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Efficient Families of Multipoint Iterative Methods
for Solving Nonlinear Equations

G Thangkhenpau and Sunil Panday

Abstract—Two new efficient families of multipoint iterative
methods of fourth and eighth order convergence are constructed
for finding simple roots of nonlinear equation I'(s) = 0.
Both families satisfy the optimality condition of Kung-Traub’s
conjecture with the family of fourth order methods requiring
three function evaluations at each iteration and four evaluations
of the functions at each iteration for the family of eighth order
methods. Investigation on the theoritical convergence criteria
of the families are carried out and fully discussed using the
two main theorems which confirm their optimal convergence
order. Numerical experiments on test functions are executed by
comparing with existing well-known methods of similar nature
to demonstrate the effectiveness and good performance of the
proposed methods.

Index Terms—TIterative method, Simple root, Optimal order,
Nonlinear equations, Kung-Traub’s conjecture.

I. INTRODUCTION

ANY branches of science and engineering often deal

with solving a number of complicated problems in-

cluding real-world problems. Most of these problems can be

reduced to mathematical problems as nonlinear equations of
the form

I'(s)=0 (1

where I' : ID C IR — IR is a real-valued scalar function on
an open interval ID. A very effective technique for obtaining
the solutions of nonlinear equation (1) is the use of iterative
methods where approximate solutions are obtained with
desired accuracy. Newton method [1] is perhaps the most
widely used onepoint iterative method to find the simple root
of (1) and is defined as

_ ['(sn)
I(sp)’

This method (2) has quadratic order of convergence and
optimal in the sense of Kung-Traub conjecture [2]. According
to this conjecture, an iterative method without memory
consuming k function evaluations per iteration is optimal
when the convergence order reaches the bound 2k=1 " this
bound being called as the optimal order. Over the last few
decades, numerous multipoint variants of Newton method (2)
possessing higher convergence order with better efficiency
have been developed using various improvement techniques
( [3]- [13]). In particular, J. R. Sharma in [14] developed
the well-known composite third order Newton-Steffensen

n=0,1,2,.. )

Sn+1 = Sn
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method and J. Kou et al. in [15] constructed a composite
fourth order Newton-type method with optimal order using
the composition techniques. Weihong Bi et al. in [5], [16]
and M. Salimi et al. in [11] developed the three-point optimal
eight order methods using Taylor series approximation and
weight function approach. The efficiency of these methods,
introduced by Ostrowski [17], is measured and compared
using the number of function evaluations per iteration (k)
and the convergence order (p) of the iterative method by an
index called the efficiency index which is given by p!/*.
Newton method (2) has the efficiency index of 1.414 for
k=2.

In this paper, two new families of multipoint iterative
methods of optimal order of convergence, both of which
are free from higher order derivatives, are presented for
finding simple roots of nonlinear equations. The fourth order
family uses the composition technique with three function
evaluations per iteration and has the efficiency index of
413 ~ 1.587 while the optimal eighth order family uses
the Taylor series approximation with the weight function and
requires four function evaluations per iteration with improved
efficiency index of 8/4 ~ 1.682.

The rest of the content of the paper is organised as follows.
Section II covers the development of both the proposed fam-
ilies of methods. Analysis of theoritical convergence criteria
of the families are also included in this section. Section III
deals with the numerical test results of proposed families
of methods on some nonlinear functions and the compar-
isons with well-known existing methods of same order to
demonstrate the effectiveness and better performance of the
proposed families of methods. And, section IV contains some
concluding remarks.

II. DEVELOPMENT OF METHODS AND CONVERGENCE
ANALYSIS

This section discusses the development of the proposed
families of optimal fourth and eighth order methods and the
analysis of their convergence.

A. A Family of Fourth Order Methods

Recently, O. Ababneh and N. Zomot [18] developed some
third order methods based on Newton method (2) as the first
step. One of the methods is given below.

- F(Sn)
Yn = Sn — F/(Sn)
Syt = 8 — on), Tlon) = 8T{gn) 3)

- F/(Sn) F(Sn) - 4F(y")

J. R. Sharma in [14] developed a third order method
by combining Newton method and Steffensen method. The
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method is termed as Newton—Steffensen method and is

written as

o _ ['(sn)
Yn = Sn F/(Sn)
Sp+1 = Sn F(Sn) F(Sn) “)

- F,(sn) F(Sn) - F(yn)

We can observe that both methods (3) and (4) are an
improvement from Newton method (2) with higher efficiency
index of 31/3 =~ 1.442. However, these third order methods
consume three function evaluations at each iteration and so
they do not satisfy the optimality conditions of Kung-Traub’s
conjecture. As a result, we aim to develop optimal methods
of fourth order without consuming any additional cost of
function evaluations per iteration thereby further increasing
the efficiency index from 3'/3 ~ 1.442 to 4'/% ~ 1.587.

First, let us consider a modified generalised form of
Newton-Steffensen method (4), having the same third order
convergence, as follows

I'(sn)
I"(sn)
N 20 (sn)® — YL (yn)®
21" (sn) (F(Sn)2 - F(Sn)r(yn))

where v € IR. For v = 0, the above equation (5) becomes
the Newton-Steffensen method (4).

Now, the linear combination of method (3) and method
(5) produces a family of higher order methods as follows

_ ['(sn)

T (sp)
I'(sn) T'(sn) — 30 (yn)
P/(sn) F(sn) - 4F(yn)
_ (1 _ ﬁ) 2F(Sn)3 B ’Yr(yn)3
21" (sn) (F(sn)z - F(Sn)r(yn))
where 3,y € IR. For 8 = 0, we get the generalised Newton-
Steffensen method (5) and for 5 = 1, we obtain O. Ababneh
and N. Zomot method (3).

The order of convergence and the conditions on S and
~ for the methods (6) are discussed in the following theorem.

Yn = Sn —

&)

Sn+1 = Sn

Yn =Sn

Sn+4+1 =Sn — ﬂ

(6)

Theorem 1: Assume that I' : ID € IR — IR is a suf-
ficiently differentiable function defined on an open interval
ID with a simple root s = o € ID. For a sufficiently close
initial approximation sq to the root «, the iterative methods
given by (6) have at least third order of convergence for all
8,7 € IR. Further, for 8 = % the family (6) has fourth order
of convergence and satisfy the error equation

Entl = (%(—3 +7)c3 — 0203)Ei +0(e) (7
1 D (a)
m! T/(a) ?
error at n*” iteration.

