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Abstract—In this work, we first propose a new fractional
derivative (bi-ordinal ψ-Hilfer) and present its properties. We
also study the Lyapunov-type inequalities for the fractional
boundary value problem with multi-point boundary conditions
in the framework of bi-ordinal ψ-Hilfer fractional derivative.
Finally, we provide some corollaries for generalizing and
enriching the existing literature.
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I. INTRODUCTION

THE well-known Lyapunov result [1] states that there
exists a nontrivial solution of Hill’s equation with

Dirichlet boundary conditions, which is expressed as follows:
Theorem 1.1 If the boundary value problem (BVP){

x′′(t) + q(t)x(t) = 0, t ∈ (a, b),
x(a) = x(b) = 0,

(1)

has a nontrivial continuous solution, where q(t) ∈ C([a, b],
R), then, ∫ b

a

|q(s)|ds > 4

b− a
. (2)

The Lyapunov inequality (2) and its generalizations are
indispensable tools for addressing eigenvalue problems, dis-
conjugacy, control theory, oscillation, and other fields of
differential equations [2, 3].

Recently, fractional calculus has been a focus of research
community due to its applicability in theory and practice
[4-8]. A research for Lyapunov-type inequalities started
during the study of fractional differential equations.
The research was initiated by Ferreira [4] himself who
considered Lyapunov-type inequalities for BVPs with
Riemann-Liouville fractional derivative, which can be
expressed as follows:{

(aD
αx)(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = x(b) = 0,
(3)
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where, q(t) ∈ C([a, b],R). aD
α represents the Riemann-

Liouville fractional derivative of order α (1 < α ≤ 2). If the
BVP expressed in (3) has a nontrivial solution, then,∫ b

a

|q(s)|ds > Γ(α)
( 4

b− a

)α−1
. (4)

In [5], the same author derived a Lyapunov-type inequality
for Caputo fractional BVP.

Due to pioneering contribution of Ferreira, the studies
regarding Lyapunov-type inequalities for fractional BVPs
have been frequently considered in literature [9-22]. Few
researchers have investigated the Lyapunov-type inequality
of multi-point BVP for fractional differential equations for
[18-20]. In 2018, Wang et al. [18] established Lyapunov-type
inequalities for multi-point boundary conditions of Hilfer
fractional differential equation. Zhang et al. [19] considered
Lyapunov-type inequalities for the fractional BVPs involving
Hilfer-Katugampola fractional derivative with multi-point
boundary conditions.

Recently, few scholars have focused on the Hilfer fraction-
al derivative of a function with respect to another function
ψ. In [22], Zohra et al. derived Lyapunov-type inequalities
for the fractional BVP as:{

(HDα,β,ψ
a+ x)(t) + q(t)f(x(t)) = 0, a < t < b,

x(a) = x(b) = 0,
(5)

where, (a, b) ∈ R2. HDα,β,ψ
a+ is the ψ-Hilfer fractional

derivative type of order (1 < α < 2, 0 ≤ β ≤ 1),
x, ψ ∈ C2([a, b],R) such that ψ is strictly increasing and
f, q : R→ R. The following conclusion is obtained.
Theorem 1.2 The function f : R → R is continuous and
sublinear, f(u) ≤ µ|u|, for t ∈ [a, b] and u ∈ R, µ > 0. If
the BVP expressed in (5) has a nontrivial solution, then,∫ b

a

ψ′(s)|q(s)|ds ≥ Λ

µ(γ − 1)
γ−1

(ψ(b)− ψ(a))
α−1 , (6)

where, Λ = Γ(α)(α+ γ − 2)
α+γ−2

(α− 1)
1−α.

In 2021, Karimov et al. [23] proposed bi-ordinal Hilfer
fractional derivative of orders α (n − 1 < α ≤ n), β (n −
1 < β ≤ n) and of type µ ∈ [0, 1] by using the following
equation:

D
(α,β)µ
a+ x(t) = I

µ(n−α)
0+ (

d

dt
)nI

(1−µ)(n−β)
0+ x(t). (7)

Specifically, when µ = 0, (7) represents the Riemann-
Liouville fractional derivative of order β and for µ = 1, the
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bi-ordinal Hilfer fractional derivative (7) denotes the Caputo
fractional derivative of order α.

Based on the aforementioned literature, we study the
following Lyapunov-type inequalities for BVPs of bi-ordinal
ψ-Hilfer with m-point boundary conditions as: (HD

(α,β)µ,ψ
a+ x)(t) + q(t)x(t) = 0, a < t < b,

x(a) = 0, x(b) =
m−2∑
i=1

σix(ηi),
(8)

and (HD
(α,β)µ,ψ
a+ x)(t) + q(t)x(t) = 0, a < t < b,

x(a) = 0, 1
ψ′(t)

d
dtx(t)|t=b =

m−2∑
i=1

λix(ξi),
(9)

where, q(t) ∈ C([a, b],R), ψ ∈ C2[a, b], ψ′(t) > 0,
HD

(α,β)µ,ψ
a+ is bi-ordinal ψ-Hilfer fractional derivative of

orders α (1 < α < 2), β (0 ≤ β ≤ 1) and type µ
(0 ≤ µ ≤ 1); σi ≥ 0 , a < ηi, ξi < b, (i = 1, 2, · · · ,m− 2),
for a < η1 < η2 < · · · < ηm−2 < b, a < ξ1 < ξ2 <
· · · < ξm−2 < b. They are satisfied based on the following
conditions.

