible scenario with its likelihood to
occur and then summing all values. Hence, for this problem,
the expected time for each cell (row, col) can be defined
in equation (5), where row and col represent the current
position of the agent in the two-dimensional maze. This
equation (5) is derived from equation (3) as our problem is
having a discrete random number which is the cell position,
where x is represented by the expected value of adjacent
cells (e.g. E(row − 1, col)), and f(x) is represented by
the movement probability to reach that adjacent cell (e.g.
PN). Moreover, since the expected value is dependant on the
neighboring cells, the expected value calculation is not done
once only, but multiple times for each cell in each iteration.

Fig. 3. Illustration of each cell’s expected value findings. The grids are
representing the maze cells, with each cell (row, col) indicates the agent’s
position and has four possible movements.

E(row, col) =PN × E(row − 1, col)+

PE × E(row, col + 1)+

PS × E(row + 1, col)+

PW × E(row, col − 1) + 1

(5)

Since we are calculating the expected escape time from the
perspective of each cells, we will assign N ×M as the total
cells that need to be calculated. Thus, when we construct
the linear equation system, we will have a total of NM
equations with each equation consists of NM variables. In

other words, if we represent the linear equation system using
two-dimensional matrix, we will have a NM × NM sized
matrix. In our problem, the maximum maze to be solved is
only sized 8 × 8, meaning the largest matrix we can get is
only sized 64 × 64 and both memory and time-wise is still
sufficient. For further optimization, we can reduce the matrix
size by forming it only from the visited cells of the maze, not
using all N×M cells. Once we construct the matrix, we can
transform the matrix into a reduced row echelon form and
find the expected escape time by solving the linear equations
of the matrix. The steps included in this process will be
further discussed in section II-A1 to II-A3.

1) Traversing the Maze: Before going into further elab-
oration on the equation formulation part, we first need to
traverse the maze to locate which cells are visited while
giving identification numbers (IDs) to each cell. The point
of doing this step is to count total visited cells which will be
used later on when constructing the matrix. It is important to
mark each cell with ID numbers as it will help in organizing
the linear equation formulations.

Fig. 4. Example of transforming a 3× 3 maze into a graph so it is easier
to be traversed. Figure on the left side is showing the example 3× 3 maze,
while figure on the right side is showing the graph representation of the
maze.

Fig. 5. Illustration of traversing a 3 × 3 maze using BFS. In BFS,
the traversing works layer by layer, starting from the root (source) to its
neighbors and so on until all nodes are visited.

A maze can be represented as a graph G = (V,E) with its
cells as the vertices (V) and the connection between cells as
the edges (E) [9]. An example of representing a maze using
a graph can be seen in Figure 4. There are various ways

Engineering Letters, 31:1, EL_31_1_37

Volume 31, Issue 1: March 2023

__

to traverse a graph, for this case, we are using breadth-first
search (BFS) method which is one of the simplest algorithms
for searching a graph, especially in finding the shortest paths.
Starting from a distinguished source vertex, BFS will traverse
the graph ‘breadth-first’: vertices that are direct neighbors
of the source vertex (first layer) will be visited first, then
continue to visit the neighbors of direct neighbors (second
layer), and so on, layer by layer, until all vertices are visited
[10]. Illustration of this maze traversing process using BFS
algorithm for an example 3× 3 maze is shown in Figure 5.

2) Constructing the Matrix: After traversing the entire
maze and marked the visited cells, we can start constructing
the matrix. From this point, the discussion for this section
will be carried on using the 3 × 3 example maze shown
in Figure 4. From Figure 5 we know that there are 7 visited
cells in the maze, numbered from one to seven. Meaning, we
will need to construct a 7 × 7 matrix to represent a system
of 7 linear equations of the expected escape time. For our
example case, since we are constructing a 7× 7 matrix, the
basic matrix equation is shown in equation (6)

a11 a12 a13 a14 a15 a16 a17
a21 a22 a23 a24 a25 a26 a27
a31 a32 a33 a34 a35 a36 a37
a41 a42 a43 a44 a45 a46 a47
a51 a52 a53 a54 a55 a56 a57
a61 a62 a63 a64 a65 a66 a67
a71 a72 a73 a74 a75 a76 a77

x1

x2

x3

x4

x5

x6

x7

=

z1
z2
z3
z4
z5
z6
z7

(6)