Proof: Suppose that « is a simple root of I'(s) = 0 so
that I'(a)) = 0 and I'(«) # 0. If s, is sufficiently close to
the root « such that &, = s,, — « is the error at n" iteration,
then using Taylor’s expansion, we have

where ¢, = m=1,2,...and &, = s,, — « is the

[(sn) =T" () [en + 22 + c3ed + cat + O(si)} (8)

I'(sn) = I'(@) [1 + 2c2e5 + 3esel, + deas + 5esen + O(eD)]
(©)]

L F(Wl) (a)
ml T7(a)

where ¢, = ,m=12 ...

Dividing (8) by (9) gives

T'(sn)
I (sn)

=c, — c2es, + (265 — 2¢3)e) + ( — 4c + Teacs

—3ca)ep + O(e})]
Using (10), we obtain
Yn — a =caes + (= 265 + 2¢3)e) + (4e3 — Teacs+
304)6?1 +0(ed)
Using (11) to expand I'(y,,) near the root gives
I'(yn) =I'() [czsi + 2(—c5 + c3)el + (5ch — Teacs+
304)52 + O(&i)] (12)
Now, applying (8), (9), (10) and (12) in (6), we obtain the
error equation as
2 3 1 3
ent1 =(1 — 3B)cze,, + (5( —6—B(-12+7) + 7)C2+
3(1— 45)@03)5;§ 1O

which shows that the family (6) has convergence order of at
least three for any 3,y € IR. Further, for 8 = %, the order of
convergence increases from three to the optimal order four
and the error equation becomes

10)

Y

13)

1
Entl = (E(_?’ +7)es — CQCg)sﬁ +0(eh)

where v € IR is any real parameter. This completes the
proof.

(14)

|

Now, substituting 3 = % in (6), we get a highly efficient

family of optimal fourth order methods which after simpli-
fication is expressed as follows

_ L(sn)
T D)
s s 1 T(sn) | T(sn) — 3F(yn)+
T T 3T (s0) | D(sn) — AL (yn)

T5u)® ~ T(5n)°T () =

From (15), it can be observed that for different values of
v € IR, various fourth order methods which are optimal in
the sense of Kung-Traub’s conjecture may be obtained.

20 (sn)® = 4T (yn)? ]

B. A Family of Eighth Order Methods

Here, development of new highly efficient family of op-
timal eighth order methods are discussed along with the
convergence analysis.

To begin with, by using the newly proposed fourth order
family (15) as the first two steps and adding a third Newton
step, we present the following three-point methods.

_ F(Sn)
T (s
o —g — L T(sn) | D(sn) = 30(yn)
T 3T(sp) | T(sn) — 4T (yn)

T(5n)® — T(50)°T (4n) (16

_ T(zn)
INED

20 (s0)® — 1T(yn)? ]

Sn+l1 = Zn
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In order to reduce the number of function evaluations per
iteration from five to four, we approximate I'(z,) using
the already available informations I'(s,),I"(s,),I'(y,) and
I'(z,). Then, we employ the weight function technique to
preserve the optimal eighth order of convergence.

By Taylor’s expansion, the approximations of I'(z,) and
I(z,) are written as

(2n — yn)2 F"(

T'(zn) = T(yn) + (2n — yn)r/(yn) + B yn) (17)
T'(z0) = T (yn) + (20 — y)T" (yn) (18)
Then, from (17), I'(y,) is approximated as
iy o D(zn) =T(yn) (20— Yn)
Tyn) > —— " 51 (yn) (19)

Now, using the approximation of IV(y,,) from (19) in (18),
we get

(Zn ; yn) F”(

where T'[z,, yn] = %Z(y”) is divided difference. Simi-

larly, the second order derivative I/ (y,,) is approximated as
follows

I (2n) ~ T'lzn, yn] + Yn), (20)

[[2n, 8n] — TV(sn)

Zn — Sn

T (yn) ~ 2[ ] = 2T[2n, $n, Sn] Q1)

Using (21), the approximation of I(z,) in (20) becomes

F/(Zn) ~ F[Zna yn] + (Zn - Z/n)F[Zm Sn, 57;]7 (22)

Similar approximations by other authors may also be found
in [S], [11], [13], [16].
Now, substituting I'(z,) from (22) in (16) and with

the help of a suitable weight function, we obtain a highly
efficient family of optimal eighth order methods as follows

e IE((Z%
Sl e
3_ 3
] -
1 = T G el 0
where 7(d, ¢) is a weight function with 6 = Eg:g and
6=t

Theorem 2 establishes the necessary conditions on the
weight function 7 so that the family (23) has the optimal
eighth order convergence.

Theorem 2: Assume that the functionI' : ID C IR — IR is
sufficiently differentiable and has a simple root & € ID in an
open interval ID. For a sufficiently close initial approximation
so to the root o and a differentiable weight function 7, the
family of methods given by (23) has convergence order eight
for all v € IR provided 7 satisfies the conditions

n(0,0) = 1; 15(0,0) = 0; 155(0,0) = 0; 14(0,0) = 2;
n565(0,0) = 12 — 4; |n54(0,0)] < 005 [nsss5(0,0)| < 0o, (24)

where 7;(6, ¢) = %ﬁf@,i = 4, ¢ is the partial derivatives
with respect to the index i. And, the family (23) has the
following error equation

1
fni1=— 7 (cé((73 +4)c3 — Bes) (— 24eq — 24cacs(—2+
156(0,0)) + c3(—24(11 +7) + 8(—3 + 7)nse (0, 0)+

nsss6 (0, 0))))E,§ +0(e)) (25)
(m
where ¢, = %Fr,gé‘;),m =1,2,..