(C1) (ψ(b)− ψ(a))ω−1 >
m−2∑
i=1

σi(ψ(ηi)− ψ(a))
ω−1

.

(C2) (ω−1)(ψ(b)− ψ(a))ω−2 >
m−2∑
i=1

λi(ψ(ξi)− ψ(a))ω−1.

In this work, we propose a new definition of bi-ordinal ψ-
Hilfer fractional derivative and prove its properties. We also
study the Lyapunov-type inequalities for BVP expressed in
(8) and (9) with m-point boundary conditions. To the best
of our knowledge, only a few works have considered the
Lyapunov-type inequalities for fractional BVPs involving m-
point boundary conditions. This work provides new results
that can extend and complement the previous literature.

The rest of this paper is summarized as follows. Section II,
we briefly present the necessary definitions and lemmas re-
lated to ψ-Hilfer fractional calculus. Section III, we propose
a new fractional derivative (bi-ordinal ψ-Hilfer) and prove its
properties. The results are presented in Section IV. Finally,
Section V concludes this work.

II. PRELIMINARIES

In this section, we present the concepts and lemmas
regarding the ψ-Hilfer fractional integral and the ψ-Hilfer
fractional derivative.

Definition 2.1 ([24]) Let (a, b)(−∞ ≤ a < b ≤ ∞)
be a finite or infinite interval of the real line R and α > 0.
Also let ψ(x) be an increasing and positive monotone
function on (a, b], having a continuous derivative ψ′(x)
on (a, b). The left-sided ψ-Hilfer fractional integral of a
function x with respect to another function ψ on [a, b] is
defined by

Iα,ψa+ x(t) =
1

Γ(α)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))
α−1

x(s)ds.

Definition 2.2 ([24]) Let n − 1 < α ≤ n with n ∈ N,
I ∈ [a, b] is the interval such that−∞ ≤ a < b ≤ ∞ and
x, ψ ∈ Cn([a, b],R) two functions such that ψ is increasing
and ψ′(t) 6= 0, for all t ∈ I. The left-sided ψ-Hilfer fractional

derivative of a function of order α and type 0 ≤ β ≤ 1, is
defined by

HDα,β,ψ
a+ x(t) = I

β(n−α),ψ
a+ DnI

(1−β)(n−α),ψ
a+ x(t),

where, Dn = ( 1
ψ′(t)

d
dt )

n.

Lemma 2.1 ([24]) Let α > 0 and β > 0, then

Iα,ψa+ Iβ,ψa+ = Iα+β,ψa+ .

Lemma 2.2 ([24]) If x ∈ Cn[a, b], n−1 < α < n, 0 ≤ β ≤
1, and γ = α+ β(n− α), then

Iα,ψa+
HDα,β,ψ

a+ x(t) = x(t)−
n∑
k=1

(ψ(t)− ψ(a))
γ−k

Γ(ω − k + 1)

×
(

1

ψ′(t)

d

dt

)n−k
I
(1−β)(n−α),ψ
a+ x(a)

= Iγ,ψa+ Dγ,ψ
a+ x(t).

Lemma 2.3 ([24]) Let α > 0 and ξ > 0, if x(t) =
(ψ(t)− ψ(a))ξ−1, then

Iα,ψa+ x(t) =
Γ(ξ)

Γ(α+ ξ)
(ψ(t)− ψ(a))α+ξ−1,

Dα,ψ
a+ x(t) =

Γ(ξ)

Γ(ξ − α)
(ψ(t)− ψ(a))ξ−α−1.

Lemma 2.4 ([24]) Let x ∈ C1[a, b], α > 0 and 0 ≤ β ≤ 1,
we have

HDα,β,ψ
a+ Iα,ψa+ x(t) = x(t).

III. NEW DEFINITION AND PROPERTIES OF BI-ORDINAL
ψ-HILFER FRACTIONAL DERIVATIVE

In this section, we present the proposed fractional
derivative (bi-ordinal ψ-Hilfer) and prove its properties.

Definition 3.1 Let (n − 1 < α, β ≤ n) with n ∈ N,
I = [a, b] is the interval such that −∞ ≤ a < b ≤ ∞ and
x, ψ ∈ Cn[a, b] two functions such that ψ is increasing and
ψ′(x) 6= 0, for all x ∈ I . The bi-ordinal ψ-Hilfer fractional
derivative (left-sided) HD

(α,β)µ,ψ
a+ x of function of order α,

β and type µ (0 ≤ µ ≤ 1) is defined by

(HD
(α,β)µ,ψ
a+ x)(t) = (I

µ(n−α),ψ
a+

(
1

ψ′(t)

d

dt

)n
×I(1−µ)(n−β),ψa+ x)(t).

Lemma 3.1 If x ∈ Cn[a, b], n− 1 < α, β < n, 0 ≤ µ ≤ 1,
then

Iδ,ψa+
HD

(α,β)µ,ψ
a+ x(t) = (Iδ,ψa+ I

ω−δ,ψ
a+ Dω,ψ

a+ x)(t)

= (Iω,ψa+ Dω,ψ
a+ x)(t)

= x(t)−
n∑
k=1

(ψ(t)− ψ(a))
ω−k

Γ(ω − k + 1)

×
(

1

ψ′(t)

d

dt

)n−k
I
(1−µ)(n−β),ψ
a+ x(a),

where, ω = β + µ(n− β), δ = β + µ(α− β), and ω > δ.

