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Abstract—Magnetic resonance imaging (MRI) is one of the 

essential elements in medical areas, particularly in diagnostic 

procedures. However, due to the under-sampling process, the 

reconstructed MR image leads to incomplete output, including 

the edge being blurred and the noise remaining, which are 

considered fundamental problems of MRI analysis and the 

diagnosis procedure. The total variational (TV) regularization 

technique is a standard method for MRI reconstruction. This 

paper proposes a nonconvex regularization MRI model (LogTV) 

to construct a logarithm penalty function that could effectively 

prevent the system due to underestimating characteristics. 

Moreover, this study will offer an improved alternating 

direction method of multipliers (ADMM) algorithm and the 

algorithm's convergence in solving the new nonconvex model. 

Finally, the numerical proposed model is expected to have a 

better effect on MRI than similar models. That is, the value of 

the peak signal-to-noise ratio (PSNR) is more significant, the 

relative error (RE) is minor, and the structural similarity index 

measurement (SSIM) is closer to 1 under the proposed model. 

 
Index Terms—MRI reconstruction, LogTV regularization, 

DC decomposition, ADMM 

 

I. INTRODUCTION 

T is known that MRI mainly relies on gradient magnetic 

field and RF pulse to image tissue. With its excellent 

performance, MRI occupies a pivotal position in modern 

medicine [1]. However, the inherent time-consuming problem 

of signal acquisition seriously limits the application of MRI 

technology in clinical diagnosis. On the one hand, this defect 

will bring discomfort to the tested patients and the inevitable 

body movement, including heartbeat and gastrointestinal 

peristalsis. Thus, this scenario will form motion artifacts in 

the MR image, introduce noise and reduce the imaging quality, 

which is very unfavorable for doctors to produce accurate 

lesion information from the MR image and even lead to 
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misdiagnosis or missed diagnosis. On the other hand, low 

inspection efficiency will make expensive inspection costs, 

which limits its further promotion and applications. Therefore, 

the focus and difficulty of MRI research have been 

eliminating redundancy, improving MRI acquisition 

efficiency, speeding up signal acquisition, shortening imaging 

time, reducing patient discomfort, accurately restoring images, 

and improving diagnostic rate [1].  

Compressed sensing (CS) [2-3] the theory can reconstruct 

MRI images with a small amount of data and achieve good 

reconstruction results by using the sparsity of image data [4-5]. 

In MRI combined with CS theory, constructing constraint 

terms using the sparsity of images in a specific transform 

domain is the most commonly used. In addition, TV 

regularization also is popular with sparse regularization, 

which is very effective in solving the problem of image 

smoothing under noise [6]. It not only effectively suppresses 

the noise but also in preserving the details, such as the texture 

and edge of the image. Therefore, it is widely used in signal 

processing, image denoising, image reconstruction, and other 

fields [7-9]. The MRI method gradually develops based on 

the total variation (TV) regularization transform. 

The MRI images can be abstracted as underdetermined 

linear models 

   ，y Ax                  (1.1) 

where nx R  is the MRI to be reconstructed, ε is the noise, 
my R  represents the K -space signal under-sampled by the 

nuclear magnetic resonance coil, and its dimension is far 

lower than x. A P F  , m nP R   is the incomplete sampling 

template, and the standard sampling template has radial 

sampling, random sampling, Cartesian sampling, and so on. 
n nF R   is a sparse Fourier transform operator. MRI 

reconstruction aims to recover x from y according to the 

model (1.1). In general, the simplest way to solve an 

underdetermined equation (1.1) is to use ordinary least 

squares estimation (OLSE), which is based on the maximum 

likelihood estimation of statistics. However, the least square 

method can not produce a simple model and cannot feature or 

variable selection, so the effect of model prediction and 

interpretability is inferior. In MRI problems, the dimension of 

sampled data is much smaller than that of accurate data. 

OLSE is usually an underdetermined system or an 

ill-conditioned issue. Therefore, we must use the 

regularization technique to solve the sparse optimization 

problem and get a suitable solution. MRI reconstruction 

techniques based on CS often employ the TV or generalized 

TV form as a convex regularization term to improve the 

sparsity in gradient space. And the standard TV model is 
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reconstructed as described below: 

2

2 TV

1
min || || || ||

2
  ，

x
y Ax x              (1.2) 

where 
TV|| ||x is the regularization term, actually means 

1
|| ||Dx ( D  is gradient operator), and 0   is called the 

regularization parameter. Classical TV regularization is 

convex, which involves 
1 1=|| ||L  norm regularization [3,6,10]. 