Proof: Let ¢, = s, — a be the error at nt" iteration.
Then, for a sufficiently differentiable function I', the expan-
sion of I'(s,) and I'(s,) about the root « using Taylor’s
expansion gives

D(sn) =T"(a)[en + Cogl 4 c3eh + cach + . + O(E?L)] (26)
I'(sn) = I'(@) [1+2c2en +3cse) +4cagy +5csen + ...+ O(eh)]
@7

1 Tm)
where ¢,,, = — ()

m! T'(«)

,m=1,2,....

From (26) and (27), we obtain

Yn — Q ZCQE?L + ( — 26% + 203)6% + (463 — Tcacs + 3C4)Ei
+o.+0() (28)

Using (28) to expand I'(y,,) gives

T(yn) :F'(a) [02531 + 2(*63 + 03)62 + (503 — Tcacs+

3c4)ai + .+ 0(82)] (29)
Applying (26), (27) and (29), we obtain
1 3 4 9
Zn — Q= (g(*3+7)c2 *02C3)5n+“'+0(5") 30)

Expanding I'(z,) using (30) gives

[(zn) = T'(c) [(%(—3 + ) — CQCg)Ei + ..+ O(s%)] (31

Using (28), (29), (30) and (31), we have

T[zn, yn] = T’ () [1 + e + 202(—c§ + 63)62 +...+ 0(53)]
(32)

Similarly, from (26), (30) and (31) we obtain
I'[zn, 0] = () [1 + cogn + 382 +cagd + .. + O(EZ)} (33)
Again, using the equations (27), (30) and (33) give

L[2n, $n, sn] = I () [c2 4 2c3en + 3caer 4 desen... + O(EZ)}
(34)

Now, substituting (28), (30), (31), (32) and (34) in the last
step of (23), the error equation is obtained as follows

Ent1 = P1En + p2en + p3co + pacy + ... + O(e)) (35)
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where p; = — %CQ((—S +7)c3 — 3es) (=1 +n(0,0))
p2 =((=2+ 37)cs — 2(—2 + 7)chcs + 23 + 2c2c4) (—1
+n(0,0)) ;c (= (=3 +7)c3 + 3¢c3)ns(0,0)
03 76364( 1+ n(0, ))+cQC4( 3(=2+y)(—1+
1(0,0)) + 2175 (0, )+cQ((6 47)3 + 3c5) (—1
+n(0,0)) + 4c3ns (0, o)) + é0303(12(—3 +117)
(=1 +1(0,0)) +2(9 — 87)ns(0,0) + 3ns5(0,0))

+ %cé( — 4(=3 4+ 257)(—1 +1(0,0)) + 6(—5+
47)n5(0,0) — (=3 4 7)ns5(0,0))
2

pa=—7 ((76 F4y)e —9e — 150305) (—1 +1(0,0))
+4n5(0,0) + 262 (2(:6(—1 +1(0,0))+

= 2(=5+39) (=1 +1(0,0)) + Tns(0,0)))

e (8 — 89(0,0) + 4y( — 8+ 87(0,0)—

75(0,0)) + 315(0,0) + s5(0,0)) + 3 (es ( — 4(~2

+7)(=1+1(0,0)) + 315(0,0)) + ¢5( — 8+
607(—1 + 1(0,0)) + 105(0, 0) — 7, (0, 0)—

215(0,0) — 8315(0,0) + 3153(0,0)) )+

écéc;; (7(864 — 8687(0,0) + 414 (0, 0)+
22475(0,0) — 101s5(0,0)) + 6(27(0,0) — 21, (0,0)
— 2415(0,0) + 7155(0, 0)) + 7555 (0, o)) -

C3C4q (

1
—cz( (1314 — 13141(0, 0) + 2(—6 + 7)75(0, 0)+

18
51075 (0,0) — 45755(0, 0) 4 1555(0,0)) —

3(1217(0,0) —6(2 4 14(0,0) — 1615(0,0)+
4n55(0,0)) + 556 (0, 0)))

Finally, putting the conditions (24) in the above equation
(35), the error equation becomes

Entl = — 712 ( (( 3+ 'y) c; — 303) ( — 24cy — 24coc3(—2+
156(0,0)) + c3(—24(11 + ) 4+ 8(—3 + 7)nse (0, 0)+
naaaa(o,O))))ai L O(2) (36)

which confirms the optimal eighth order convergence of the
proposed family of methods (23) for any parameter v € IR.
This completes the proof of the theorem. ]

Remark: As a consequence of theorem 2 and for any
value of the parameter v € IR, different values satisfying
the conditions (24) may be chosen for the weight function
1(d,$) so as to obtain a family of optimal eighth order
methods.

Particular Case: Here, by considering a particular value
of the parameter v € IR, let us analyze a particular case
for the weight function 7(d, ¢) which satisfies the conditions
24).
( I\)Iow, let us take v = 3 so that the condition 7;555(0,0) =
12 — 4~ in (24) reduces to zero, i.e., 7555(0,0) = 0. Then, a
particular case for the weight function 7(9d, ¢) satisfying the
conditions (24) for which v = 3 is given below.

n(8,¢) = 1+ X" +2¢(1 +9) 37)

where A € R, 6 = I;Ey” and ¢ = F(Z”g Thus, the family

(23) becomes o)

e _ I'(sn)
T D)
Zn = Sn — 1 U(sn) [T(sn) = 30 (yn)
T T 3T (sn) [F(sn) AT (y n)+
2T (5,)% — 30 (yn)?
[(sn)® — F(Sn)2r(yn)] (38)
Snd+1 = Zn — I'(2n) «
n+ " Tlzn, yn] + (20 — Yn)T[2n, Sn, S

(1 A5+ 20(1 + 5))
And, it has the error equation

ens1 = ces (144 N — i )eh +0(D)  (39)

III. NUMERICAL RESULTS

In this section, we perform numerical experiments on the
two proposed families of methods in order to analyze their
effectiveness and computational efficiencies using some
nonlinear functions as test functions. Then, we compare the
results with some well-known existing methods of the same
order available in literature. In particular, the following
optimal methods are considered for the comparison.

Kou’s method of fourth order (KM) [15].

— _ F(Sn)
n = Sn F/(sn)
Smit = Y — I'(sn) + T(yn) T(yn) w0

T(sn) = T(yn) T'(sn)

The well-known optimal fourth order Ostrowski’s method
(OM) [17].