Proof. Let ω = β + µ(n − β), δ = β + µ(α − β),
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then by using the Definitions 2.1, 2.2 and Lemma 2.1, we
get the following:

(HD
(α,β)µ,ψ
a+ x)(t) = (I

µ(n−α),ψ
a+

×
(

1

ψ′(t)

d

dt

)n
I
(1−µ)(n−β),ψ
a+ x)(t)

= (Iω−δ,ψa+

(
1

ψ′(t)

d

dt

)n
I
(1−µ)(n−β),ψ
a+ x)(t)

= (Iω−δ,ψa+ Dω,ψ
a+ x)(t).

Applying the integral operator Iδ,ψa+ on the above equation,
we get

Iδ,ψa+
HD

(α,β)µ,ψ
a+ x(t) = (Iδ,ψa+ I

ω−δ,ψ
a+ Dω,ψ

a+ x)(t)

= (Iω,ψa+ Dω,ψ
a+ x)(t)

= x(t)−
n∑
k=1

(ψ(t)− ψ(a))
ω−k

Γ(ω − k + 1)

×
(

1

ψ′(t)

d

dt

)n−k
I
(1−µ)(n−β),ψ
a+ x(a).

Hence, Lemma 3.1 is proved.
Lemma 3.2 Let α > 0, n− 1 < α, β < n, 0 ≤ µ ≤ 1, m ∈
N and D = 1

ψ′(t)
d
dt . If the fractional derivatives (Dmx)t

and (HD
(α+m,β+m)µ,ψ
a+ x)(t) exist, then

(HD
(α,β)µ,ψ
a+ Dmx)(t) = HD

(α+m,β+m)µ,ψ
a+ x)(t),

provided that

Djx(t)|t=a = 0, j = 0, 1, 2, · · · ,m− 1.

Proof. Since Djx(t)|t=a = 0, j = 0, 1, 2, · · · ,m − 1, we
get

(Im,ψa+ Dmx)(t) = x(t),

consequently, the following equality is satisfied.

(HD
(α,β)µ,ψ
a+ Dmx)(t) = (I

µ(n−α),ψ
a+

×DnI
(1−µ)(n−β),ψ
a+ Dmx)(t)

= (I
µ(n−α),ψ
a+ Dn+mI

(1−µ)(n−β),ψ
a+ (Im,ψa+ Dmx))(t)

= (I
µ(n−α),ψ
a+ Dn+mI

(1−µ)(n−β),ψ
a+ x)(t)

= (HD
(α+m,β+m)µ,ψ
a+ x)(t).

Hence, Lemma 3.2 is proved.

IV. MAIN RESULTS

In this section, we present the Green’s functions for
problems presented in (8) and (9), and describe their
properties.

Lemma 4.1 Let (C1) holds. If x(t) ∈ C[a, b] represents a
solution of the BVP presented in (8), then it satisfies the
following integral equation:

x(t) =

∫ b

a

H(t, s)ψ′(s)q(s)x(s)ds

+R(t)
m−2∑
i=1

σi

∫ b

a

H(ηi, s)ψ
′(s)q(s)x(s)ds, (10)

where, R(t) is expressed as follows:

R(t) =
(ψ(t)− ψ(a))

ω−1

(ψ(b)− ψ(a))
ω−1 −

m−2∑
i=1

σi(ψ(ηi)− ψ(a))
ω−1

,

and the Green’s function H(t, s) is expressed as follows:

H(t, s) =
1

Γ(δ)(ψ(b)− ψ(a))
ω−1N(t, s),

N(t, s) =

{
d1(t, s) a ≤ s ≤ t ≤ b,
d2(t, s) a ≤ t ≤ s ≤ b,

with

d1(t, s) = (ψ(t)− ψ(a))ω−1(ψ(b)− ψ(s))δ−1

− (ψ(b)− ψ(a))ω−1(ψ(t)− ψ(s))δ−1,

d2(t, s) = (ψ(t)− ψ(a))ω−1(ψ(b)− ψ(s))δ−1.

Proof. We use Lemma 3.1 to reduce (8) into an equivalent
integral equation as:

x(t) = −Iδ,ψa+ q(t)x(t) + c1(ψ(t)− ψ(a))ω−1

+c2(ψ(t)− ψ(a))ω−2, (11)

where, c1, c2 ∈ R. Since x(a) = 0, x(b) =
m−2∑
i=1

σix(ηi),

we have c2 = 0, and

c1 =
1

(ψ(b)− ψ(a))
ω−1

[m−2∑
i=1

σix(ηi) + Iδ,ψa+ q(t)x(t)|t=b
]
.

Substituting the results of c1, c2 into (11), we obtain the
following:

x(t) = −Iδ,ψa+ q(t)x(t) +

(
ψ(t)− ψ(a)

ψ(b)− ψ(a)

)ω−1
×
[m−2∑
i=1

σix(ηi) + Iδ,ψa+ q(t)x(t)|t=b
]

=

∫ b

a

H(t, s)ψ′(s)q(s)x(s)ds

+

(
ψ(t)− ψ(a)

ψ(b)− ψ(a)

)ω−1 m−2∑
i=1

σix(ηi). (12)

Now,
m−2∑
i=1

σix(ηi) =
m−2∑
i=1

σi

∫ b

a

H(ηi, s)ψ
′(s)q(s)x(s)ds

+
m−2∑
i=1

σi

(
ψ(ηi)− ψ(a)

ψ(b)− ψ(a)

)ω−1 m−2∑
i=1

σix(ηi),

which can be further solved to obtain:

m−2∑
i=1

σix(ηi) =

A1

m−2∑
i=1

σi
∫ b
a
H(ηi, s)ψ

′(s)q(s)x(s)ds

A1 −
m−2∑
i=1

σi(ψ(ηi)− ψ(a))
ω−1

,

(13)
where, A1 = (ψ(b)− ψ(a))

ω−1
.

