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Abstract—This paper proposes Dual Channel Multi Scale
YOLOv5 (DCMS-YOLOv5), an improvement of YOLOv5, to
increase the recognition accuracy of helmet detection methods.
The model has a dual-channel architecture, and feature
extraction and fusion are performed in a lateral connection to
enhance the model’s ability to capture targets in complex
scenes. The features and local dependencies are characterized
at multiple scales to improve the model’s ability to capture
small targets. The model is validated with the safety
helmet-wearing dataset (SHWD) and compared with other
methods. The experimental results show that the
DCMS-YOLOv5 model provides high helmet detection
accuracy, performs excellent for detecting small targets, and
has strong generalization ability.

Index Terms—Dual Channel, Multi-Scale Extension, Safety
Helmet Detection, Small Target, YOLOv5

I. INTRODUCTION
RARING a helmet is a requirement in many industries,
such as manufacturing and construction, for safety

reasons. Workers often have accidents because they do not
wear safety helmets as required [1]. Two difficulties exist in
image-based helmet detection [2]. First, due to the complex
environment and numerous people at the construction site,
the model requires high feature extraction ability. Second,
the lighting conditions at the construction site may not be
optimal, and helmets have different styles and colors; thus,
the misrecognition rate is high [3,4,5,6].
Research on safety helmet detection can be divided into

two categories: two-stage target detection algorithms based
on region generation and regression-based one-stage target
detection algorithms [7]. Numerous scholars have conducted
experimental research on the two-stage target detection
algorithm faster regions with convolutional neural network
features (Faster-RCNN) in recent years. For example, Long
et al. proposed a Faster-RCNN-based helmet detection
framework [8]. Wu et al. fused the feature layers obtained
from multiple stages in the Faster-RCNN and performed
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multi-scale detection [9]. They modified the size of the
candidate target frame and improved the detection scale of
the helmet. Li et al. utilized multi-scale training and
incorporated an anchor strategy to enhance the robustness of
the original Faster-RCNN. They proposed the Online Hard
Example Mining (OHEM) [10] framework for model
optimization. Although the two-stage method has high
recognition accuracy, there are many model parameters, and
the running speed is slow. The one-stage target detection
algorithm based on regression is a relatively popular
detection method. For example, Zhang et al. increased the
DenseNet structure by improving the structure of the
one-stage target detection algorithm YOLOv3. The K-means
algorithm was used to re-cluster the candidate frame to
facilitate helmet detection. Yang et al. used the YOLOv3
algorithm to detect worker faces [12] and estimated the
helmet area based on the relationship between the helmet
and the face. They used the Histogram of Oriented
Gradients (HOG) to extract the feature vector of the sample，
adopted Support Vector Machine (SVM) to detect helmets.
Xu et al. combined the Single-Shot Detector (SSD)
algorithm with the improved MobileNet [13] to overcome
model training difficulties with transfer learning strategies.
Ben et al. proposed a helmet detection method based on an
improved YOLOv4 algorithm [14]. It utilizes the K-means
algorithm to cluster the dataset and multi-scale network
training to improve the model’s ability to detect helmets at
different scales. Sadiq et al. further fine-tuned the fusion
ability of YOLOv5, incorporated a blur-based image
enhancement module, and proposed the FD-YOLOv5 M
model for helmet detection [15]. Duan et al. proposed an
end-to-end safety helmet detection algorithm based on scene
correlation [16] and used a novel loss function and training
strategy to improve the detection accuracy. Zhou et al. used
YOLOv5 as the base model [17] for helmet detection by
adjusting the parameters of the model class. Zhang et al.
designed a deformable bilateral aggregation network
(DBDA) based on MobileNetV3 for helmet detection [18] to
improve the model’s ability to detect helmets with different
shapes and at different scales. Although these methods can
detect safety helmets, most have a simple structure and low
feature extraction ability. Even models with multi-scale
strategies have provided low performance; thus, the
recognition accuracy must be improved.
We propose a detection model (DCMS-YOLOv5) that

uses a dual-channel strategy (stage 1 and stage 2) as the
backbone network. The eigenvalues of the two channels are
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Fig. 1. Model overall architecture diagram

fused and interacted to improve the helmet detection rate
and reduce background noise interference. A scale feature
layer is incorporated into the neck, and an interaction
channel between deep information and shallow information
is established using multi-scale vertical expansion. The
BottleneckCSP module is used to acquire deep information.
The model is validated using the safety helmet-wearing
dataset (SHWD), showing an average accuracy of 95.70%.
The proposed model has significantly higher accuracy and
better feature extraction performance at different scales
than other methods [18].

II. METHOD

This section describes the baseline model (YOLOv5) and
the proposed improved safety helmet detection model
(DCMS-YOLOv5). The proposed two-channel lateral
connection and multi-scale vertical scaling method are
presented in detail.