M YT

Sn+1 = Yn — (F(sn) —2I(yn) / IV (sn)

Jarratt’s method of fourth order (JM) [19], which is defined
as

— 2 [(sn)
Yn = Sn — gr‘/(sn
S+l = Sp — SFI(yn) + F/(Sn) F(Sn)

n+ n 6Fl(yn) _ 21—‘/(571) F/(sn)

~

(42)

One of the variants of King’s fourth-order family of
methods developed by Chun (CM) [20],

_ . Tsn)
n = Sn F’(Sn)
2
Smit = U — I'(sn) I'(yn) 43)

(T(sn) — T(yn))* T'(sn)

The new Potra—Ptdk-type optimal fourth order method
developed by Prem B. Chand et al. (PBM) in [21],

F(yn)ﬂ D(sn) £ 0(yn) 4y

F/(Sn)
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The eighth order method by Kung-Traub in [2] (KTM),

_ I'(sn)
T )
U(sn)l'(yn)  T(sn)
= 7T 45)
P (D)~ () Do)
Sn41l = Zn — [(sn) I'(s ) (y )F(z )
n n I (sn) (1—\ n))2
r(sn) + T( yn)( Yn) — Z'L))
(P(s0) = (zn)) " (Dyn) = T (z)

The eighth order method developed by Liu and Wang in
[3] CWM).

I'(sn)
T )
Zn =Yn — T/ (sn) T(sn) — 2T (yn) (46)
St =z I'(zn) [ I'(sn) — I'(yn) >2 T(zn)
T T D (s0) L\T(s) — 20 (yn) L (yn) — 50 (2n)

Alicia Cordero et al. in [7] (ACM) developed two optimal
classes of eighth order methods, one of them is given below.

_ o _ L(sn)
n — Sn FI(S”)
L(sn)” C(yn)
P (D (sn) — T(gn)? T(sn)
. 2 3 I'(2n)
Sn+l = Zn (1—|—2t+4t + 6t +u+4tu) T (sn)
where t = l;gg“i,u = ?E;”g

Weihong Bi, Qingbiao Wu and Hongmin Ren in [16]
designed two-parameter eighth-order family of methods, one
of them has the expression

_ I'(sn)
T )
_ L(yn) | (yn) | T?(yn)] Llyn)
o=y — [1+ 2T(sm) TOT2(sm) T AF3(sn)] T (50)
48)
T+ (420
5n+1 Zn

F(Sn) + ’YF(Zn)
F(Zn)
TLlzn, Yn] + T'2n, Sn, sn](2n —

Yn)
where A = v = 1. We denote this method by BWRM.

The efficient family of optimal eighth-order methods by
A. Singh and J. P. Jaiswal in [22] (AJM), which is written
as follows

Yo = 50— (14 AE) 5,((55’;))
_ 2 F(yn)
Zn = yn — (1 +t2 + Bt3) Tlon, 0] (49)
Snt1 = Zn — ((t% +2B—-1)E) + (v2) + (1+ 2t + étﬁ)) X
['(zn)
Llyn, 2n]
I(s,) (y,)

where A\ =1,0=-1,v=0=1,t; =

_ I'(zn _ r Zn)
t3 = 7115%3 and ty = 7F§sn)'

T7(sn )7t2  T(sn)’

The family of three-point optimal methods developed by
Thukral R. in 2010 [23] (TM):

S
T ()

_ _ T'(yn) I'(sn) 4+ b (yn)
A YT T (50 T(sm) + (b — 2)0 () (0)
L TG T'(20) T'(20)
w2 = S (PO + o ar e T ATen)

(PM).

o= s T (sn)
n n F/(Sn)
B T'(yn)\2 (sn) [(sn)
Zn = Sn = [(F(Sn)) h F(yn - F(s")] F/(Sn) (51)
INES I'(zn 4T (2n)
Sn41 = Zn — T (sn) [‘P(t) + T(yn) — I(zn) T(sn) ]

where (t) = 1+ 2t + 2% — > with ¢ = 1224,

As for the new proposed families of methods (PFM), we
represent the fourth order family (15) and eighth order family
(38) by PFM4 and PFMS respectively. In both cases, the
two real parameters v and A are taken as v = 3 and \ =
14 throughout the whole computations. Some numerical test

functions I'(s) and initial guesses (sg) are displayed in Table
L.

TABLE I
NUMERICAL TEST FUNCTIONS AND INITIAL GUESSES.

Test function, F(s) Initial guess (so)
Ti(s) =83 —s2+3scoss— 1 0.1
I'2(s) = log, [s? +s+2]fs+1 3.9
Fg(s)—sm s—s2+1 1.6
T4(s) =sin?s+s 0.2
I5(s) =7 —2ssin(%) 1.8
Te(s) =coss—s 0.9

We further assess the real-world feasibility of the in-
troduced methods PFM4 and PFMS8 by examining their
application to a range of engineering problems.

1) Environmental engineering problem [25]: In environ-
mental engineering, the equation below can be utilized to
determine the downstream oxygen level C' (mg/L) in a river
following a sewage discharge.

C =10 —20(e” %1% — (52)

6—0.53)
where s (in kilometres) is the distance downstream to be
calculated. When the oxygen level C' falls to a reading of 5
mg/L, the above equation simplifies to:

T7(s) = 20(e” %1% —e7%%) —5 (53)
Taking sp = 1.2 as the initial guess, the above equa-
tion (53) converges to the solution (simple root) a =
0.97622986351687693. The comparison results are presented
in Table IV.
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TABLE 11
COMPARISONS OF FOURTH ORDER METHODS UNDER THE SAME TNFE=12.