Using (12) and (13), we obtain the desired result expressed
in (10). Hence, Lemma 4.1 is proved.
Lemma 4.2 Let us assume that (C2) holds. If x(t) ∈ C[a, b]
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is the solution of the BVP expressed in (9), then it satisfies
the following integral equation:

x(t) =

∫ b

a

G(t, s)ψ′(s)q(s)x(s)ds

+Q(t)
m−2∑
i=1

λi

∫ b

a

G(ξi, s)ψ
′(s)q(s)x(s)ds, (14)

where, Q(t) and A2 are defined as follows:

Q(t) =
(ψ(t)− ψ(a))

ω−1

A2
, t ∈ [a, b],

A2 = (ω−1)(ψ(b)− ψ(a))
ω−2−

m−2∑
i=1

λi(ψ(ξi)− ψ(a))
ω−1

,

G(t, s) denotes the Green’s function, which is defined as
follows:

G(t, s) =
(ψ(b)− ψ(s))

δ−2

Γ(δ)(ω − 1)

{
g1(t, s), a ≤ s ≤ t ≤ b,
g2(t, s), a ≤ t ≤ s ≤ b,

and

g1(s, t) = (δ − 1)(ψ(b)− ψ(a))2−ω(ψ(t)− ψ(a))ω−1

−(ω − 1)
(ψ(t)− ψ(s))

δ−1

(ψ(b)− ψ(s))
δ−2 ,

g2(s, t) = (δ − 1)(ψ(b)− ψ(a))2−ω(ψ(t)− ψ(a))ω−1.

Proof. By applying the integral operator Iδ,ψa+ on (9) and
using Lemma 3.1, we obtain the following equation:

x(t) = −Iδ,ψa+ q(t)x(t) + c1(ψ(t)− ψ(a))ω−1

+c2(ψ(t)− ψ(a))ω−2,

where, c1, c2 ∈ R. The boundary condition x(a) = 0
implies that c2 = 0. Hence,

x(t) = −Iδ,ψa+ q(t)x(t) + c1(ψ(t)− ψ(a))ω−1. (15)

Applying derivative D = 1
ψ′(t)

d
dt on the both sides of the

(15) with respect to t, we get the following equation:
1

ψ′(t)

d

dt
x(t) = −Iδ−1,ψa+ q(t)x(t)

+ c1(ω − 1)(ψ(t)− ψ(a))ω−2.

Since 1
ψ′(t)

d
dtx(t)|t=b =

m−2∑
i=1

λix(ξi), we get:

c1 =
1

(ω − 1)(ψ(b)− ψ(a))
ω−2

×
[m−2∑
i=1

λix(ξi) + Iδ−1,ψa+ q(t)x(t)|t=b
]
.

Now, the unique solution of the problem presented in (9) is
expressed as follows:

x(t) = −Iδ,ψa+ q(t)x(t) +
(ψ(t)− ψ(a))

ω−1

(ω − 1)(ψ(b)− ψ(a))
ω−2

×
[m−2∑
i=1

λix(ξi) + Iδ−1,ψa+ q(t)x(t)|t=b
]
,

=

∫ b

a

G(t, s)ψ′(s)q(s)x(s)ds

+
(ψ(t)− ψ(a))

ω−1

(ω − 1)(ψ(b)− ψ(a))
ω−2

m−2∑
i=1

λix(ξi).(16)

We obtain:
m−2∑
i=1

λix(ξi) =
m−2∑
i=1

λi

∫ b

a

G(ξi, s)ψ
′(s)q(s)x(s)ds

+

m−2∑
i=1

λi(ψ(ξi)− ψ(a))
ω−1

(ω − 1)(ψ(b)− ψ(a))
ω−2

×
m−2∑
i=1

λix(ξi),

which implies,

m−2∑
i=1

λix(ξi) =

(ω − 1)
m−2∑
i=1

λi
∫ b
a
G(ξi, s)ψ

′(s)q(s)x(s)ds

(ψ(b)− ψ(a))
2−ω

A2

.

(17)
Using (17) in (16), we obtain the solution of the problem
presented in (14). Hence, Lemma 4.2 is proved.
Lemma 4.3 ([5]) If 1 < ν < 2, then,

2− ν

(ν − 1)
ν−1
ν−2

≤ (ν − 1)
(ν−1)

νν
.

Lemma 4.4 The Green’s functions H(t, s) and G(t, s)
defined in (10) and (14) respectively, satisfy the following
properties:
(i) H(t, s) and G(t, s) are continuous functions in [a, b] ×
[a, b].
(ii) For any (t, s) ∈ [a, b]× [a, b], we have,

|H(t, s)| ≤ (δ − 1)
δ−1

(ω − 1)
ω−1

(ψ(b)− ψ(a))
δ−1

Γ(δ)(ω + δ − 2)
ω+δ−2 .

(iii) For any (t, s) ∈ [a, b]× [a, b], we have,

|G(t, s)| ≤ (ψ(b)− ψ(s))
δ−2

(ψ(b)− ψ(a))

(ω − 1)Γ(δ)

×max {ω − δ, δ − 1} .

