
 

  

Abstract—Short-term passenger flow prediction of urban 

rail transit based on historical data mining can guide the work 

of station organization, train scheduling, and passenger flow 

induction effectively and dynamically. We propose the RF-

BiLSTM prediction model, which combines the random forest 

algorithm (RF) and bi-directional long short-term memory 

neural network (BiLSTM). Firstly, the time series features of 

the flow are obtained by clustering algorithm and correlation 

analysis. Secondly, RF is used to obtain the importance of the 

features. Finally, we compare the prediction performance of 7 

models and investigate the impact of feature selection on deep 

learning models. Through case analysis, the prediction 

accuracy of RF is the highest when using a single model for 

prediction, and the MAPE is 0.102. When using the combined 

prediction model, the MAPE of RF-BiLSTM is 0.074. The 

accuracy of RF-BiLSTM is better compared with the results of 

a single model. The performance of BiLSTM is improved by 

46.6% after the features are optimized using feature selection 

methods. The findings demonstrate the suitability of the 

combined prediction model RF-BiLSTM for predicting short-

term inbound passenger flow. 

 
Index Terms—urban rail transit, passenger flow prediction, 

feature selection, Bi-directional LSTM. 

 

I. INTRODUCTION 

RBAN rail transit is now a crucial component of the 

high-capacity public transportation system in many 

large cities. The dynamic adjustment transportation 

organization scheme has become an important development 

direction of urban rail transit operation management to 

effectively control the operating costs and improve the level 

of passenger transport service based on a brief variation in 

passenger flow. Short-term passenger flow prediction can 

optimize routes and organize the flow for the rail transit 

operations department to provide early warning and decision 

support. It is the premise of operational organization 

optimization of rail transit enterprises. 
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At present, there are a wealth of forecasting methods for 

short-term passenger flow, mainly including autoregressive 

integrated moving average (ARIMA) [1], random forest (RF) 

[2], support vector machine (SVM) [3], Gated Recurrent 

Unit (GRU) [4], long short-term memory (LSTM) [5] and 

graph neural network (GNN) [6]. 

In addition, many scholars used combinatorial methods to 

study time series problems and achieve excellent predictions. 

For passenger flow and bus speed prediction, Che et al. [7] 

and Ali et al. [8] combined wavelet transform and empirical 

modal decomposition with ARIMA, respectively, and 

proposed different combined models. Li et al. [9] suggested 

a model that merges the SVM with radial basis function 

neural networks to predicate the passenger flow. Sun et al. 

[10] introduced a unique Wavelet-SVM prediction model, 

which uses SVM to learn and predict passenger flow by 

decomposing the flow into high and low-frequency vectors. 

Xie et al. [11] combined temporal convolutional networks 

and LSTM to address the issue that rail transit flow is 

variable and challenging to predict. In order to predict bus 

passenger flow, LSTM, and locally weighted regression 

were merged in [12], and a modified STL-LSTM prediction 

model was presented. Huang et al. [13] used five prediction 

algorithms as the basic model, and three ensemble models 

were then built utilizing a variety of ensemble approaches, 

such as RF, AdaBoost, and Linear Regression, and then 

predicted the bus running time. 

These studies of [7]-[13] have decomposed the passenger 

flow data, obtained different decomposition vectors, and 

made predictions according to the decomposition vectors. 

These studies cannot characterize the specific variables 

associated with changes in passenger flow, lacks the 

interaction between the flow and the related variables, and 

cannot obtain the importance of associated features. At the 

same time, the studies of [14]-[16] have not studied the 

features of passenger flow sufficiently and have not 

analyzed the feature importance effectively, which affects 

the model’s accuracy.  

In order to obtain the relevant features of passenger flow, 

analyze the importance of the features. The relevant features 

are extracted using the clustering and correlation analysis 

methods, and the feature selection function of the RF and 

the prediction function of Bi-direction LSTM are combined 

to propose RF-BiLSTM to predicate the short-term inbound 

passenger flow. 