Method T'(s) T (sn)| [$n — Sn—1] Sn cocC CPU Time p
oM T'i(s) || 9.8365 x 10184 1.7232 x 10746 0.39532362298631519 || 4.0000 || 0.021021 0.56
M Ti(s) || 1.3067 x 10184 1.0466 x 10746 || 0.39532362298631519 || 4.0000 || 0.024144 0.55
CM Ty(s) || 4.4609 x 10~169 6.8753 x 10743 0.39532362298631519 || 4.0000 || 0.023024 2.33
PBM I'1(s) || 3.1008 x 10—159 1.8119 x 1040 0.39532362298631519 || 4.0000 || 0.014662 1.45
KM Ti(s) || 2.9939 x 10160 1.0100 x 1040 0.39532362298631519 || 4.0000 || 0.022723 1.45
PEM4 || T1(s) || 6.5944 x 107280 || 2.3019 x 10~70 || 0.39532362298631519 || 4.0000 || 0.007981 0.12
oM Ta(s) || 6.3415 x 107422 || 3.6133 x 107105 4.1525907367571583 || 4.0000 || 0.013568 6.18 x 104
M Ta(s) || 5.7633 x 10~418 || 3.4281 x 10~ 104 4.1525907367571583 || 4.0000 || 0.014027 6.93 x 104
CM Ta(s) || 5.2189 x 10=410 || 3.1893 x 10~102 4.1525907367571583 || 4.0000 || 0.014888 1.50 x 1073
PBM Ta(s) || 4.9959 x 107401 || 5.2924 x 10~100 4.1525907367571583 4.0000 || 0.017613 1.06 x 1073
KM Ta(s) || 8.2084 x 107491 || 5.9919 x 107100 |} 4.1525907367571583 || 4.0000 || 0.012023 1.06 x 1073
PFM4 Ta(s) || 3.6625 x 107437 || 6.2525 x 107109 4.1525907367571583 || 4.0000 || 0.005731 3.98 x 1074
oM I's(s) || 3.2552 x 10226 4.2228 x 10757 1.4044916482153412 4.0000 || 0.014661 0.41
M Ts(s) || 1.1307 x 10227 1.8389 x 1057 1.4044916482153412 || 4.0000 || 0.021859 0.40
CM T3(s) || 1.0032 x 10202 2.5933 x 10751 1.4044916482153412 4.0000 || 0.018541 2.34
PBM [3(s) || 4.4411 x 10~189 6.0063 x 10—48 1.4044916482153412 4.0000 || 0.014729 1.37
KM T3(s) || 2.0486 x 10190 2.7836 x 10748 1.4044916482153412 || 4.0000 || 0.020871 1.37
PFM4 T3(s) || 9.4025 x 10245 1.5323 x 10761 1.4044916482153412 4.0000 || 0.009142 0.07
oM Ta(s) || 1.0858 x 107197 || 5.7403 x 1020 0 4.0000 || 0.011792 1.00
M Ta(s) || 2.2790 x 10199 2.2056 x 10730 0 4.0000 || 0.018880 0.96
CM Ta(s) || 1.1374 x 107178 || 2.7461 x 10745 0 4.0000 || 0.013016 5.00
PBM Ta(s) || 6.9441 x 10167 2.1934 x 10742 0 4.0000 || 0.010878 3.00
KM T4(s) || 3.9161 x 10168 1.0689 x 1042 0 4.0000 || 0.014614 3.00
PEM4 || T4(s) || 2.9974 x 107392 3.4278 x 10~ 7° 0 5.0000 || 0.005899 || 8.88 x 1016
OM Is(s) || 2.7357 x 10~311 3.2222 x 1078 1.6574002402580061 || 4.0000 || 0.022340 0.08
M [s(s) || 8.9135 x 107397 || 4.2367 x 10777 1.6574002402580061 4.0000 || 0.022040 0.09
CM Ts(s) || 1.2499 x 10250 3.2265 x 10793 1.657400240258006 1 4.0000 || 0.016760 1.24
PBM [5(s) || 8.5666 x 10-230 || 4.5197 x 10—58 1.6574002402580061 || 4.0000 || 0.024507 0.66
KM T's(s) || 3.3751 x 10226 3.5808 x 10757 1.6574002402580061 || 4.0000 || 0.017252 0.66
PEM4 || T'5(s) || 3.1976 x 10—352 1.4917 x 10~88 1.6574002402580061 || 4.0000 || 0.007239 0.21
OM Te(s) || 1.9400 x 10345 1.4591 x 10786 0.73908513321516064 || 4.0000 || 0.015242 0.03
M Te(s) || 1.0255 x 107348 || 2.2589 x 10787 || 0.73908513321516064 || 4.0000 || 0.016281 0.02
CM Te(s) || 1.1769 x 107334 || 6.6324 x 10784 || 0.73908513321516064 || 4.0000 || 0.015627 0.07
PBM Te(s) || 2.2887 x 10326 7.3402 x 10782 0.73908513321516064 || 4.0000 || 0.017111 0.05
KM Te(s) || 1.1866 x 10326 6.2286 x 1082 0.73908513321516064 || 4.0000 || 0.015800 0.05
PEM4 || Tg(s) || 1.0661 x 107364 || 2.5608 x 1021 || 0.73908513321516064 || 4.0000 || 0.006798 0.01

2) Aerospace engineering problem (The Kepler’s Equa-
tion) [26]: Let us examine the Kepler’s equation in astron-
omy, as expressed below.

M =FE —esin(F), M €[0,27), e € [0,1] (54)
The mean anomaly M and eccentricity e play a crucial role in
the Kepler’s equation. The eccentric anomaly E can be used
to calculate the position of a point moving in a Keplerian
orbit. For a specific case of M = 0.6 and e = 0.9, the
equation simplifies to:

I's(s) = s —0.9sin(s) — 0.6 (55)
where the variable s represents the eccentric anomaly FE to be
determined. Taking sgp = 1.8 as the initial guess, the above
equation (55) converges to the solution (simple root) o ~
1.4975894133904085. The comparison results are presented
in Table V.

3) Ocean engineering problem [25]: In ocean engineer-
ing, the equation below represents the height of a reflected

standing wave in a harbour, represented by the variable h.

h = hg {sin (T) cos (27;\“}) + 675}
where s denotes the distance from the source of the wave,
t denotes the time elapsed since the wave was created, v
denotes the velocity of the wave, hy denotes the height of
the wave at the source and A denotes the wavelength of the
wave. For particular values of A = 16, t = 12, v 48
and h = 0.4hg, the above equation reduces to the following
nonlinear equation.