Proof. It is evident that (i) is satisfied. In order to prove that
(ii) holds, for all (t, s) ∈ [a, b] × [a, b], we start with the
function d2(t, s), which is easier to achieve,

0 ≤ d2(t, s) ≤ d2(s, s).

Now, we start by deriving the function d1(t, s) with respect
to s, as follows:

∂d1(t, s)

∂s
= (δ − 1)ψ′(s)(ψ(b)− ψ(a))ω−1

×(ψ(t)− ψ(s))δ−2

×
[
1−

(ψ(t)− ψ(s)

ψ(b)− ψ(s)

)2−δ
×
(ψ(t)− ψ(a)

ψ(b)− ψ(a)

)ω−1]
≥ 0.

This shows that d1(t, s) is an increasing function with respect
to s ∈ [a, t]. Therefore, we obtain the following:

d1(t, a) ≤ d1(t, s) ≤ d1(t, t).

Considering,

d1(t, a) = (ψ(t)− ψ(a))ω−1(ψ(b)− ψ(a))δ−1

×
[
1−

(
ψ(b)− ψ(a)

ψ(t)− ψ(a)

)ω−δ]
≤ 0,
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We obtain the following:

|d1(t, s)| ≤ max

{
max
t∈[a,b]

d1(t, t), max
t∈[a,b]

(−d1(t, a))

}
.

For convenience, we define two functions y1(t) and y2(t) as
follows:

y1(t) = d1(t, t) = (ψ(t)− ψ(a))ω−1(ψ(b)− ψ(t))δ−1,

and

y2(t) = −d1(t, a)

= (ψ(b)− ψ(a))ω−1(ψ(t)− ψ(a))δ−1

−(ψ(t)− ψ(a))ω−1(ψ(b)− ψ(a))δ−1

= (ψ(b)− ψ(a))ω−1(ψ(t)− ψ(a))δ−1

×
[
1−

(
ψ(t)− ψ(a)

ψ(b)− ψ(a)

)ω−δ]
.

Then, differentiating y1(t) on (a, b), following expression is
obtained:

y1
′(t) = ψ′(t)(ψ(t)− ψ(a))ω−2(ψ(b)− ψ(t))δ−2

×
[
(ω − 1)(ψ(b)− ψ(t))− (δ − 1)(ψ(t)− ψ(a))

]
.

Please note that y1′(t1) = 0 if and only if

ψ(t1) =
(ω − 1)ψ(b) + (δ − 1)ψ(a)

δ + ω − 2
,

this follows ψ(a) < ψ(t1) < ψ(b), or a = ψ−1(ψ(a)) <
t1 < ψ−1(ψ(b)) = b. Then, y1(a) = y1(b) = 0 and y1(t) >
0 on (a, b). According to Rolle’s theorem, we deduce that
y1(t) is maximum at t = t1

max
t∈[a,b]

y1(t) = y(t1)

=

(
(ω − 1)(ψ(b)− ψ(a))

δ + ω − 2

)ω−1
×
(

(δ − 1)(ψ(b)− ψ(a))

δ + ω − 2

)δ−1
=

(ω − 1)
ω−1

(δ − 1)
δ−1

(ψ(b)− ψ(a))
δ+ω−2

(δ + ω − 2)
δ+ω−2 .

Now, we assume that max
t∈[a,b]

y2(t) ≤ max
t∈[a,b]

y1(t). If ω = δ, it

is obviously. If ω 6= δ, differentiating y2(t) on (a, b), we get
the following:

y2
′(t) = ψ′(t)(ψ(b)− ψ(a))δ−1(ψ(t)− ψ(a))δ−2

×[(δ − 1)(ψ(b)− ψ(a))ω−δ

−(ω − 1)(ψ(t)− ψ(a))ω−δ].

Therefore, by calculating y2′(t2) = 0 if and only if

ψ(t2) =

(
ψ(a) +

(
δ − 1

(ω − 1)

) 1
ω−δ

(ψ(b)− ψ(a))

)
,

where, t2 ∈ (a, b), as, ψ(a) < ψ(t2) < ψ(b). In fact, we
concludes y2(a) = y2(b) = 0 and y2(t) > 0 on (a, b), such
that y2(t) is maximum at t = t2, then

max
t∈[a,b]

y2(t) = y2(t2)

=
ω − δ
ω − 1

(
δ − 1

ω − 1

) δ−1
ω−δ

(ψ(b)− ψ(a))δ+ω−2.

Now, we demonstrate that y2(t2) ≤ y1(t1). Considering ν =
δ+ω−2
ω−1 , and by using Lemma 4.3, we get the following:

y2(t2) =
ω − δ
ω − 1

(
δ − 1

ω − 1

) δ−1
ω−δ

(ψ(b)− ψ(a))δ+ω−2

≤

(
(δ − 1)

δ−1
(ω − 1)

ω−1

(δ + ω − 2)
δ+ω−2

) 1
ω−1

(ψ(b)− ψ(a))δ+ω−2

≤ (ω − 1)
ω−1

(δ − 1)
δ−1

(ψ(b)− ψ(a))
δ+ω−2

(δ + ω − 2)
δ+ω−2

= y1(t1).

This proves the second property. Hence

|d1(t, s)| ≤ max

{
max
t∈[a,b]

y1(t), max
t∈[a,b]

y2(t))

}
= max
t∈[a,b]

y1(t)

=
(ω − 1)

ω−1
(δ − 1)

δ−1
(ψ(b)− ψ(a))

δ+ω−2

(δ + ω − 2)
δ+ω−2 .