Now, we will modify the matrix values adjusted to the
maze configuration and the movement probabilities we pre-
viously defined i.e. PN , PE , PS , and PW . We will update
all aij values according to the movement probability from
cell i to j, except for the destination cell itself, shown in
equation (7). For example, a11 equals to 1−PN −PS−PW ,
since a11 represents movement from cell 1 to cell 1. In other
words, the agent stays in the same position which is caused
by an attempt of moving into an obstacle or a wall. Looking
at the maze configuration, this can only happen when the
agent tries to move towards North, South, and West. Another
example, a21 equals to −PW , since the only way to move
from cell 2 to cell 1 is by moving towards West. One unique
characteristic of this equation is that aii values will always
start with 1 before subtracting them with the probability
movements because the matrix is initially an identity matrix.

a11 = 1−PN−PS−PW a12 = −PE

a21 = −PW a22 = 1−PN

a23 = −PS a24 = −PE

a32 = −PN a33 = 1−PE−PW

a35 = −PS a42 = −PW

a44 = 1−PN−PE−PS a53 = −PN

a55 = 1−PS a56 = −PW

a57 = −PE a65 = −PE

a66 = 1−PN−PS−PW

(7)

The xi value matrix from equation (6) is a column vector
of the 7 unknowns that we are looking for. While the right-
hand side matrix is another column vector that will be filled
by a vector of ones, except the destination cell that will be

filled by a zero. This right-hand side matrix represents the
expected cost of moving between cells, which is one unit of
time per movement. The reason for putting zero value in the
destination cell is because we are looking for the expected
escape time to reach the destination cell. As a result, if we
assume PN = 0.3, PE = 0.3, PS = 0.2, and PW = 0.2, we
will get the final matrix equation as shown in equation (8).

0.3 −0.3 0 0 0 0 0
−0.2 0.7 −0.2 −0.3 0 0 0
0 −0.3 0.3 0 −0.2 0 0
0 −0.2 0 0.2 0 0 0
0 0 −0.3 0 0.8 −0.2 −0.3
0 0 0 0 −0.3 0.3 0
0 0 0 0 0 0 1

x1

x2

x3

x4

x5

x6

x7

=

1
1
1
1
1
1
0

(8)

3) Solving the System of Linear Equations: In this final
section, the only remaining step is to solve the linear equation
system, represented by the matrix equation constructed in
Section II-A2. We define a matrix equation as stated in
equation (9), where A is the coefficient matrix filled with the
movement probabilities, x is the variable matrix which values
represent the expected time to reach the destination cell, and
z is the constant matrix filled with the amount of time needed
to move from one cell to another. Time complexity to solve
this matrix equation is O(n2 ·m), where n is the number of
rows of matrix A and m is the number of rows of matrix
x. Thus, the maximum time complexity using this method
is only O(642 · 64) (equivalent to 0.1 millisecond) when the
size of the maze is 8× 8.

A · x = z (9)

Matrix equation shown in equation (8) is representing the
linear equation system using the movement probabilities of
PN = 0.3, PE = 0.3, PS = 0.2, and PW = 0.2. Since in
that example we are starting from cell 1, and our destination
is cell 7, the expected escape time will be stored in x1,
the first element from the variable matrix. To sum up, the
overall algorithm of this deterministic method is summarized
as follows in Algorithm 1 and 2. Algorithm 1 mainly shows
how the matrix equation formulation process is done, and
then calls SOLVELINEAR function which is Algorithm 2.

B. Heuristic part

As discussed earlier in Section II-A, the movement proba-
bilities were assumed to be PN , PS , PW , PE first as these
probabilities values are obtained using heuristic method
which will be further explained in this section. When trying
to escape from the maze, the agent has four movement
directions, namely to North, East, South, and West. In each
second, the agent must make a move to one of its four neigh-
bor cells and the probabilities of the agent moving to these
four directions must fulfill equation (2) from Section II-A.
Hence, when looking for the optimal movement probabilities,
we only need to find three probability values and obtain the
remaining value by solving equation (2). In our solution,
we use this heuristic approach to find PN , PS , PW , and use
equation (2) to solve PE accordingly. If the precision is
limited to only nine decimal places, this means we will have
109 probabilities for each direction. As a result, in total we

Engineering Letters, 31:1, EL_31_1_37

Volume 31, Issue 1: March 2023

__

Algorithm 1 Calculate the expected escape time
Input: vis, prob
Output: ans

1: dy[4]← −1, 1, 0, 0
2: dx[4]← 0, 0,−1, 1
3: INFDB ← 999999.99
4: for each y, x, id in vis do
5: A[id][id]← A[id][id] + 1.0
6: if id = exitId then
7: z[id]← 0.0
8: CONTINUE
9: end if

10: z[id]← 1.0
11: for i← 0 to 3 do
12: ny ← y + dy[i]
13: nx← x+ dx[i]
14: if !ISVALIDCOORDINATE(ny, nx) then
15: ny ← y
16: nx← x
17: end if
18: nextId← vis[ny][nx].id
19: A[id][nextId]← A[id][nextId]− prob[i]
20: end for
21: end for
22: ans← SOLVELINEAR(A, z)
23: if ans = −1 then return INFDB
24: else return ans
25: end if

have 1027 movement probabilities which takes approximately
31.7 billion years to be traversed. This does not satisfy
the problem time limitation of 16 seconds. Thus, heuristic
approach is required to optimize the movement probabilities
finding.