A. Architecture
The DCMS-YOLOv5 includes the input, backbone, neck,

and prediction modules. Data augmentation (Mosaic) is
performed on the dataset in the input module. The adaptive
method of YOLOv5 is used for anchor box calculation,
enabling the model to determine the optimal frame value
adaptively during training. The image scaling ratio is
determined adaptively, and the image size is 640 640 . A
dual-channel lateral connection is used in the backbone for
feature extraction. In order to prevent feature loss during
feature extraction, a cross-channel multi-branch fusion
model structure was constructed. A bottom-down lateral
connection is established in the neck to create a feature
pyramid network (FPN), and a bottom-up route is added to
the path aggregation network (PAN) to extract the feature

location. The model includes a detection layer that is
extended vertically to enhance the ability to capture small
targets. The model architecture diagram is shown in Fig. 1.

B. YOLOv5
YOLOv5 consists of YOLOv5s, YOLOv5m, YOLOv5l,

and YOLOv5x. The model is updated continuously. We
used YOLOv5 version 6.0. YOLOv5 has a small model
size and high recognition accuracy. The backbone consists
of three modules: Conv, CSP1_X, and spatial pyramid
pooling-fast (SPPF). The Conv module is the convolution
layer. The batch normalization layer (BN) and activation
function provide the final output information through
matrix point multiplication and summation operations. The
fuseforward function is used to integrate the Conv layer and
BN layer to accelerate inference. The CSP1_X module
divides the feature map into two parts. The first part passes
through the Conv layer, bottlenecks, and Conv2d to obtain
the output information y1. The second part passes through
the Conv to obtain y2 and merges y1 and y2. The SPPF
module converts the feature map into a fixed-size feature
vector. There is no size limit for the feature map. The
number of channels in the module is halved by performing
CBL (Conv, BN, Leaky_ReLU), and maximum pooling is
performed twice to obtain y1 and y2. The original x, y1, and
y2 are pooled with the self.m(y2) three times, and the final
CBL operation is performed. The SPPF module is shown in
Fig. 2.
The neck of YOLOv5s is a PAN that can detect objects

of different sizes and at different scales. The bottom-up
path of PANet segments shallow features to improve the
information extraction output by the backbone and the
generalization ability of the model.
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Fig. 2. SPPF module architecture diagram

C. Dual-channel lateral connection
A dual-channel architecture is used to capture more

feature information and improve the helmet detection rate
inthe complex working environment of the construction site.
The model’s backbone consists of dual channels (stage 1
and stage 2), and performs cross-channel multi-branch
fusion using a lateral connection. Its structure diagram is
shown in Fig. 3.

Fig. 3. Double-channel side connection structure diagram

Dual-channel stage 1 contains three CBS modules and
two C3 modules. The C3 module performs three
convolution operations and uses a double-branch cross
fusion for residual feature learning. It uses multiple
bottleneck stacks and three standard convolution layers. The
other branch has only one convolution module, and the two
branches are connected by a Concat layer. The CBS module
performs convolution and BN on the input feature map,
using a sigmoid-weighted linear unit (Silu) as the activation
function. The first CBS module contains 64 convolution
kernels, and the second and third CBS modules each contain
128 convolution kernels. During the convolution of the
feature map, efficient training is performed by grouping and
re-convolution so that the model parameters decrease with
an increase in the number of filter groups. The input feature
maps are equally divided into g groups to obtain the number

of channels C of each convolution kernel
Cinput

g
, and

conventional convolution is performed on each group:
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Where F is the number of convolutions on one pixel;
Cinput and Coutput are the input and output of the number of
channels, respectively; O1 is the output value of a sliding
window for a pixel; Hinput and Woutput are the input height and
width values, respectively; K is the Kernel value; P is the
Padding value. During the grouped convolution, the number
of channels of a convolution kernel is reduced to the original,
and the Parameters of the grouped convolution are as
follows:
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Dual-channel stage 1 connects the second CBS module
and the first C3 module laterally to form the first channel.
The Concat layer operation is performed on the third CBS
module and the second C3 module, and the results is used as
the output of the next channel.
Dual-channel stage 2 contains three CBS modules and

one C3 module. The first and second CBS modules contain
512 convolution cores, and the third CBS module contains
1024 convolution cores. The output result of dual-channel
stage 1 is used as the input of the first CBS module of
dual-channel stage 2 and is laterally connected with the C3
module to form the second channel, creating the
cross-channel multi-branch fused backbone network. The
calculation formula for two-channel feature extraction is as
follows:

 1 2 , 1,i iDouble Channel DC Feature DC Feature i      (3)

Where DC1 is the feature information extracted by
dual-channel stage 1, and DC2 is the feature information
extracted by dual-channel stage 2.