Therefore, we conclude the following:

|H(t, s)| ≤ (δ − 1)
δ−1

(ω − 1)
ω−1

(ψ(b)− ψ(a))
δ−1

Γ(δ)(ω + δ − 2)
ω+δ−2 .

Hence, (ii) is now satisfied. Now, we prove that (iii). It is
noteworthy that, for any (t, s) ∈ [a, b] × [a, b], it is easy to
show that:

0 ≤ g2(t, s) ≤ g2(s, s) = g1(s, s).

Differentiating g1(t, s) with respect to t, we obtain the
following:

∂g1(t, s)

∂t
= (δ − 1)(ω − 1))ψ′(t)

[(ψ(b)− ψ(a)

ψ(t)− ψ(a)

)2−ω
−
(
ψ(b)− ψ(s)

ψ(t)− ψ(s)

)2−δ]
≤ 0.

Please note that for fixed s ∈ [a, b], g1(t, s) is a decreasing
function of t ∈ [s, b]. Therefore,

g1(b, s) ≤ g1(t, s) ≤ g1(s, s) = g2(s, s).

Hence,

|g1(t, s)| ≤ max

{
max
t∈[a,b]

g1(b, s)|, max
t∈[a,b]

|g1(s, s)|
}
. (18)

The calculation results in the following:

g1(s, s) = (δ − 1)(ψ(b)− ψ(a))2−ω(ψ(s)− ψ(a))ω−1

≤ (δ − 1)(ψ(b)− ψ(a)) = g1(b, b), (19)
g1(b, s) = (δ − 1)(ψ(b)− ψ(a))

− (ω − 1)(ψ(b)− ψ(s)). (20)

Please note that the function g1(b, s) is increasing with
respect to s ∈ [a, b]. Therefore,

g1(b, a) ≤ g1(b, s) ≤ g1(b, b),

The analysis shows that:

g1(b, a) = (δ − ω)(ψ(b)− ψ(a)) ≤ 0,

g1(b, b) = (δ − 1)(ψ(b)− ψ(a)) > 0.
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Now, we get:

|g1(b, s)| ≤ max {g1(b, b),−g1(b, a)}
= (ψ(b)− ψ(a)) max {δ − 1, ω − δ} .(21)

According to (18)–(21), we get:

|g1(t, s)| ≤ (ψ(b)− ψ(a)) max {δ − 1, ω − δ} .

Therefore, we conclude that:

G(t, s) ≤ (ψ(b)− ψ(s))
δ−2

(ψ(b)− ψ(a))

(ω − 1)Γ(δ)

×max {ω − δ, δ − 1} .

Hence, Lemma 4.4 is proved.

In this section, we present the Lyapunov-type
inequalities for problems presented in (8) and (9). We
define (X, || · ||∞) X = C[a, b] be the Banach space with
norm ||x||∞ = max

t∈[a,b]
|x(t)|.

Theorem 4.1 If the BVP presented in (8) has a nontrivial
continuous solution x(t) ∈ X , where q(t) ∈ C([a, b],R) is
a real and continuous function, then:∫ b

a

ψ′(s)|q(s)|ds ≥ Γ(δ)(δ + ω − 2)
δ+ω−2

[1 +R(b)
m−2∑
i=1

σi]A3

, (22)

where, A3 = (δ − 1)
δ−1

(ω − 1)
ω−1

(ψ(b)− ψ(a))
δ−1

.
Proof. It follows from Lemma 4.1 (10) that a nontrivial
solution x(t) of BVP presented in (8) satisfies the following
integral equation:

x(t) =

∫ b

a

H(t, s)ψ′(s)q(s)x(s)ds+R(t)

m−2∑
i=1

σi

×
∫ b

a

H(ηi, s)ψ
′(s)q(s)x(s)ds, t ∈ [a, b],

therefore,

|x(t)| ≤
∫ b

a

|H(t, s)|ψ′(s)|q(s)x(s)|ds+R(t)

m−2∑
i=1

σi

×
∫ b

a

|H(ηi, s)|ψ′(s)|q(s)x(s)|ds, t ∈ [a, b].

An application of Lemma 4.4 (ii) yields the following:

||x||∞ ≤
(δ − 1)

δ−1
(ω − 1)

ω−1
(ψ(b)− ψ(a))

δ−1

Γ(δ)(ω + δ − 2)
ω+δ−2

×
[
1 +R(b)

m−2∑
i=1

σi

] ∫ b

a

ψ′(s)|q(s)|ds||x||∞,

which implies that (22) holds. This successful proves Theo-
rem 4.1.
Theorem 4.2 If the BVP presented in (9) has a nontrivial
continuous solution x(t) ∈ X , where q(t) ∈ C([a, b],R) is
a real and continuous function, then:∫ b

a

(ψ(b)− ψ(s))
δ−2

ψ′(s)|q(s)|ds ≥ (ω − 1)Γ(δ)

A4
, (23)

where,

A4 = (ψ(b)− ψ(a)) max {ω − δ, δ − 1}

× [1 +Q(b)
m−2∑
i=1

λi].