However, 
1L  the norm is not differentiable and will 

underestimate the larger value in the sparse solution, 

producing a biased estimate. The 0 1=|| || ( )  
p p

L p  norm is 

used as the regularization term to estimate the more 

significant value in the sparse solution more effectively [11]. 

However, because the objective function itself is nonconvex, 

the solution process is often complicated, which will fall into 

the optimal local value. To overcome the shortcomings of the 

1L and 
pL regularization, some nonconvex regularization 

methods are proposed based on minimax-concave (MC), 

smoothly clipped absolute deviation (SCAD), arctangent 

(Atan) penalty functions, etc. 

For example, Liu et al. [12] introduced MCTV 

regularization terms with MC penalty function, and later Shen 

et al. [13] constructed a novel MRI reconstruction model 

(MCTV- L2) via L2 norm and MC penalty. Mehranian et al. 

[14] and Luo et al. [15] introduced nonconvex SCAD 

regularization for MRI or image denoising to improve the 

performance of TV regularizations. Luo et al. [16] 

constructed a nonconvex reconstruction model of MRI using 

the arctangent function. In the document, Zhang et al. built a 

new TV-Log nonconvex model for impulse noise denoising 

[17]. Wang et al. considered introducing a logarithmic 

transformation method to solve linear multiplicative 

programming to improve the model [18]. 

Inspired by the above papers, in this paper, a Log penalty 

function is used to replace the TV regularization term since 

the Log penalty function also can overcome the 

over-penalization associated with the norm. This LogTV 

model can be written as 

2

2 LogTV

1
min || || || ||

2
 

x
y Ax x ,               (1.3) 

where  

LogTV 11

1
|| || ( ) Log(1 ) 


  

n

ii
x Dx D x , 

 for more details, please see Section 2. 

  In the sparse reconstruction problem, an efficient sparse 

reconstruction algorithm is the key to ensuring the wide 

application of sparse reconstruction, and many algorithms 

have been developed [19]. The ADMM is a simple and 

effective convex optimization algorithm [20]. In essence, it is 

a particular operator-splitting method. Its main idea is to 

transform unconstrained optimization problems into 

constrained problems by splitting variables and then solving 

them alternately, which is fast and easy to program. The 

algorithm is widely used to solve high-dimensional and 

complex sparse optimization models [13,20-25]. Based on the 

advantages of this algorithm, this paper also considers using 

ADMM to solve the newly proposed model. 

This study focuses on the reconstruction model and 

algorithm of MRI, which includes enhancing the nonconvex 

MRI model to a higher degree, solving the LogTV model by 

using an improved ADMM algorithm and verifying the 

proposed algorithm through simulation and benchmark data. 

Hence, the study is conducted and structured as follows. The 

study design of this research is given in Figure 1, and the 

explanation of the nonconvex LogTV MRI reconstruction 

model is presented in Section 2. In the next section, the 

improvement of the ADMM algorithm for solving the 

nonconvex model is proposed. This is followed by Section 4, 

where the analysis of convergence and its algorithm is 

explained. In section 5, some experiments verify the 

effectiveness of the new nonconvex model. Finally, some 

conclusions are provided at the end of this manuscript. 

 

 
 

II.   LOGTV MRI MODEL 

This section defines the Log-TV regularization term via a 

Log-penalty function. The interpretation of the new 

non-convex regularization model for MRI reconstruction is as 

follows. 

Firstly, some properties of the Log function are shown, and 

let  

1
( ) Log(1 | |),    


  s s s R             (2.1) 

According to the definition of the function ( ) s , in R , the 

function ( ) s  is continuously differentiable and concave. 

Then, another function ( ) s is considered that is induced by 

 

( ) | | ( ),     0.     s s s              (2.2) 

It is observed that ( ) s  is continuously differentiable and 

convex in 


R . Figure 2 shows the curve of functions ( ) s  

and ( ) s ,  from which the estimation  ( ) s  is obtained, 

which is suitable for fitting 0|s|  than 1|s| . 