There are plentiful of options in the field of utilising
heuristic approach for optimization process, such as hill
climbing, simulated annealing, genetic algorithm [11] [12],
and swarm intelligence [13] [14]. For this problem, hill
climbing is the best option because of its simplicity and
thus does not require a lot of resources both timewise and
spacewise. It is simply a loop that gradually moves in the
direction of decreasing value, since we are looking for the
minimum expected value. It terminates when it reaches a
“peak” where no neighbor coordinates has a lower value. Hill
climbing often makes a rapid progress towards the solution
because it is quite easy to recover from a bad state while
doing iteration hops [15]. However, hill climbing has its
drawback when facing local maxima, ridges, or plateaux. In
those cases, hill climbing will most probably get stuck and
cannot find the global optimal solution. Fortunately, in our
problem, the generated 3D-graphs between expected escape
time and movement direction probabilities are all concave
graphs as displayed in Figure 6, 7, and 8. Since there are
3 movement probabilities required, but only 2 movements
can be represented in each graph, the relationship between
expected escape time and the movement probabilities is
represented in

(
3
2

)
= 3 graphs. Figure 6 represents the

graph relationship between the movement probabilities and
the expected escape time when probability to move South
(PS) is fixed, Figure 7 is when probability to move West

Algorithm 2 Solve the system of linear equations
Input: A, z
Output: EV

1: n← A.size()
2: m← z.size()
3: rank ← 0
4: EPS ← 10−7

5: for i← 0 to n do
6: val, zval← 0
7: for row ← i to n do
8: for col← i to m do
9: if (val = |A[row][col]|) > zval then

10: zrow = row
11: zcol = col
12: zval = val
13: end if
14: end for
15: end for
16: if zval ≤ EPS then
17: for j ← i to n do
18: if |z[j]| > EPS then
19: return -1
20: end if
21: end for
22: BREAK
23: end if
24: SWAP(A[i], A[zrow])
25: SWAP(z[i], z[zrow])
26: SWAP(col[i], col[zrow])
27: for j ← 0 to n do
28: SWAP(A[j][i], A[j][zcol])
29: end for
30: zval← 1

A[i][i]
31: for j ← i+ 1 to n do
32: fac← A[j][i] ∗ zval
33: z[j]← z[j]− (fac ∗ z[i])
34: for k ← i+ 1 to m do
35: A[j][k]← A[j][k]− (fac ∗A[i][k])
36: end for
37: end for
38: rank ← rank + 1
39: end for
40: EV ← −1
41: for i← rank downto −1 do
42: z[i]← z[i]

A[i][i]

43: x[col[i]]← z[i]
44: if col[i] = startId then
45: EV ← x[col[i]]
46: BREAK
47: end if
48: for j ← 0 to i do
49: z[j]← z[j]− (A[i][j] ∗ z[i])
50: end for
51: end for
52: return EV

Engineering Letters, 31:1, EL_31_1_37

Volume 31, Issue 1: March 2023

__

(PW) is fixed and Figure 8 is when probability to move North
(PN) is fixed. These three figures are using an example of
escaping from a maze sized 3× 3.

Fig. 6. Relationship between expected escape time from a 3 × 3 maze
when PS is fixed

Fig. 7. Relationship between expected escape time from a 3 × 3 maze
when PW is fixed

Fig. 8. Relationship between expected escape time from a 3 × 3 maze
when PN is fixed

Based on the concave characteristics of expected escape
time against movement probabilities graphs, we can conclude
that hill climbing method is applicable for optimizing this
maze escape movement probabilities searching process. It is
the simplest and fastest heuristic optimization method that
does not need much resources to obtain the most optimal
solution. The initial step of hill climbing is to set a starting
point. Adopting random probabilities as starting points are
the general practice for this method, but there is another
better way by choosing intuitively based on the maze’s
source and destination cells which will be used for this paper
proposed solution. Next, an objective function needs to be
determined. Objective function is a function that needs to
be minimized or maximized based on the problem [16]. In
this problem, our objective is to find the minimum expected
escape time from the maze. Hence, the objective function for
this problem is defined as equation (5). By using the expected
value formula as our objective function, the next iteration
state value will always produce movement probabilities that
has faster expected escape time. Finally, the hill climbing
iteration will terminate when reaching the stopping criteria,
in which there is no better next state (all neighbor cells
cannot produce faster expected escape time). This condition
occurs when the solution is finally convergent and there is
no better solution exists.