Proof. From Lemma 4.2, it follows that a solution of BVP
presented in (9) satisfies the following integral equation:

x(t) =

∫ b

a

G(t, s)ψ′(s)q(s)x(s)ds+Q(t)
m−2∑
i=1

λi

×
∫ b

a

G(ξi, s)ψ
′(s)q(s)x(s)ds, t ∈ [a, b],

therefore,

|x(t)| ≤
∫ b

a

|G(t, s)|ψ′(s)|q(s)||x(s)|ds+ |Q(t)
m−2∑
i=1

λi

× |
∫ b

a

|G(ξi, s)|ψ′(s)|q(s)|x(s)|ds, t ∈ [a, b].

Using the maximum value of G(t, s) obtained in Lemma 4.4
(iii) yields the desired inequality.

||x||∞ ≤
(ψ(b)− ψ(a))

(ω − 1)Γ(δ)
max {ω − δ, δ − 1} ×

[
1 +

Q(b)
m−2∑
i=1

λi

] ∫ b

a

(ψ(b)− ψ(s))
δ−2|q(s)|ds||x||∞.

This prove Theorem 4.2.

According to Theorem 4.1, we have the following result:

Corollary 4.1 If a nontrivial solution of the fractional
ψ-Hilfer BVP{

(HDα,β,ψ
a+ x)(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = 0, x(b) =
∑m−2
i=1 σix(ηi),

(24)

exists, where, q(t) ∈ C([a, b],R), and HDα,β,ψ
a+ represents

the ψ-Hilfer fractional derivative of order α and type β,
α ∈ (1, 2], β ∈ [0, 1], a < η1 < · · · < ηm−2 < b,
σi ≥ 0 (i = 1, 2, · · · ,m− 2), (ψ(b)− ψ(a))1−(2−α)(1−β) >
m−2∑
i=1

σi(ψ(ηi)− ψ(a))1−(2−α)(1−β), then

∫ b

a

ψ′(s)|q(s)|ds ≥ O1

∆1[1 +M1(b)
∑m−2
i=1 σi]

, (25)

where,

M1(b) =
(ψ(b)− ψ(a))

1−(2−α)(1−β)

N1
,

O1 = Γ(α)[2(α− 1) + β(2− α)]
2(α−1)+β(2−α)

,

N1 = (ψ(b)− ψ(a))
1−(2−α)(1−β)

−
m−2∑
i=1

σi(ψ(ηi)− ψ(a))
1−(2−α)(1−β)

,

∆1 = (α− 1)α−1[α− 1 + β(2− α)]α−1+β(2−α)

×(ψ(b)− ψ(a))α−1.
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Proof. Let α = β in Theorem 4.1, then we obtain the
following expression:∫ b

a

ψ′(s)|q(s)|ds ≥ P

∇1[1 +R1(b)
∑m−2
i=1 σi]

,

where, M1(b) = R1(b),

P = Γ(α)[2(α− 1) + µ(2− α)]
2(α−1)+µ(2−α)

,

∇1 = (α− 1)α−1[α− 1 + µ(2− α)]α−1+µ(2−α)

×(ψ(b)− ψ(a))α−1.

Here, the proof of Corollary 4.1 is completed.
Corollary 4.2 If a nontrivial solution of the fractional Hilfer
BVP {

(Dα,β
a+ x)(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = 0, x(b) =
∑m−2
i=1 σix(ηi),

(26)

exists, where, q(t) ∈ C([a, b],R), and Dα,β
a+ represents

the Hilfer fractional derivative of order α and type β,
α ∈ (1, 2], β ∈ [0, 1], a < η1 < · · · < ηm−2 < b,
σi ≥ 0 (i = 1, 2, · · · ,m − 2), (b− a)1−(2−α)(1−β)

>
m−2∑
i=1

σi(ηi − a)1−(2−α)(1−β), then

∫ b

a

|q(s)|ds ≥ O1

∆2[1 +M2(b)
∑m−2
i=1 σi]

, (27)

where,

M2(b) =
(b− a)

1−(2−α)(1−β)

N2
,

O1 = Γ(α)[2(α− 1) + β(2− α)]
2(α−1)+β(2−α)

,

N2 = (b− a)
1−(2−α)(1−β) −

m−2∑
i=1

σi(ηi − a)
1−(2−α)(1−β)

,

∆2 = (α− 1)α−1[α− 1 + β(2− α)]α−1+β(2−α)(b− a)α−1.

Proof. Using α = β and ψ(x) = x in Theorem 4.1, we
obtain the following:∫ b

a

|q(s)|ds ≥ Γ(α)[2(α− 1) + µ(2− α)]
2(α−1)+µ(2−α)

∇2[1 +R2(b)
∑m−2
i=1 σi]

,

where,
M2(b) = R2(b),

∇2 = (α− 1)α−1[α− 1 + µ(2− α)]α−1+µ(2−α)(b− a)α−1.

Here, the proof of Corollary 4.2 is completed.
Corollary 4.3 If a nontrivial solution of the fractional ψ-
Caputo BVP{

(CDα,ψ
a+ x)(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = 0, x(b) =
∑m−2
i=1 σix(ηi),

(28)

exists, where, q(t) ∈ C([a, b],R), and CDα,ψ
a+ denotes

the ψ-Caputo fractional derivative of order α, α ∈ (1, 2],
a < η1 < · · · < ηm−2 < b, σi ≥ 0 (i = 1, 2, · · · ,m − 2),

(ψ(b)− ψ(a)) >
m−2∑
i=1

σi(ψ(ηi)− ψ(a)), then

∫ b

a

ψ′(s)|q(s)|ds ≥ Γ(α)αα

∆3[1 +M3(b)
∑m−2
i=1 σi]

, (29)

where,

∆3 = (α− 1)α−1(ψ(b)− ψ(a))α−1,

M3(b) =
(ψ(b)− ψ(a))

(ψ(b)− ψ(a))−
m−2∑
i=1

σi(ψ(ηi)− ψ(a))

.