The remainder of this article is structured as follows. In 

Section II, the extraction method of passenger flow features 

is introduced. In Section III, the RF-based feature selection 

method is introduced, and the model of RF-BiLSTM is 

constructed. In section IV, a case is introduced, using the 

feature extraction method to extract the features, and using 
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the RF-BiLSTM prediction model to select the features and 

predicate future passenger flow. In Section V, the 

conclusions are presented. 

 

II. PASSENGER FLOW FEATURES EXTRACTION METHOD 

In passenger flow prediction, inputting too few features 

will reduce the prediction accuracy, and inputting too many 

will increase the model’s computational complexity and 

cause the waste of computer resources. Using the features 

extraction method based on clustering and Spearman rank 

correlation coefficient to extract passenger flow features can 

improve the validity of the input features and reduce the 

prediction time. 

A. Clustering Method 

Urban rail transit’s distribution of hourly passenger flow 

can be categorized into five types: unidirectional peak type, 

bidirectional peak type, full peak type, sudden peak type, 

and no-peak type [17]. The unidirectional peak type occurs 

in areas with obvious tidal passenger flow, such as 

residential and office areas. The bidirectional peak type 

occurs in the comprehensive functional areas. The full peak 

type occurs in the transportation hub areas. The sudden peak 

type occurs in large public facilities areas. The no-peak type 

occurs in underdeveloped areas. 

The passenger flow distribution characteristics of each 

station are extracted by the clustering method, and the 

stations with similar passenger flow trends are categorized. 

Among clustering algorithms, the K-means++ algorithm has 

a simple clustering principle, easy implementation, and 

highly efficient operation. The steps are as follows. 

Step 1. A random selection is made from the data X of an 

initial cluster center Cl. 

Step 2. Determine the Euclidean distance D(x) from the 

sample to the cluster center. 

Step 3. After calculating the probability P(x) that each 

sample point would be chosen as the cluster center, a sample 

point was randomly chosen as the following cluster center 

based on the probability distribution. 
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Step 4. Repeat Step 2 and Step 3 until k cluster centers are 

obtained. 

Step 5. Measure the D(x) from each sample to the cluster 

center, divide the samples to the nearest centroid, and get k 

class clusters  1 2, ,..., kS S S . 

Step 6. Determine the mean value of each cluster’s 

sample features, and use that value to determine where each 

class’s new clustering center Cl should be 
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where Xi and |Sl| denote the number of objects and the i-th 

object, respectively, in the l-th class cluster, 1 li S  , 

1 l k  . 

Step 7. To obtain the clustering result, repeat Step 5 and 

Step 6 until the clustering center stops changing. 

 

B. Correlation Coefficient Method 

Passenger flow data is a type of time series data, which 

has a certain correlation with historical data. The historical 

and current passenger flow correlation is examined using 

Spearman’s rank correlation coefficient ρ, then the time 

series feature is determined. The ρ is defined as 
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where, rxi and ryi are the ranks of the random variables X 

and Y, respectively, irx and iry  are the means of rxi and ryi 

respectively. 

 

III. PREDICTION MODEL 

A. Feature Selection 

The random forest algorithm is capable of measuring the 

significance of related variables in addition to having good 

prediction accuracy. Wei [18] and Yassine et al. [19] used 

the RF to explain the importance of variables and used the 

importance ranking for feature selection. The RF algorithm 

calculates the degree of feature importance in this paper, and 

the feature selection and prediction are realized by 

combining the RF algorithm and BiLSTM neural network. 

The feature importance indicates the degree of influence 

of data features on the prediction results. The accuracy of 

prediction can be increased, and the optimization time can 

be decreased by selecting features with higher importance, 

constructing feature sets, and inputting the feature sets into 

the model. Let VIM represent the feature importance, and 

Gini represent the gini index. The calculation process of 

VIM is (4) - (7). 
i

qGini  is the gini index of node q of the i-th tree, C is the 

number of categories, and 
i

qcp  is the proportion of category 

c in q. 
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i

jqVIM , i

lGini and i

rGini represent the change in the gini 

index before and after branching, as well as the gini index of 

the two new nodes. 

 
i i i i

jq q l rVIM Gini Gini Gini= − −  (5) 

jVIM is the importance of feature X in the forest of I trees, 

and Q is the set of nodes where feature Xj appears in i trees. 
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Finally, the importance VIMj of feature Xj is obtained by 

normalization. 
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When the importance VIM of each feature is obtained, the 

features with minimum importance are successively 

removed to obtain different feature sets, and the different 

feature subsets are input into BiLSTM to acquire the 
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prediction error. When the feature set is empty, end the 

cycle, and the feature set with the minimum prediction error 

is output. The features in the feature set at this time are the 

selected features. Fig. 1 displays the process of feature 

selection. 