Algorithm 3 Our proposed hybrid algorithm
Input: maze
Output: ans

1: EPS ← 10−9

2: vis← TRAVERSEMAZE(maze)
3: p[0], p[1], p[2], p[3]← GENERATESTARTINGPOINT()
4: ans← COMPUTEEV(vis, p)
5: for i← 0.1 downto EPS step ∗0.5 do ▷ hill climbing
6: for j ← 0 to 2 do
7: for a← −1 to 1 do
8: for b← −1 to 1 do
9: for c← −1 to 1 do

10: pp[0]← p[0] + i ∗ a
11: pp[1]← p[1] + i ∗ b
12: pp[2]← p[2] + i ∗ c
13: pp[3]← 1− pp[0]− pp[1]− pp[2]
14: if ISVALIDPROBABILITY(pp) then
15: res← COMPUTEEV(vis, pp)
16: if res < ans then
17: res← ans
18: for k ← 0 to 3 do
19: p[k]← pp[k]
20: end for
21: end if
22: end if
23: end for
24: end for
25: end for
26: end for
27: end for
28: return ans

In line 4 and 15, COMPUTEEV function is called to compute the expected
escape time (the deterministic method).

Engineering Letters, 31:1, EL_31_1_37

Volume 31, Issue 1: March 2023

__

C. Hybrid algorithm
In the previous sections, we already discussed on how

deterministic and heuristic methods are being used indepen-
dently to solve this problem in parts. In this section, we will
now elaborate on how these two different methods can be
used together alternately in solving the problem as a whole.
It has been explained from Section II-A that deterministic
part is able to provide the expected escape time as long as
the movement probabilities are known. On the other hand,
Section II-B shows that heuristic part provides the optimal
movement probabilities. From these two statements, it can
be concluded that both methods (deterministic and heuristic)
actually depend on each other. First, heuristic method is
utilised to give an intuitively determined movement prob-
abilities (PN , PE , PS , PW) as the starting point of using
deterministic method for the next part of this optimized
problem-solving hybrid algorithm. Once the initial movement
probabilities are set, deterministic method is applied to
process and calculate the expected escape time using linear
algebra. Then, the expected escape time obtained from this
deterministic method is processed again by heuristic method
to determine the next suitable state. The suitable next state is
retrieved by finding which movement probabilities produce
the least expected escape time out of all the possible next
states. This sequence of steps is executed back and forth into
one loop of process until all possible next states result in
the same expected escape time, which fulfilled the stopping
criteria. This loop of process sequence born from a hybrid
of deterministic and heuristic approach can be translated into
an algorithm shown in Algorithm 3.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In the previous section, we have explained how we ap-
proach this maze problem using this novel hybrid algo-
rithm of deterministic and heuristic methods. All proposed
algorithms in this paper were implemented using C++11
programming language. Therefore, in this section, we will
examine this algorithm by using various testing platforms
suitable for analysing two important aspects of C++11 pro-
gram which are its validity and performance. The validity
of this hybrid approach was tested by submitting the source
code on Sphere Online Judge which is a third-party online
platform for source code checker, that uses Cube cluster with
Intel Xeon E3-1220 v5 CPUs [17]. The online judge platform
examined the submitted source code validity by comparing
its result output to the expected answers provided by the
problem originator. On the other hand, two environment
testing platforms were used to evaluate the performance of
the source code. The first platform on a live environment is
using Sphere Online Judge’s feedback to assess both memory
and time consumption compared with all previous solutions.
While the other platform is a local environment using a
PC with Intel® Core™ i7-1165G7 4 Core Processor and
8192 MB of memory, running Windows 10 with GCC 7.50
compiler, to compare and analyze the program runtime and
how efficient the heuristic part works in different maze sizes
and complexities scenario.

In Section III-A, we will elaborate on the validity check
of the hybrid method that is used to calculate the minimum
expected escape time from a two-dimensional maze. More-
over, in Section III-B we will further go into detail about

the performance examination of the proposed method, both
timewise and spacewise. Lastly, in Section III-C we will
analyze how efficient the heuristic method works in different
maze configurations and sizes.

A. Validity Examination

Figure 9 shows how the hybrid approach used as explained
in Section II are scored on Sphere Online Judge. Sphere
Online Judge’s testing system will give various response
statuses based on its judgement to the solution submitted.
“Accepted” status indicates that the program ran success-
fully and gave a correct answer, “wrong answer” status
means the program ran successfully, but gave an incorrect
answer, “time limit exceeded” shows that the program was
compiled successfully, but it exceeded time limit, “compila-
tion error” means that the program could not be compiled,
and lastly “runtime error” status implies that the program
was compiled successfully, but it exited with a runtime error
or crashed [18].