D. Multi-scale vertical expansion
Since it is difficult to detect small objects in the complex

scenes of construction sites, we propose a multi-scale
expansion method to improve the detection of small objects.
The bottleneck CSP module is used to replace the C3
module to extract deep semantic information from the
image.
The bottleneck CSP module consists of a bottleneck

module and a CSP module. The bottleneck module adjusts
the number of channels to prevent gradient disappearance
and explosion during training ss by the bottleneck-residual
structure. The feature maps of various levels are fused with
the bottleneck. First, the channel number of the image is
reduced by half by a convolution layer composed of Conv,
BN, and Leaky Relu. Then, the channel number is restored
by a 3 3 convolution to ensure that features from
different receptive fields are extracted. The CSP module can
enrich the gradient splitter, combine the gradient
information of different positions, perform feature fusion
using, combine the n-th convolution of the first branch with
the second branch, and output the final result. The diagram
of the module of the library is shown in Fig. 4.
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Fig. 4. Library module structure diagram

A focus layer is added to perform the slicing operation
and prevent a decrease in the training speed with the
increasing model depth. In the model, the input Image size
is 640 640 3  . The difference between the two
dimensions of the rows and columns is calculated to obtain a
feature map with a size of 320 320 3  . In Focus, a total of
Four slicing operations are performed by the focus layer,
and the final feature map size is 320 320 12  . The focus
operation prevents missing features and improves the
model’s running speed. The slice operation of the focus
layer is shown in Fig. 5.

Fig. 5. Focus slice operation

Multi-scale vertical expansion and fusion of PANet are
performed to integrate the shallow and deep information,
and a new scale feature layer is added to the model. Four
convolutions at different scales are used for prediction. This
approach strengthens the information transfer between the
deep and shallow information and improves the model’s
detection ability for small targets. The input feature map
size of the backbone feature extraction network is
320 320 , and the final output feature map sizes for the 4
scales are 160 160 , 80 80 , 40 40 , and 20 20 . The
diagram of the multi-scale vertical expansion is shown in
Fig. 6.

Fig. 6. Multi-scale extended fusion structure diagram

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Datasets
We used the open-source dataset SHWD. The training

and testing dataset contains 7,581 images, including 9,044
people wearing helmets and 111,514 people without helmets.
The images were acquired under complex lighting
conditions, and there are complex backgrounds and small
targets. Workers wearing helmets are referred to as helmets,
and workers without helmets are referred to as heads. The
public dataset is an xml file in PASCAL VOC format and
was converted into a txt tag file in the YOLO format. The
dataset was divided into a training set and a test set with a
ratio of 9:1. The number of training set images in the 7,581
image dataset is 6,823, and the number of test set images is
758 [16].

B. Experimental Configuration
This experiment was carried out on Intel E5-2650 v4 and

dual 1080Ti servers, and the operating system was Centos7.
Python version 3.8 and Pytorch version 1.9 were used. The
learning rates were initialized to 0.01.

C. Evaluation Indicators
We used the Precision, Recall, Average Precision (AP),

and mean Average Precision (mAP) as evaluation metrics to
evaluate the model performance [19].
Precision: the ratio of the number of correct samples to

the total number of samples, as defined in (4).
TPPrecision

TP FP



(4)

Recall: the ratio of the number of correctly classified
samples to the sum of the true positive (TP) and false
negative (FN) samples, as defined in (5).

TP
TP FN

Recall 


(5)

AP: the area under the curve where the recall is on the
horizontal axis and the precision is on the vertical axis. The
larger the value of AP, the higher the average accuracy of
the model, as shown in (6).

1
2
( ) ( )

n

i i i
i

AP r r p r



  (6)

Where TP refers to the positive sample with correct
allocation, FP (false positive) refers to the positive sample
with incorrect allocation, TN (true negative) refers to the
negative sample with correct allocation, and FN refers to the
negative sample with incorrect allocation.
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mAP: the average of the AP for all categories in the
dataset. It includes the results for different intersection over
union (IoU) thresholds, i.e., when 0.5 mAP is 0.5 at the IoU
threshold, as shown in (7).

1
1

i
m
i

Pm A
m

AP


  (7)

Where m is the number of samples in the test set.

D. Ablation experiment
We first evaluated the performance of the dual-channel

lateral connection model (DC-YOLOv5). The number of
training epochs was 200, the batch size was -1, the number
of epochs for the hyperparameter evolution was 300, and the
size of the training set and test set images was 640 640 .
The loss value during training is shown in Fig. 7. It
stabilizes around 0.03 after 200 iterations. The cls loss value
approaches 0. The obj loss value stabilizes around 0.02.
The generalized IoU (GIoU) error between the prediction

frame and the calibration frame was calculated to determine
whether the anchor frame and the classification were correct.
The performance of the DC-YOLOv5 model is excellent.
However, the model performance for capturing small targets
is unsatisfactory.