 

Feature set

The importance VIM of 

each feature is obtained 

by Random Forest

The prediction error of 

feature is obtained by 

BiLSTM

The minimum feature of 

VIM is removed, and the 

newfeature is obtained The prediction newerror 

of newfeature is 

obtained by BiLSTM

newfeature=Ø?

Let

feature=newfeature

Output the feature with 

minimum error

Yes

No

Start

End

 
Fig. 1. The feature selection process 

 

B. RF-BiLSTM Prediction Model 

Long short-term memory neural network has an excellent 

predictive effect on time series problems. Input, forget, and 

output gates are used to introduce the sigmoid and tanh 

functions, which lessens the likelihood of gradient 

expansion and gradient disappearance. The gates and cell 

states in the LSTM are shown in Fig. 2, and the expressions 

for the gates and memory cells [20] are (8) – (13). 

Input gate: 

 1( [ , ] )t i t t ii W h x b −=  + , (8) 

 1tanh( [ , ] )t C t t CC W h x b−=  + . (9) 

Output gate: 

 1( [ , ] )t o t t oo W h x b −=  + , (10) 

 tanh( )t t th o C=  . (11) 

Forget gate: 

 1( [ , ] )t f t t ff W h x b −=  + . (12) 

Cell state: 

 1t t t t tC f C i C−=  +  , (13) 

where bi, bC, bo, and bf are the bias, ( ) 1/ (1 exp( ))x x = + − , 

xt is the input vector, [ht-1, xt] represents connecting ht-1 and 

xt into a vector, and the weight matrix in the forget gate, 

input gate, and output gate is represented by Wf, Wi, WC and 

Wo. 
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Fig. 2. The LSTM cell structure 

 

Bi-directional LSTM [20] consists of forward LSTM and 

backward LSTM neural networks, as shown in Fig. 3, which 

overcomes the problem that the LSTM network has a poor 

memory effect for earlier information and does not consider 

the interdependence of current information and future 

information. 
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Fig. 3. The BiLSTM model 

 

Based on the feature selection method and combined with 

BiLSTM, the RF-BiLSTM prediction model is proposed. 

The model can better to select passenger flow features, learn 

and predict the flow, and enhance the correlation between 

the model’s input features and prediction precision. The 

single-step prediction method is used, and the flow in the 

next period is predicted according to the previously known 

data. Since the input data of the future is unknown, the 

sliding window prediction method is added to bring the data 

after each prediction into RF-BiLSTM as the input data until 

the prediction of all periods is completed. Fig. 4 shows the 

prediction process of the RF-BiLSTM. 
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Fig. 4. The prediction process of RF-BiLSTM 
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C. Evaluation Index 

Three error indicators, mean absolute error (MAE), mean 

absolute percentage error (MAPE), and root mean square 

error (RMSE), are introduced to evaluate the results. The 

formula is shown in (14) – (16). The closer the three error 

indicators are to zero, the more accurate the prediction result 

is. 
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RMSE is different from MAE in that RMSE is more 

sensitive to high amount of deviation. 
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where ip and ˆ
ip  represent the values of actual and predicted, 

respectively, and n is the predicted time periods’ number. 

 

IV. INSTANCE ANALYSIS 

The experimental data are the inbound passenger flow 

data from January 1, 2019, to January 27, 2019, from 6:00 to 

22:00, and the data are counted in 30-minute intervals. 

There are 32*31*27 inbound passenger flow data for 31 

stations, including 18 working days. The first 16 days’ flow 

serves as the training set, while the final 2 days’ flow serves 

as the validation set. The passenger flows in the last two 

days are predicted and analyzed using the evaluation index. 