The code testing submissions were executed at least 10
times to ensure not only its accuracy but also its consistency
throughout this validity test. All ten submissions received
“accepted” responses which proves that our approach to
calculate minimum expected escape time using the fusion
of linear algebra and hill climbing methods can provide
correct answers within the time and memory limitation. For
each submission, our program was challenged with multiple
hidden test cases configured by the problem originator.
“Accepted” status is given only when the code passes all
test cases which proves how strongly valid our solution is.
Moreover, as seen from Figure 10 only 5 out of 99 submitted
solutions are accepted by the Sphere Online Judge and our
proposed hybrid solution is one of them. This not only shows
how complex the problem is, but also how powerful our
proposed solution is.

B. Performance Examination

There are two factors that must be taken into considera-
tions in performance examination, they are program runtime
and memory usage [19]. The first factor, program runtime,
will be tested in both local, using own PC, and live envi-
ronment, with the help of Sphere Online Judge site. As for
the second factor, memory usage, will only be evaluated in
Sphere Online Judge site.

1) Runtime: In evaluating an algorithm’s performance, it
is essential to use worst-case scenarios to determine whether
the algorithm is still acceptable and running well even in
unfavorable situations. Therefore, in order to evaluate the
program runtime, two types of maze were used: maze with
no blockers and spiral-like maze. Maze with no blockers
configuration is considered as the worst case because algo-
rithm pruning will take no effect in this maze type. Algorithm
pruning is effective for mazes which consist of a lot of
blockers that means the amount of visited cells are reduced
and so does the program runtime. However, this is not the
case in no blocker mazes. On the other hand, spiral-like maze
may not be the worst possible case but it serves as a special
case with an interesting problem to be evaluated, because in
determining the expected escape time, we need to know the
most optimal movement probabilities beforehand. In the case

Engineering Letters, 31:1, EL_31_1_37

Volume 31, Issue 1: March 2023

__

Fig. 9. Validity Test Examined by Sphere Online Judge

Fig. 10. Statistics of all previously submitted solutions and list of accepted users examined by Sphere Online Judge

of spiral-like maze, the escape path must also have a spiral-
like path and thus the movement probabilities between each
directions should be quite similar. With similar movement
probabilities, the agent will need the longest time to reach
the destination cell, thus it can be referred as the worst case
if the focus of the challenge leans more towards escaping the
maze quickly rather than saving program runtime to find the
most optimal escape route. Illustration of a 8× 8 spiral-like
maze is shown in Figure 11. After choosing two worst case
test scenario, we would like to know how the trend of the
program runtime for each test case looks like with expanding
maze size. For this performance evaluation, we chose N×N
maze size with one unit of increase starting from N = 2 to
8. Table I and II show the program runtime when solving

no blocker maze and spiral-like maze. The data above were
obtained by executing the implemented approach on a local
PC ten times for each maze type.

Figure 12 shows the scatter chart of every ten trials’
average runtime value in no blocker mazes and spiral-like
mazes with different sizes. It is shown that the program
runtime in both no blocker maze and spiral-like maze are
exponentially increasing with the maze size. Especially for
no blocker mazes, the trend is growing much more signif-
icantly compared to spiral-like mazes. This is due to the
fact that the proposed hybrid method is highly dependant on
the maze cells that can be visited. Hence, no blocker maze
will obviously have more cells to be examined, compared to
spiral-like mazes. In 8×8 no blocker maze, the program ran

Engineering Letters, 31:1, EL_31_1_37

Volume 31, Issue 1: March 2023

__

Fig. 11. Illustration of spiral-maze sized 8×8. It is shown that the escape
path consists of 6 steps to the North, 12 steps to the East, 10 steps to the
South, and 10 steps to the West. Number of steps needed for each direction
are more or less the same, thus the optimal movement probabilities are
nearly 0.25 for each direction.