(a) box loss

(b) cls loss

(c) obj loss
Fig. 7. DC-YOLOv5 convergence

Therefore, the following changes were made to the
DCMS-YOLOv5 model. First, a multi-scale structure is
established by adding feature layers at different scales. The
experiment showed that the depth information extraction
performance of the C3 module in the DC-YOLOv5 model
was worse than that of the bottleneck CSP module.
Therefore, we replaced the C3 module and added the focus
layer to improve the detection speed of the model. The
performance evaluation indicator settings are the same for
the DCMS-YOLOv5 model and the DC-YOLOv5 model.
The training loss value is shown in Fig. 8. It stabilizes
around 0.03. The cls loss value approaches 0, and the obj
loss value stabilizes at 0.015.

(a) box loss

(b) cls loss

(c) obj loss
Fig. 8. DCMS-YOLOv5 convergence

The baseline model YOLOv5 was trained using the same
configuration as the proposed model (200 training rounds).
The average precision (IoU=0.5) is shown in Fig. 9. The
DC-YOLOv5 and DCMS-YOLOv5 models converge
rapidly after the first 50 epochs and stabilize after 100
epochs. The model performance is good without overfitting
or underfitting. The improved model has significantly higher
average accuracy than the original model, indicating that the
improvement strategy is appropriate.
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Fig. 9. Performance analysis of mAP_0.5 under different models

Ablation experiments were conducted on the test data set.
Table I lists the performances of the improved modules. The
DC-YOLOv5 model is based on YOLOv5 and was
improved by adding the dual-channel lateral connection.
The DCMS-YOLOv5 model is based on the DC-YOLOv5
model and was improved by incorporating vertical
expansion and fusion. The average accuracy of the
DC-YOLOv5 model (DCMS-YOLOv5 model) is 0.3%
(1.9%) higher than the baseline model, indicating excellent
performance of the proposed improvements.

TABLE I
ABLATION EXPERIMENTS ON SHWD

Approaches P (%) R (%) mAP@0.5
(%)

mAP@0.5:0
.95(%)

YOLOv5 93.5 89.6 93.8 61.0

DC-YOLOv5 92.3 89.6 94.1 60.2

DCMS-YOLOv5 94.3 90.6 95.7 61.7

E. Compare of test results
Fig. 10 shows the visualization of part of the detection

results. The left side is the DC-YOLOv5 detection diagram,
and the right side is the DCMS-YOLOv5 detection effect
diagram. Fig. 10(a) is an image of a small target at a short
distance, Fig. 10(b) is an image of a small target at a long
distance, and Fig. 10(c) is an image of a dense target. It can
be seen that the DCMS-YOLOv5 detects the
helmet-wearing targets missed by the DC-YOLOv5, and can
accurately identify extremely small targets that are far away,
and the confidence score is also improved. It shows that the
DCMS-YOLOv5 has strong generalization ability in
crowded target and small target scenarios.

(a) Small target at close range

(b) Small target at long range

(c) Dense target
Fig. 10 Visualization comparison of results

F. Compare with other models
The performance of the proposed model is compared with

other methods. The results are listed in Table II. The
proposed model has an mAP of 95.7% on the SHWD
dataset. Its mAP is 20.2%, 19.7%, 17.6%, and 10.6% higher
than that of SSD, Faster-RCNN, YOLOV3, and
MobileNetV3, respectively, several popular target detection
methods. It has a 4.7% higher mAP than the model
described in Ref. [18]. The precision and recall of the
proposed model are also better than that of the other models.

TABLE II
COMPARING WITH OTHER METHODS ON SHWD

Approaches P (%) R (%) mAP@0.5 (%)

SSD [13] 83.2 76.7 76.0
Faster-RCNN[18] 80.8 78.6 75.5
YOLOV3[18] 85.1 80.1 78.1

MobileNetV3[18] 88.6 86.0 85.1
MobileNetV3+DBDA[18] 90.9 92.1 91.0

Ours model 94.3 90.6 95.7

IV. CONCLUSION
This paper proposed the DCMS-YOLOv5 model for

helmet detection. The single-channel feature extraction
method of the YOLOv5 model was improved. A
dual-channel lateral connection backbone network was
incorporated, and the feature map was sequentially used in
the two channels for feature extraction and fusion. These
improvements strengthen the model’s ability to extract
diverse features. The vertical expansion of the neck
improves the model’s detection ability by deepening the
network level, enhancing the model’s ability to detect small
targets. A focus layer was added to improve the model’s
running speed. The model’s performance was evaluated on
the SHWD dataset, and the performance of the dual-channel
lateral connection architecture and the multi-scale scale-up
method was analyzed by an ablation study. The results and a
comparison with other helmet detection methods indicate
that the DCMS-YOLOv5 model has superior performance
and excellent generalization ability.
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