A. Passenger Flow Features 

Initially, the features of passenger flow are analyzed by 

the clustering method. We consider that there are five 

typical types of the flow distribution, so the range of the 

number of clusters is set from 2 to 5. After clustering, the 

Calinski-Harabaz (CH) index and the Silhouette Coefficient 

(SC) results are shown in Fig. 5. The more significant the 

CH index and the SC are, the better the clustering effect is. 

The best clustering effect is achieved when the number of 

clusters is 3. Then we classify the passenger flow into three 

types. Table I displays the station number of the three types, 

and Fig. 6 displays the clustering centers for the three types. 

 

 
Fig. 5. CH index and Silhouette Coefficient 

 
Fig. 6. The clustering centers 

 
TABLE I 

THE STATIONS OF THE THREE TYPES 

Passenger flow 

type 
Station number 

The first type 8、9、22、23、25、26、27、28 

The second type 0、1、2、3、4、5、6、7、14、17、25、29、30 

The third type 10、11、12、13、15、16、18、19、20、21、24 

 

From Fig. 6, the first type of passenger flow has a 

prominent morning peak, while the flow is less during the 

evening peak, and these stations belong to the residential 

area. The second type also has a pronounced morning peak, 

but the flow is lower than that of the first type, and these 

stations belong to the residential area with a low degree of 

development. The evening peak of the third type is larger 

than the morning peak, and the peak of morning and evening 

is obvious, and these stations belong to the comprehensive 

functional area. 

Passenger flow has peak and off-peak features within a 

day. The peak features show the degree of the flow at a 

certain time, which can provide a basis for prediction. K-

means ++ algorithm is used to extract peak features of three 

types of passenger flow, and Table Ⅱ shows the clustering 

results. 

 
TABLE Ⅱ 

CLUSTERING RESULTS OF PASSENGER FLOW PERIOD 

Passenger flow type Peak features Peak hours 

The first type 

 

Morning off-peak, 

 Noon off-peak  
6:00 - 7:30、9:00 - 14:30 

Morning peak 7:30 - 9:00 

Evening peak 14:30 - 22:00 

The second type 

Morning off-peak, 

Noon off-peak 
6:00 - 7:00、9:00 - 15:00 

Morning peak 7:00 - 9:00 

Evening off-peak 15:00 - 22:00 

The third type 

Morning off-peak 6:00 - 7:30、9:00 - 12:00 

Morning peak 7:30 - 9:00 

Noon off-peak 12:00 - 17:00 

Evening peak 17:00 - 19:00 

Evening off-peak 19:00 - 22:00 

 

Spearman’s rank correlation coefficient ρ is used to 

analyze the closeness between the current passenger flow 

and the flow one day ago, the flow 30 minutes ago, the flow 

60 minutes ago, and the flow 90 minutes ago. Where the 
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significance (two-tailed) of the Spearman rank correlation 

coefficient is denoted by S, and the correlation analysis 

results are shown in Table III. Spearman’s rank correlation 

coefficient indicates that the current passenger flow is 

significantly correlated with the flow one day ago, the flow 

30 minutes ago, and the flow 60 minutes ago, so these three 

times can be used as passenger flow time series features. 

 
TABLE III 

SPEARMAN’S CORRELATION COEFFICIENT BETWEEN CURRENT PASSENGER 

FLOW AND HISTORICAL PASSENGER FLOW 

  The 

current 

One day 

ago 

30 mins 

ago 

60 mins 

ago 

90 mins 

ago 

The 

current 

ρ 1.000 .961** .768** .440* 0.105 

S  <0.001 <0.001 0.012 0.566 

One day 

ago 

ρ .961** 1.000 .785** .418* 0.054 

S <0.001  <0.001 0.017 0.770 

30 mins 

ago 

ρ .768** .785** 1.000 .766** .440* 

S <0.001 <0.001  <0.001 0.012 

60 mins 

ago 

ρ .440* .418* .766** 1.000 .765** 

S 0.012 0.017 <0.001  <0.001 

90 mins 

ago 

ρ 0.105 0.054 .440* .765** 1.000 

S 0.566 0.770 0.012 <0.001  

Note: **. and *. indicate significant correlation (two-tailed) at the levels 

of 0.01 and 0.05, respectively. 