TABLE I
PROGRAM RUNTIME IN NO BLOCKER MAZES (IN SECONDS)

#
Maze Size

2× 2 3× 3 4× 4 5× 5 6× 6 7× 7 8× 8

1 0.002 0.007 0.022 0.067 0.170 0.386 0.845

2 0.002 0.007 0.022 0.103 0.296 0.890 1.236

3 0.003 0.007 0.027 0.085 0.188 0.433 1.031

4 0.002 0.008 0.032 0.122 0.244 0.457 0.965

5 0.002 0.008 0.023 0.070 0.156 0.388 0.927

6 0.003 0.009 0.032 0.086 0.199 0.539 1.031

7 0.003 0.011 0.046 0.088 0.204 0.524 1.015

8 0.002 0.007 0.024 0.068 0.218 0.489 0.971

9 0.005 0.012 0.036 0.077 0.207 0.461 1.283

10 0.003 0.009 0.040 0.076 0.157 0.465 1.257

TABLE II
PROGRAM RUNTIME IN SPIRAL-LIKE MAZES (IN SECONDS)

#
Maze Size

2× 2 3× 3 4× 4 5× 5 6× 6 7× 7 8× 8

1 0.004 0.008 0.015 0.042 0.069 0.179 0.384

2 0.006 0.009 0.017 0.048 0.092 0.254 0.394

3 0.003 0.006 0.011 0.031 0.077 0.194 0.418

4 0.004 0.006 0.010 0.033 0.087 0.201 0.346

5 0.005 0.011 0.027 0.069 0.112 0.267 0.465

6 0.006 0.010 0.020 0.048 0.083 0.233 0.389

7 0.005 0.009 0.018 0.041 0.092 0.159 0.429

8 0.003 0.009 0.015 0.041 0.103 0.222 0.534

9 0.009 0.020 0.031 0.044 0.087 0.219 0.471

10 0.006 0.009 0.018 0.035 0.073 0.172 0.386

for an average of 1.0561 seconds, while in spiral-like maze,
it took only an average of 0.4216 seconds which is half of
the time needed for solving no-blocker maze.

In live environment, the proposed method is also submitted
ten times in order to check on its performance consistency.
Figure 13 shows a bar chart of all ten submissions’ execution
time measured by Sphere Online Judge, with an average
execution time of only 2.456 seconds out of 16 seconds, the
maximum time limit given. If we further observe this bar
chart pattern, only one trial run (6th) took ±40 milliseconds
longer than the remaining 9 trials. Therefore, this 6th trial

Fig. 12. Average program runtime in different type of mazes. Program
runtime in both mazes are exponentially increasing, with larger multiplier
in no blocker mazes.

Fig. 13. Timewise Performance Measurement by Sphere Online Judge

Fig. 14. Spacewise Performance Measurement by Sphere Online Judge

can be considered as an outlier caused by the server load
inconsistency during certain busy time [20] [21].

2) Memory Usage: As mentioned in the beginning of this
section, the proposed approach memory usage examination is
done by Sphere Online Judge that shows how many resources
were used when executing submitted program. In average,
our proposed approach only needs 5.31 MB of resources

Engineering Letters, 31:1, EL_31_1_37

Volume 31, Issue 1: March 2023

__

TABLE III
NUMBER OF HOPS NEEDED USING INTUITIVE VS RANDOM APPROACH

Maze Size
No Blocker Spiral-like

Intuitive Random Intuitive Random

4× 4 57 73 35 42.5

5× 5 59 75.8 40 43.3

6× 6 59 74.9 40 48.8

7× 7 59 77.4 42 47.4

8× 8 59 75.4 47 50.2

which is only 0.3% of the maximum memory limit given,
shown in Figure 14. In conclusion, our hybrid approach is
indeed efficient spacewise.

C. Heuristic Method Examination

In this section, the efficiency of our proposed heuristic
method in solving different maze configurations and sizes
will be analysed. As explained in earlier part of this paper,
our heuristic method uses a loop to optimize the state in each
iteration. The more iterations it needs to reach the optimal
state, the less efficient it is. Thus, the number of iterations,
also referred as hops, needed to reach the optimal state will
be used to represent the efficiency of the heuristic method.
This examination was carried out in local environment using
the same N ×N maze configurations that were used in the
program runtime performance examination in Section III-B
with 4×4 as the starting size. This is because smaller mazes
most probably need less movement or even just one or two
directions which is not an ideal representation to evaluate our
heuristic method. In addition, this evaluation was also tested
using two starting point selection approaches: intuitively or
randomly, which was briefly mentioned in Section II-B.
These starting point selection approaches are important to
be evaluated to show how significantly faster the intuitive
approach is compared to random approach in obtaining the
most optimal movement probabilities.