2ms

(56)

Ty(s) = e~* + sin (%8) cos(72m) —04=0 (57

Taking sp = 7.4 as the initial guess, the above equa-
tion (57) converges to the solution (simple root) a =
6.9547312898815048. The comparison results are presented
in Table VI.

All numerical computations have been performed using
the programming software Mathematica 12.2 with 2000
significant digits so as to avoid loss of significant digits
and also to obtain pinpoint accuracy. From Table II to Table
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TABLE III
COMPARISONS OF EIGHTH ORDER METHODS UNDER THE SAME TNFE=12.

Method I'(s) [T (sn)| [sn — Sn—1] Sn CcocC CPU Time P
BWRM || T'i(s) || 7.1111 x 107332 3.6968 x 10742 0.39532362298631519 || 8.0000 || 0.022253 1.02
KTM Ti(s) || 1.3824 x 10318 1.5532 x 1040 0.39532362298631519 || 8.0000 || 0.017727 2.05
AIM Ti(s) || 8.1866 x 107325 || 2.2411 x 10~4! 0.39532362298631519 || 8.0000 || 0.019444 6.46
™ Ti(s) || 7.1022 x 10287 1.1969 x 10736 0.39532362298631519 || 8.0000 || 0.007850 8.47
ACM Ti(s) || 4.1061 x 10—278 1.4290 x 10735 || 0.39532362298631519 || 8.0000 || 0.017768 11.86
LWM T'i(s) || 6.5457 x 10734 || 1.0892 x 1043 || 0.39532362298631519 || 8.0000 || 0.020690 1.66
PM Ti(s) || 7.8834 x 10727 || 4.7165 x 10735 || 0.39532362298631519 || 8.0000 || 0.022821 16.17
PFMS Ti(s) || 4.1947 x 107446 || 3.4394 x 10756 || 0.39532362298631519 || 8.0000 || 0.006564 0.01
BWRM || T'2(s) || 3.4098 x 107804 || 2.9384 x 10~100 || 4.1525907367571583 || 8.0000 || 0.013557 || 1.02 x 10~7
KTM To(s) || 3.0978 x 107786 || 4.7750 x 10798 4.1525907367571583 || 8.0000 || 0.020219 || 1.90 x 10~7
AIM Ta(s) || 3.9686 x 10~627 1.7429 x 10778 4.1525907367571583 || 8.0000 || 0.017345 || 7.74 x 107
™ Ta(s) || 2.4669 x 10~747 || 3.0084 x 10793 4.1525907367571583 || 8.0000 || 0.009351 || 6.10 x 10~7
ACM Ta(s) || 2.0783 x 10~ 741 1.6174 x 10792 4.1525907367571583 || 8.0000 || 0.014735 || 7.37 x 10~7
LWM Ta(s) || 2.8312 x 107820 || 3.0834 x 10~192 4.1525907367571583 || 8.0000 || 0.013618 || 5.75 x 1078
PM Ta(s) || 1.8515 x 10~740 || 2.1218 x 10792 4.1525907367571583 || 8.0000 || 0.013184 || 7.48 x 10~ 7
PFMS Ta(s) || 1.4555 x 107892 || 3.3230 x 10~ 11! 4.1525907367571583 || 8.0000 || 0.005806 || 1.63 x 10~8
BWRM || T's(s) || 4.0070 x 107377 || 8.3430 x 10—48 1.4044916482153412 || 8.0000 || 0.020364 0.69
KTM T3(s) || 6.4883 x 10389 2.5744 x 10~49 1.4044916482153412 8.0000 || 0.014461 1.35
AIM T3(s) || 1.2858 x 10351 9.3394 x 1074° 1.4044916482153412 || 8.0000 || 0.013797 8.95
™ I'3(s) || 2.5200 x 107352 || 8.0079 x 10~45 1.4044916482153412 || 8.0000 || 0.007792 6.00
ACM T3(s) || 1.0647 x 107338 || 3.8134 x 10~43 1.4044916482153412 || 8.0000 || 0.014344 9.59
LWM T'3(s) || 9.1257 x 107398 || 2.0727 x 107°0 1.4044916482153412 || 8.0000 || 0.021201 1.08
PM T3(s) || 2.9068 x 10—328 7.2760 x 10742 1.4044916482153412 8.0000 || 0.017362 14.91
PFMS T3(s) || 1.1012 x 107427 || 7.1047 x 10754 1.4044916482153412 || 8.0000 || 0.006650 || 6.83 x 10~3
BWRM || Tyu(s) || 4.8241 x 107407 || 3.7127 x 1046 0 8.0000 || 0.016371 || 1.68 x 1073
KTM T4(s) || 1.3632 x 107332 || 3.3156 x 10743 0 8.0000 || 0.012342 9.33
AIM T4(s) || 6.1592 x 107321 5.7816 x 10~41 0 8.0000 || 0.015796 49.34
™ Ta(s) || 1.8734 x 107395 || 5.1042 x 10739 0 8.0000 || 0.006548 40.67
ACM T4(s) || 2.6968 x 10—294 1.2034 x 10737 0 8.0000 || 0.013679 61.32
LWM T4(s) || 3.5019 x 107352 || 9.0670 x 1074> 0 8.0000 || 0.016047 7.67
PM Ta(s) || 7.7595 x 107287 || 9.8073 x 10~37 0 8.0000 || 0.012231 90.64
PFMS T4(s) || 2.8452 x 107482 || 2.8764 x 10754 0 9.0000 || 0.005253 || 2.19 x 10~6
BWRM || T's(s) || 5.0814 x 107382 1.8721 x 10~48 1.6574002402580061 8.0000 || 0.021472 1.08
KTM T5(s) || 1.1528 x 10749 1.5410 x 10762 1.6574002402580061 8.0000 || 0.014317 0.12
AIM T5(s) || 7.8185 x 10739 2.0210 x 10~49 1.6574002402580061 8.0000 || 0.016269 0.90
™ T5(s) || 1.3718 x 107443 || 4.1677 x 10756 1.6574002402580061 8.0000 || 0.007254 0.49
ACM Ts5(s) || 1.0341 x 10406 1.4805 x 10751 1.6574002402580061 8.0000 || 0.021146 1.44
LWM T5(s) || 2.8923 x 107534 || 2.6325 x 10767 1.6574002402580061 8.0000 || 0.018224 0.04
PM T5(s) || 2.0678 x 107384 || 8.3109 x 10749 1.6574002402580061 8.0000 || 0.018698 2.93
PFM8 T5(s) || 1.4192 x 10558 2.9005 x 10~70 1.6574002402580061 8.0000 || 0.006793 || 9.12 x 10—3
BWRM || T4(s) || 4.1015 x 107652 8.5247 x 10782 0.73908513321516064 || 8.0000 || 0.018632 || 8.79 x 10~*
KTM Ts(s) || 1.7351 x 107648 || 2.4210 x 10~81 0.73908513321516064 || 8.0000 || 0.011694 || 8.79 x 10~*
AIM Ts(s) || 9.9005 x 107544 || 2.1016 x 10768 || 0.73908513321516064 || 8.0000 || 0.020361 0.02
™ Te(s) || 3.8555 x 107995 || 5.2896 x 10~76 || 0.73908513321516064 || 8.0000 || 0.008007 || 3.76 x 10~3
ACM Ts(s) || 3.0675 x 107599 || 2.8190 x 10~7® || 0.73908513321516064 || 8.0000 || 0.021936 || 4.60 x 103
LWM Te(s) || 1.5104 x 10778 || 2.6788 x 10798 || 0.73908513321516064 || 8.0000 || 0.022728 || 3.40 x 10~*
PM Te(s) || 2.3233 x 107990 || 2.0296 x 107> || 0.73908513321516064 || 8.0000 || 0.013253 || 4.82 x 10~3
PFM8 Te(s) || 4.4174 x 107803 || 1.6042 x 107199 || 0.73908513321516064 || 8.0000 || 0.005786 || 6.02 x 10~5