 

In a certain residential area, the fluctuation of passenger 

travel demand is slight, and the total change of the inbound 

flow of adjacent stations is small. Fig. 7 shows the inbound 

flow at station 2 concerning the inbound flow at station 1 

and station 3 on the previous day. The flow of station 2 is 

about 1/2 of the flow of neighboring stations on the previous 

day. The sum of neighboring stations’ flow on the previous 

day is used as a feature of the flow. 

 

 
Fig. 7. The inbound flow at neighboring stations 

 

There is a nonlinear relationship between weather 

indicators and passenger flow [21], so it is necessary to take 

weather indicators as the features of passenger flow. In this 

paper, we take the temperature, weather conditions, and 

wind level as relevant characteristics that may affect 

residents riding urban rail transit. Temperature is numerical 

data and can be used directly. Weather conditions and wind 

levels are character data, which need to be manually 

calibrated and converted into numerical data q and f before 

use. Table IV displays the mapping association between the 

weather condition and wind level. 

 

TABLE IV 

THE MAPPING RELATIONSHIP BETWEEN THE WEATHER CONDITION AND THE 

WIND LEVEL 

Weather Condition q Wind Level f 

Sunny 0 0~2 0 

Partly Cloudy 1 2~4 1 

Cloudy 2 4~6 2 

Shower 3 6~8 3 

Light Rain 4   

Moderate Rain 5   

Heavy Rain 6   

 

B. Model Parameter Setting 

The settings of batch and epoch parameters greatly impact 

prediction accuracy, and unreasonable settings can easily 

lead to underfitting or overfitting of the model. Huang et al. 

[22] investigate the effect of epoch on RMSE and training 

loss. We further study the effect of epoch and batch 

parameters on prediction accuracy. In order to identify better 

parameter settings to enhance the model's learning and 

prediction impacts, we conduct an experimental analysis of 

the batch and epoch parameters of the model. Taking station 

9 as an example, the experimental situation of the batch 

parameter is [8, 16, 32, 64, 128], and the experimental 

situation of the epoch parameter is [50, 100, 150, 200, 250, 

300]. The experimental results are fitted by MATLAB. Fig. 

8. to Fig. 10. shows the error changes of RMSE, MAPE, and 

MAE. 

 

 
Fig. 8. The change in the MAE 

 
Fig. 9. The change in the MAPE 
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Fig. 10. The change in the RMSE 

 

From Fig. 9 – 11, under the condition that the epoch is 

fixed and the batch is gradually increased, the evaluation 

index displays a trend of first lowering and then increasing. 

Because the batch is small, the training data of one batch of 

the model is insufficient, the learning effect is poor, and the 

model is under-fitting. Under the condition that the epoch 

gradually increases and the batch is fixed, the evaluation 

index shows a rising trend, then falling, and then rising 

again. The model training effect is under-fitting, fitting, and 

over-fitting. The evaluation index shows an upward trend 

when the epoch and batch are close to 300 and 150. The 

model is overfitted. The model training effect is the best 

when batch and epoch are set to 64 and 200, respectively. 

Table V shows the parameter settings for the RF and 

BiLSTM. 

 
TABLE V 

PARAMETER SETTING 

Model Paramater Value 

RF 
n_estimators 10 

max_depth 50 

BiLSTM 

batch_size 64 

epoch_size 200 

hidden layer 2 

cells number of hidden layer 64/32 

optimizer adam 

loss function mse 

activation function tanh 

 

C. Optimization Results and Evaluation 

1) Feature Selection Result 

According to the analysis of passenger flow features, a 

total of 8 passenger flow features are obtained: the 

passenger flow one day ago, the flow 30 minutes ago, the 

flow 60 minutes ago, the sum of neighboring stations’ 

passenger flow on the previous day, temperature, wind, 

weather, and the peak feature. The VIM is used to express 

the importance of the features of the three types of 

passenger flow, and Table VI shows the results. 

As shown in Table VI, weather conditions contribute the 

least to changes in passenger flow, indicating that 

passengers are not very sensitive to weather changes within 

the weekday range. The passenger flow one day ago and the 

peak feature are the key features. 