Table III shows how many hops were needed to find
the optimal movement probabilities using both intuitive and
random approaches in no blocker mazes and spiral-like
mazes, ranged from size 4 × 4 until 8 × 8. The result is
quite contrary to the program runtime based on the maze
dimension. Even though both intuitive and random approach
shows an increase trend in hops against maze size, it can
be seen that intuitive approach has a better performance
compared to random approach, especially for no blocker
maze type. This is because, in no blocker maze there are
more variations of escape paths that can cause higher error
rate in choosing optimal movement probabilities. In contrary,
spiral-like maze only has exactly one variation of escape
path, and thus the error rate is less. Our intuitive approach
uses an almost “fair” probability for each direction (e.g. 0.2,
0.3, 0.2, 0.3), depending on the source and destination cell
locations in the maze. Hence, it is more efficient to be used
in a maze where the optimal movement probabilities’ error
rate is higher. Another negative side of using random starting
point observed from the bar chart from Figure 15 and 16
is, regardless of its uniform average result, it actually has a
quite significantly wide variance in every trial. By choosing
randomly, the selected starting point can indeed be very near

to the optimal state, but it can also be very far, it is a hit-
or-miss situation. On the other hand, by choosing intuitively,
the selected starting point may not be as near as the random
approach’s “100% hit” situation, but it can provide a more
consistently accurate starting point. From both bar charts in
Figure 15 and Figure 16, it can be concluded that choosing
the starting point for our heuristic method intuitively is
preferable.

Fig. 15. Comparison between Intuitive and Random Approach in No
Blocker Mazes. It is based on the number of hops needed to reach the
optimal state. Intuitive approach data is uniform for each trial, thus was
taken once. While random approach data is averaged from a total of 10
trials. Overall, intuitive approach performs more effectively compared to
random approach by a large margin.

Fig. 16. Comparison between Intuitive and Random Approach in Spiral-
like Mazes. Same as the previous figure (Fig. 15), intuitive approach data
was retrieved once, while random approach data was retrieved from an
average aggregation of 10 trials. In spiral-like mazes, intuitive approach
also performs better compared to random approach.

For a better visual representation, Figure 17 shows a 3D-
graph which illustrates how hill climbing states are updated
in each iteration which we referred as hops, when solving a
8 × 8 no blocker maze with intuitively determined starting
point. In this example, a total of 59 hops were needed,
it can be seen that the hops are eventually leading to a
certain coordinate which represents the optimal movement
probabilities. The hop distances are becoming less as they
approach the optimal value to satisfy the precision required.
We then tried to use the same maze configuration but with

Engineering Letters, 31:1, EL_31_1_37

Volume 31, Issue 1: March 2023

__

Fig. 17. Hill Climbing Hops Movement in a 8× 8 No Blocker Maze with
Intuitive Starting Point. A total of 59 hops were needed, almost 20 hops
less compared to using randomly selected approach.

Fig. 18. Hill Climbing Hops Movement in a 8× 8 No Blocker Maze with
Random Starting Point. A total of 78 hops were needed in this illustration.

a randomly selected starting point, this eventually leads to
the same optimal value after a total of 78 hops, as seen
in Figure 18. Both of these 3D-graph illustrations further
emphasize that by using hill climbing approach, no matter
where the starting point is, will always eventually reach the
same optimal state. What makes each starting point different
is the number of hops needed to reach the optimal state,
which is why in our proposed approach, we did not choose
the starting point randomly, but rather used an intuitive
approach to determine it.

e =
√

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 (10)

To get a more quantitative evaluation on this heuristic
performance evaluation, error value between the suggested
coordinate in every iteration (x1, y1, z1) and its expected op-
timal coordinate (x0, y0, z0) will be calculated and illustrated
in a line graph. The error value is calculated using Euclidean
distance which is shown in equation (10). Euclidean distance
is usually used to calculate the distance between several data

Fig. 19. Error value between given movement probabilities in each iteration
with its optimal movement probabilities calculated using euclidean distance
as the number of iterations increases.

items [22], which in our case can be applied as a metric
to calculate error values. This error value should gradually
decrease as the number of iterations increases and eventually
reach convergence to prove that the heuristic method is
working properly. Line graph shown in Figure 19 validates
this hypothesis by showing that using hill climbing with
either randomly or intuitively selected starting point, will
result an exponentially decreasing trend of error value and
finally reach convergence. For intuitively selected starting
point, approximately after only 10 iterations, convergence are
already reached. While for randomly selected starting point,
approximately 25 iterations are needed to reach convergence,
which also supports that intuitively selected starting point is
a better approach as it reaches convergence faster compared
to randomly selected starting point.

IV. CONCLUSION

In this paper, we apply a one-of-a-kind approach to solve
a probability theory problem specifically in calculating the
minimum expected escape time from a two-dimensional
maze by using hybrid method. This hybrid approach is
a fusion of two methods: deterministic and heuristic. The
deterministic part is used for calculating the expected escape
time using linear algebra based on each maze configuration
and its movement probabilities. While the heuristic part is for
process optimization of determining movement probabilities,
such that the expected escape time is minimized.