VI, we have presented the absolute residual error |I'(s;)]
for each test function, approximated roots (s,,), error in the
consecutive iterations |s,, — $,—1| and the computational
order of convergence (C'OC) for all the compared methods
after twelve function evaluations are completed, i.e., the total
number of function evaluations (TNFE) for each test function
is 12. The computational order of convergence (COC) is

calculated using the following expression [27]:

coc— 18T () /T(sn 1)
IOg |F(Sn71)/r(snf2)‘
The calculations of the estimated values of the asymptotic

error constant (p) are provided in the last column of the

Tables. It has the following expression [28].

(58)

Sn — Sn—1

(Sn—l - 5n—2)p (59)

p~ lim
n—oo
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TABLE IV
COMPARISONS FOR ENVIRONMENTAL ENGINEERING PROBLEM UNDER THE SAME TNFE=12.

Method I'(s) IT(sn)] [sn — Sn—1] Sn cocC CPU Time p
oM I'7(s) || 1.0173 x 107294 || 5.6706 x 10~7* || 0.97622986351687693 || 4.0000 0.022972 0.03
M T7(s) || 1.7996 x 107293 || 1.1528 x 10~73 || 0.97622986351687693 || 4.0000 0.028964 0.03
CM T'7(s) || 5.6684 x 107207 || 2.8462 x 107°2 || 0.97622986351687693 || 4.0000 0.019691 0.24
PBM T7(s) || 1.8450 x 107234 || 4.4253 x 10759 || 0.97622986351687693 || 4.0000 0.025502 0.14
KM T7(s) || 1.6870 x 107231 || 2.4335 x 10758 || 0.97622986351687693 || 4.0000 0.024749 0.14
PFM4 I'7(s) || 8.7660 x 10=316 || 3.1162 x 10~72 || 0.97622986351687693 || 4.0000 || 0.010461 0.03
BWRM || T'7(s) || 1.1571 x 10~405 || 3.5049 x 1051 || 0.97622986351687693 || 8.0000 || 0.019307 0.01
KTM T7(s) || 1.3542 x 10=490 || 9.7814 x 10762 || 0.97622986351687693 || 8.0000 || 0.019994 || 4.56 x 10~3
AIM T'7(s) || 1.1633 x 107376 || 1.3165 x 10747 || 0.97622986351687693 || 8.0000 || 0.009433 0.04
™ T7(s) || 3.4495 x 10=436 || 5.1620 x 107%% || 0.97622986351687693 || 8.0000 || 0.014236 0.02
ACM T7(s) || 5.3778 x 10~414 || 2.8069 x 10752 || 0.97622986351687693 || 8.0000 0.010414 0.04
LWM T7(s) || 1.3773 x 107597 || 7.8439 x 1064 || 0.97622986351687693 || 8.0000 || 0.015214 || 2.71 x 103
PM T'7(s) || 6.0767 x 10739 || 4.7098 x 10750 || 0.97622986351687693 || 8.0000 0.016534 0.07
PFM8 I7(s) || 1.1803 x 107530 || 1.5742 x 10~%6 || 0.97622986351687693 || 8.0000 || 0.007329 || 8.83 x 10~5
TABLE V
COMPARISONS FOR THE KEPLER’S EQUATION PROBLEM UNDER THE SAME TNFE=12.
Method T'(s) T (sn)| [$n — Sn—1] Sn cocC CPU Time p
oM Is(s 4.8616 x 107229 || 1.4912 x 10757 || 1.4975894133904085 || 4.0000 || 0.019308 0.11
M T's(s 7.8446 x 107231 || 5.3725 x 10758 || 1.4975894133904085 || 4.0000 0.023384 0.10
CM Ts(s 8.4733 x 10~181 1.1339 x 1045 || 1.4975894133904085 || 4.0000 0.014972 0.55
PBM Ts(s 1.3056 x 107194 || 4.5468 x 10~%9 || 1.4975894133904085 || 4.0000 || 0.019512 0.33
KM Ts(s 7.9546 x 10~196 || 2.2590 x 10=49 || 1.4975894133904085 || 4.0000 0.023423 0.33

PFM4 || T'g(s 9.7987 x 107270 || 2.0765 x 1067

1.4975894133904085 4.0000 0.008112 5.64 x 1073

KTM T's(s 1.0787 x 107397 || 3.5069 x 10~50
AIM T's(s 2.9913 x 107336 || 1.2708 x 10742
™ Is(s 1.2357 x 107360 || 1.2489 x 10745
ACM Ts(s 2.5683 x 107348 || 4.1014 x 10—
LWM I's 1.0616 x 10~406 || 2.6909 x 10~°1
PM I's 4.9737 x 107339 || 56452 x 10—43
PFMS I's(s 6.9822 x 107456 || 4.0249 x 1057