 

TABLE VI 

THE VIM OF THREE PASSENGER FLOW TYPES 

Feature 

VIM (%) 

The first 

type 

The 

second 

type 

The third 

type 

One day ago 62.26 55.08 79.65 

30 mins ago 0.19 0.64 0.69 

60 mins ago 0.16 0.55 0.68 

The sum of neighboring 

stations’ passenger flows 
0.15 0.40 0.46 

Temperature 0.03 0.15 0.16 

Wind 0.01 0.01 0.02 

Weather 0.03 0.10 0.19 

Peak feature 35.17 43.07 18.15 

 

According to the feature selection method, one feature 

with minimum feature importance is removed from the 

feature set each time, and obtain seven feature subsets. Each 

feature set is employed as input for the prediction model, 

and the prediction error of station 9 is shown in Fig. 11. 

 

 
Fig. 11. Error of each feature set 

 

The model predicts best when the passenger flow features 

are set to feature subset 3. The features in feature subset 3 

are the passenger flow one day ago, the flow 30 minutes ago, 

the flow 60 minutes ago, the sum of neighboring stations' 

passenger flow on the previous day, and the peak feature. It 

is considered that the five features of feature subset 3 are the 

critical features that affect the prediction accuracy. 

Compared to all features, subset 3 has three fewer features, 

which helps to reduce the computing time, Table VII shows 

the computing time of RF-BiLSTM. With the guarantee of 

prediction accuracy, it can be found that the average 

computing time per 5 times is reduced by 18.26%, which is 

mainly due to the reduction of epoch parameter from 250 to 

200. The RF-BiLSTM uses the five features as its input 

features in station 9. 

 
TABLE VII 

THE COMPUTING TIME OF RF-BILSTM 

 
Number of features Reduction rate of 

computing time 8 5 

Computing time  

of 5 times (s) 
207.32 169.45 

18.26% 
Average 

computing time (s) 
41.46 33.89 

 

Engineering Letters, 31:2, EL_31_2_22

Volume 31, Issue 2: June 2023

 
______________________________________________________________________________________ 



 

2) Prediction Results 

Limited by space, the prediction results of only one 

station in each passenger flow type are shown below, as 

shown in Fig. 12. 

 

 
(a). Station 3 

 

 
(b). Station 9 

 

 
(c). Station 12 

Fig. 12. Prediction results for three stations 

 

From Fig. 12, the RF-BiLSTM model has excellent 

accuracy for three types of passenger flow. On the first day, 

the results of the three types’ flow are very close to the true 

values. However, on the second day, the prediction effect of 

the three types is decreased. Because the prediction results 

of the second day are predicated on the previous day’s data, 

the error will be gradually amplified, leading to a decrease 

in accuracy. 

The inbound passenger flow at station 9 is predicted using 

the prediction models of Back Propagation (BP) neural 

network, SVM, RF, GRU, LSTM, BiLSTM, and RF-

BILSTM in order to test the RF-BILSTM model’s 

predictive ability. Table VIII displays the prediction error 

findings for each model, and Fig. 13 displays the prediction 

performance of 7 models on January 24. 

 
TABLE VIII 

THE PREDICTION ERROR 

Model MAE MAPE RMSE 

BP 22.552 0.105 32.617 

SVM 25.189 0.194 32.403 

RF 19.470 0.102 27.807 

GRU 22.768 0.121 29.882 

LSTM 26.658 0.126 39.676 

BiLSTM 27.210 0.149 40.061 

RF-BiLSTM 15.539 0.074 21.367 
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Fig. 13. Prediction performance of 7 models 

 

From Table VIII and Fig. 13, when using a single model, 

the traditional machine learning method RF outperforms the 

time series deep learning methods GRU, LSTM, and 

BiLSTM in terms of prediction accuracy, and its MAPE is 

0.102. After the feature selection method is added, the 

prediction of the deep learning method is significantly 

improved, and MAPE can be reduced to 0.074. RF makes 

random selection of feature subsets, and it is highly resistant 

to noise data. BiLSTM has memory and bidirectional 

learning mechanisms and will be more sensitive to noisy 

data. BiLSTM learns well for the optimized feature data. 