The experimental results for this problem have shown
that the proposed approach using hybrid method can give
consistently valid answer while using efficient resources both
timewise and spacewise. In future work, it might be possible
to modify our approach to be applicable in more complex
problems such as multi-level mazes or mazes with multiple
entry and exit points.

REFERENCES

[1] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Mathematical
Expectation. Prentice Hall, 2012, no. 9th ed., pp. 111–142.

[2] G. Micheli, S. Schraven, and V. Weger, “A local to global principle
for expected values,” Journal of Number Theory, vol. 238, pp. 1–16,
2022.

Engineering Letters, 31:1, EL_31_1_37

Volume 31, Issue 1: March 2023

__

[3] M. Baron, Probability and statistics for computer scientists. Chapman
and Hall/CRC, 2018.

[4] S. O. Judge. (2019) Not so blind escape. [Online]. Available:
https://www.spoj.com/problems/NBLINDESC/

[5] M. Chen, C. Wu, X. Tang, X. Peng, Z. Zeng, and S. Liu, “An efficient
deterministic heuristic algorithm for the rectangular packing problem,”
Computers and Industrial Engineering, vol. 137, p. 106097, 2019.

[6] K. He, W. Huang, and Y. Jin, “An efficient deterministic heuristic
for two-dimensional rectangular packing,” Computers and Operations
Research, vol. 39, no. 7, pp. 1355–1363, 2012.

[7] D. Michel and A. Zidna, “A new deterministic heuristic knots place-
ment for b-spline approximation,” Mathematics and Computers in
Simulation, vol. 186, pp. 91–102, 2021.

[8] A. Wahba, R. El-khoribi, and S. Taie, “A new hybrid model for energy
consumption prediction based on grey wolf optimization,” IAENG
International Journal of Computer Science, vol. 49, no. 2, pp. 469–
481, 2022.

[9] T. Cormen, T. Cormen, C. Leiserson, I. Books24x7, M. I. of Technol-
ogy, M. Press, R. Rivest, C. Stein, and M.-H. P. Company, Introduction
To Algorithms, ser. Introduction to Algorithms. MIT Press, 2001.

[10] S. Halim and F. Halim, Breadth First Search (BFS). Lulu.com, 2013,
no. v. 3, pp. 123–124.

[11] M. Nazarahari, E. Khanmirza, and S. Doostie, “Multi-objective multi-
robot path planning in continuous environment using an enhanced
genetic algorithm,” Expert Systems with Applications, vol. 115, pp.
106–120, 2019.

[12] C. Lamini, S. Benhlima, and A. Elbekri, “Genetic algorithm based
approach for autonomous mobile robot path planning,” Procedia
Computer Science, vol. 127, pp. 180–189, 2018.

[13] B. Wang, B. Lv, and Y. Song, “A hybrid genetic algorithm with integer
coding for task offloading in edge-cloud cooperative computing,”
IAENG International Journal of Computer Science, vol. 49, no. 2,
pp. 503–510, 2022.

[14] K. A.-R. Youssefi and M. Rouhani, “Swarm intelligence based robotic
search in unknown maze-like environments,” Expert Systems with
Applications, vol. 178, p. 114907, 2021.

[15] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
ser. Always learning. Pearson, 2016.

[16] R. Graves and S. Chakraborty, “A linear objective function-based
heuristic for robotic exploration of unknown polygonal environments,”
Frontiers in Robotics and AI, vol. 5, 2018.

[17] S. R. Labs. (2016) Sphere online judge: Clusters. [Online]. Available:
https://www.spoj.com/clusters/

[18] ——. (2021) How to cope with spoj? [Online]. Available:
https://www.spoj.com/tutorials/USERS/

[19] S. Yendri, R. Soelaiman, U. L. Yuhana, and S. Yendri, “Dynamic
programming approach for solving rectangle partitioning problem,”
IAENG International Journal of Computer Science, vol. 49, no. 2, pp.
410–419, 2022.

[20] S. S. Mopuri. (2018) System design — on-
line judge with data modelling. [Online]. Avail-
able: https://medium.com/@saisandeepmopuri/system-design-online-
judge-with-data-modelling-40cb2b53bfeb

[21] Q. Zhang, X. Li, X. Xie, and J. Ou, “Design of experimental platform
of data structure based on online judge,” Journal of Chemical and
Pharmaceutical Research, vol. 7, no. 3, pp. 241–2421, 2015.

[22] Z. Deng, “Research and application of webpage information recogni-
tion method based on knn algorithm,” IAENG International Journal
of Applied Mathematics, vol. 52, no. 3, pp. 725–731, 2022.

Engineering Letters, 31:1, EL_31_1_37

Volume 31, Issue 1: March 2023

__