)
)
)
)
)
)
BWRM || T's(s) || 3.6608 x 107393 || 1.6277 x 10—4°
)
)
)
)
)
)
)

1.4975894133904085 8.0000 0.020129 7.96 x 1073

1.4975894133904085 8.0000 0.016597 0.05
1.4975894133904085 8.0000 0.009618 0.47
1.4975894133904085 8.0000 0.017494 0.22
1.4975894133904085 8.0000 0.008183 0.34
1.4975894133904085 8.0000 0.015674 0.04
1.4975894133904085 8.0000 0.018146 0.52

1.4975894133904085 8.0000 0.006296 1.09 x 1074

TABLE VI
COMPARISONS FOR OCEAN ENGINEERING PROBLEM UNDER THE SAME TNFE=12.

2.3455 x 10581 1.2277 x 10~ 72
4.9145 x 107699 || 3.9856 x 1087

PM To(s
PFM8 || To(s

Method T'(s) T (sn)| [$n — Sn—1] Sn cocC CPU Time p
oM To(s) || 1.7938 x 107322 || 2.0703 x 10780 || 6.9547312898815048 || 4.0000 || 0.023765 || 2.70 x 103
Y To(s) || 1.3431 x 107324 || 6.1678 x 10781 || 6.9547312898815048 || 4.0000 || 0.021864 || 2.57 x 1073
CM To(s) || 5.0861 x 107397 || 1.2913 x 10~76 || 6.9547312898815048 || 4.0000 || 0.020798 || 5.07 x 1073
PBM To(s) || 1.2116 x 107313 || 3.0484 x 10778 || 6.9547312898815048 || 4.0000 || 0.021468 || 3.89 x 10~3
KM To(s) || 9.2845 x 107314 || 2.8522 x 10778 || 6.9547312898815048 || 4.0000 || 0.024779 || 3.89 x 1073
PFM4 To(s) || 8.5285 x 107329 || 5.7818 x 10782 || 6.9547312898815048 || 4.0000 || 0.009196 || 2.11 x 10~3
BWRM || T'g(s) || 1.6050 x 107982 || 3.4553 x 1078% || 6.9547312898815048 || 8.0000 || 0.024691 || 2.19 x 10~
KTM To(s) || 2.2106 x 107615 || 8.0695 x 10~77 || 6.9547312898815048 || 8.0000 || 0.020034 || 3.41 x 10~
AIM To(s) || 1.0567 x 107359 || 4.0755 x 10745 || 6.9547312898815048 || 8.0000 || 0.009977 || 3.85 x 104
™ To(s) || 1.0027 x 107569 || 3.4409 x 10~7% || 6.9547312898815048 || 8.0000 || 0.017877 || 1.41 x 10~°
ACM To(s) || 2.4519 x 107566 || 8.9722 x 10~7! || 6.9547312898815048 || 8.0000 || 0.009118 || 1.62 x 1075
LWM To(s) || 4.1202 x 107579 || 2.7327 x 10~72 || 6.9547312898815048 || 8.0000 || 0.022643 || 3.67 x 10~
)
)

6.9547312898815048 8.0000 0.017413 1.26 x 1072
6.9547312898815048 8.0000 0.008575 2.14 x 1077

where p is determined as either 4 or 8, depending on the
order of convergence of each method being compared. It
has to be noted that a reduced asymptotic error constant
indicates that the associated method is faster in convergence
compared to other methods. However, there are instances
where the method might have smaller residual errors, smaller

error differences in consecutive iterations, yet a greater
asymptotic error. Also, in Table II to Table VI we have
provided the CPU time (in seconds) which is the average
of three CPU time consumed by each method after three
executions for each test function. The CPU time is computed
by taking |T'(s,,)| < 1071090 a5 the stopping criterion using
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Fig. 1. Graphical comparison between the methods based on CPU Time for each test function, I'(s).
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Fig. 2. Graphical comparison between the methods based on the estimated values of the asymptotic error constant (p) for each test function, I'(s).
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Fig. 3. Graphical comparison between the methods based on the error in consecutive iteration, |sn — sy —1| for each test function, I'(s).

Mathematica 12.2 software on a system running Windows 11
with Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz 2.11
GHz and 8GB of RAM. To perform graphical comparisons,
we have utilized the same Mathematica 12.2 software and
the figures depicting the graphical behaviour of the methods
are presented in Fig. 1 to Fig. 3.

The numerical results presented in Tables II to VI highlight
the competitiveness and accuracy of both the PFM4 and
PFMS families of methods, as they converge faster to the
root with lower CPU time and asymptotic error constant
values compared to existing methods. These results are
further supported by visual illustrations through graphical
representations provided in Fig. 1 to Fig. 3. Moreover, the
results affirm that the computational order of convergence
aligns with the theoretical order of convergence for both
proposed families of methods.

Additionally, it is evident from Tables IV to VI that

the practical use of the newly introduced families PFM4
and PFMS on real-world problems shows its usefulness and
applicability. Additionally, the families PFM4 and PFMS
demonstrated superior performance when compared to other
existing methods of similar nature.

IV. CONCLUDING REMARKS

In this paper, we have introduced two new families of itera-
tive methods of optimal fourth and eighth order convergence
for solving nonlinear equations. By using the composition
technique along with a modified generalised form of Newton-
Steffensen method and the weight function approach, we
have achieved the idea of developing new families of itera-
tive methods with optimal order convergence and improved
efficiency. Analysis of the numerical results have illustrated
the efficiency and better performance of our new proposed
families of methods in terms of minimal absolute residual
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error, minimal error in consecutive iterations. The proposed
methods, PFM4 and PFMS, exhibit faster convergence with
smaller asymptotic error constant values, resulting in reduced
CPU time compared to other existing methods in comparison.
Moreover, the overall performance of our proposed work is
quite good with fast convergence speed and can be a great
alternative for solving nonlinear equations.
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