Proof. If we use µ = 1 in Theorem 4.1, then∫ b

a

ψ′(s)|q(s)|ds ≥ Γ(α)αα

N3[1 +R3(b)
∑m−2
i=1 σi]

,

where,

M3(b) = R3(b), N3 = (α− 1)α−1(ψ(b)− ψ(a))α−1.

Here, the proof of Corollary 4.3 is completed.

Theorem 4.2 gives the following corollaries:

Corollary 4.4 If a nontrivial solution of the fractional
ψ-Hilfer BVP (HDα,β,ψ

a+ x)(t) + q(t)x(t) = 0, a < t < b,

x(a) = 0, 1
ψ′(t)

d
dtx(t)|t=b =

m−2∑
i=1

λix(ξi),
(30)

exists, where, q(t) ∈ C([a, b],R), and HDα,β,ψ
a+ denotes

the ψ-Hilfer fractional derivative of order α and type β,
α ∈ (1, 2], β ∈ [0, 1], a < ξ1 < · · · < ξm−2 < b,
λi ≥ 0 (i = 1, 2, · · · ,m− 2), (ψ(b)− ψ(a))1−(2−α)(1−β) >
m−2∑
i=1

λi(ψ(ξi)− ψ(a))1−(2−α)(1−β), then

∫ b

a

(ψ(b)− ψ(s))
α−2

ψ′(s)|q(s)|ds ≥ O2

P2
, (31)

where,

O2 = Γ(α)[1− (2− α)(1− β)],

P2 = Ω1[1 + T1(b)
∑m−2

i=1
λi],

T1(b) =
(ψ(t)− ψ(a))

1−(2−α)(1−β)

N4
,

Ω1 = (ψ(b)− ψ(a)) max {β(2− α), α− 1)} ,

N4 = [1− (2− α)(1− β)])(ψ(b)− ψ(a))
−(2−α)(1−β)

−
m−2∑
i=1

λi(ψ(ξi)− ψ(a))
1−(2−α)(1−β)

.

Proof. Using α = β in Theorem 4.2, we obtain the
following:∫ b

a

(ψ(b)− ψ(s))
α−2

ψ′(s)|q(s)|ds ≥ U

Λ1[1 +Q1(b)
m−2∑
i=1

λi]

,

where,

U = [1− (2− α)(1− µ)]Γ(α), T1(b) = Q1(b),

Λ1 = (ψ(b)− ψ(a)) max {µ(2− α), α− 1} .

The proof of Corollary 4.4 is completed.
Corollary 4.5 If a nontrivial solution of the fractional Hilfer
BVP (Dα,β

a+ x)(t) + q(t)x(t) = 0, a < t < b,

x(a) = 0, x′(b) =
m−2∑
i=1

λix(ξi),
(32)
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exists, where, q(t) ∈ C([a, b],R), and Dα,β
a+ denotes

the Hilfer fractional derivative of order α and type β,
α ∈ (1, 2], β ∈ [0, 1], a < ξ1 < · · · < ξm−2 < b,
λi ≥ 0 (i = 1, 2, · · · ,m − 2), (b− a)1−(2−α)(1−β)

>
m−2∑
i=1

λi(ξi − a)1−(2−α)(1−β), then

∫ b

a

(b− s)α−2|q(s)|ds ≥ Γ(α)[1− (2− α)(1− β)]

Ω2[1 + T2(b)
∑m−2
i=1 λi]

, (33)

where,

Ω2 = (b− a) max {β(2− α), α− 1)} ,

T2(b) =
(t− a)

1−(2−α)(1−β)

N5 −
m−2∑
i=1

λi(ξi − a)
1−(2−α)(1−β)

,

N5 = [1− (2− α)(1− β)](b− a)
−(2−α)(1−β)

.

Proof. Using α = β and ψ(x) = x in Theorem 4.2, we get:∫ b

a

(b− s)α−2|q(s)|ds ≥ [1− (2− α)(1− µ)]Γ(α)

Λ2[1 +Q1(b)
m−2∑
i=1

λi]

,

where,

T2(b) = Q2(b), Λ2 = (b− a) max {µ(2− α), α− 1} .

Here, the proof of Corollary 4.5 is completed.

V. CONCLUSION

In this work, we present a new fractional derivative,
namely bi-ordinal ψ-Hilfer fractional derivative. Based on
this proposed fractional derivative, we consider two kinds
of fractional BVPs, and obtain related Lyapunov-type in-
equalities. In this process, we first convert m-point BVPs
of bi-ordinal ψ-Hilfer fractional differential equations into
equivalent integral equations based on the corresponding
Green’s functions. Afterwards, we derive the properties of
the Green’s functions. Finally, we obtain the desired results
and provide several corollaries to show that the results
of the proposed method extend and enrich the previous
literature. In the future, a lot of research is required. For
instance, we will discuss the Lyapunov-type inequalities for
a nonlinear fractional anti-periodic BVPs of bi-ordinal ψ-
Hilfer fractional derivative, and will consider the Lyapunov-
type inequalities for sequential fractional BVP in the frame
of bi-ordinal ψ-Hilfer fractional derivative, and so on.
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