To show the difference in accuracy and stability of the 

seven prediction models intuitively, we predict the inbound 

passenger flow at station 9 for each peak hour, as shown in 

Figure 14. 

 

 
(a). Morning peak 
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TABLE IX 

MODEL PREDICTION RESULTS FOR ALL FEATURES AND THE FEATURES AFTER FEATURE SELECTION 

Model 
Error Performance Improvement 

Average Improvement 
MAE MAPE RMSE MAE MAPE RMSE 

BP 22.552 0.105 32.617 
0.092 0.019 0.131 0.081 

RF-BP 20.472 0.103 28.351 

SVM 25.189 0.194 32.403 
0.209 0.247 0.188 0.215 

RF-SVM 19.921 0.146 26.318 

LSTM 26.658 0.126 39.676 
0.292 0.317 0.327 0.312 

RF-LSTM 18.867 0.086 26.700 

GRU 22.768 0.121 29.882 
0.154 0.301 0.050 0.168 

RF-GRU 19.254 0.085 28.397 

BiLSTM 27.210 0.149 40.061 
0.429 0.503 0.467 0.466 

RF-BiLSTM 15.539 0.074 21.367 

 

 
(b). Noon off-peak 

 
(c). Evening off-peak 

Fig. 14. Comparison of prediction results 

 

From Fig. 14(a), the results of RF-BiLSTM are closer to 

the true value than the other six models, which is more 

evident in the morning peak. From Fig. 14(b) - 14(c), the 

prediction of the seven models does not deviate too much 

from the true value, and the performance of RF-BiLSTM is 

more stable than the other six models. Peak passenger flow 

places strict requirements on the organization of train 

operations, and companies pay more attention to peak 

passenger flow during train operating hours. Accurate and 

stable peak passenger data can guide the work of station 

organization, train scheduling, and passenger flow induction 

effectively and dynamically. 

We use all features and the features after feature selection 

to predict inbound passenger flow and compare the results 

of the five models to confirm the effectiveness of the feature 

selection for improving the performance of the single model. 

Table IX shows the performance improvements of the five 

models. 

Table IX demonstrates that the combined model with 

feature selection outperforms the single prediction model in 

terms of accuracy. The performance of BiLSTM and LSTM 

is greatly improved after the features are optimized using 

feature selection methods, and the performance of BiLSTM 

is improved by 46.6%, which proves the improvement effect 

of the feature selection function on the single model. 

The prediction results of all stations are counted. The 

RMSE, MAE, and MAPE of each station are shown in Fig. 

15. 

 

 
Fig. 15. The prediction errors of all stations 

 

From Fig. 15, the prediction errors are at a low level for 

the majority of stations. The prediction errors indicate that 

the RF-BiLSTM has good applicability. The RF-BiLSTM 

can make accurate predictions for different types of inbound 

passenger flows. The MAPE of 80% of stations is below 

10%, and the MAPE of station 23 can reach 6.16%. The 

RMSE of 73.3% of the stations is between 25 and 40, the 

RMSE of four stations is lower than 25, and the RMSE of 5 

stations is higher than 40, indicating the deviation between 

the prediction and the true data is small. The average 

variation between the expected findings and the true data is 

not very large, and the MAE of 86.7% of stations is less 

than 30. 

 

V. CONCLUSION 

The RF-BiLSTM model is proposed to solve urban rail 

transit's short-term passenger flow prediction problem. 

Firstly, the clustering algorithm and correlation analysis are 

used to capture passenger flow features. After that, the 
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random forest algorithm and BiLSTM neural network are 

combined to obtain the importance of the features and 

predict the flow. Finally, the accuracy of the RF-BiLSTM 

and other models is compared by an instance. The specific 

conclusions are as follows.  

(1) The RF-BiLSTM model has good accuracy, stability, 

and applicability compared with other models in the paper. 

(2) The feature selection method based on RF can greatly 

improve the prediction performance of a single model and 

reduce computing time. 

Overall, the RF-BiLSTM model is suitable for short-term 

inbound passenger flow prediction and can provide the 

companies with accurate prediction data. The next research 

can focus on the features of holiday and rail transit networks 

to further strengthen the validity of the features and the 

prediction accuracy. 
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