 
 

Fig. 1.  The demonstration of the study design of this paper. 
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The multivariate generalization of function ( )s and set 

: nR R   is given as follows 

1

0  


   ( ),    .
n

n

i

i

v v v R（ ）= ，               (2.3) 

From [26-27], the following multivariate functions are defined 

1    ( ) || || ( ),   
n

v v v v R                         (2.4) 

By replacing v  by Dx in Equation 2.4, the following LogTV 

regularization definition is obtained. 

Definition 2.1. The nonconvex LogTV regularization:  

 
LogTV 1|| || ( ) || || ( )x Dx Dx Dx     .               (2.5)  

Now, we consider the following LogTV model to replace the 

traditional TV model in MRI reconstruction 

2

Log TV 2

1
min || || || || .

2x
x y Ax                  (2.6) 

where 0  and LogTV|| ||  nx R R：  is given by the formula 

(2.5). Since the function ( ) s  is nonconvex, the model (2.6) 

is nonconvex. 

Lemma 2.1. Let : nE R R  be the function 

2

Log TV 2

1
( ) || || || ||

2
E x x y Ax                       (2.7) 

where 0   and LogTV|| ||  nx R R：  is given by (2.5). If 

the parameter 0   such that  T TD D A A then ( )E x  is 

convex. 

Proof: Firstly, from (2.7) and (2.5), we have 

2

L og TV 2

2 2

2 2

2 2

1 2 2

1
( ) || || || ||

2

1
          = ( ) || || || || 2

2

1 1
          = || || || || || || ( ) .

2 2

T

T

E x x y Ax

Dx y Ax y Ax

Dx Ax y Ax Ax Dx









 

  

     

   
       

   

Then, the function E  is convex if the last term    is convex. 

Hence, we define : nG R R  it as  

2

2

1
( ) || || ( ).

2
G x Ax Dx                      (2.8) 

Now, we show the function G  is convex and rewrite G  it as 

 
1

2

2 2 2

2 2 2

( ) ( )

1
( ) || || || || || || ( ) .

2 2
G x G x

G x Ax Dx Dx Dx


 

 
    

 

(2.9) 

Since  T TD D A A  is given, it is evident that 1( )G x  is convex. 

For the function 2 ( )G x , we can prove that it is a convex 

function by referring to Proposition 1 in [27]. Hence, the 

lemma is true.  

III. PROPOSED ALGORITHM 

This section presents the proposed solution algorithm of 

the model (2.6). Firstly, the reformulation of the model from 

Equation (2.7) is displayed below 

2

L og TV 2

2

2

1
( ) || || || ||

2

1
        = ( ) || || .

2

E x x y Ax

Dx y Ax





  

  

               (3.1) 

Due to the existence of nonconvex functions, it is difficult to 

solve the problem (3.1). Inspired by reference [28], our 

strategy is decomposing the equation into the difference of 

convex (DC) components, i.e. ( ) ( ) ( )E x G x H x  , where 

2 2

2 2 2

1

2

2 2

1

1
( ) || || || || || ||

2

( ) || || || || ( )

n

i

i

n

i

i

G x y Ax c x D x

H x c x D x Dx






   



    






 

The ( ) ( )G x H x  called DC decomposition of the 

function ( )E x and 0c is a parameter. To ensure that 

functions ( )G x  and ( )H x  are strongly convex, this study will 

propose the appropriate estimation by considering limiting the 

parameter c to the function. In the design of the DC algorithm, 

consider the following two sequence iterations { }kd  and 

{ }kx , 

1

( )

arg min ( , ) arg min ( ) ( ( ) , )

k k

k k k k k

x x

d H x

x J x x G x H x d x x

 


    

(3.2) 

For the sequence { }kx , 

 

1 2 2

2 2

2

1

1
arg min || || || ||

2

        2 , || || ,

k

x

n
k k k

i i i i

i

x y Ax c x

c x x D x D x f q





  

  
     (3.3) 

where 2

2 2

|| ||
,

1 || || || ||

k k

k ki i

i ik k

i i

D x D x
f q

D x D x




 


. Note that, if 

2|| || 0k

iD x  , then 0k

iq  . In fact,  

1

, 2 , , .
n

k k k k

i i i

i

d x c x x D x f q


   

In solving the problem that arises in Equation (3.3), the 

auxiliary variables z Dx  are introduced, and rewrite the 

equation as follows 

 2 2

2 2 2
, 

1

1
min || || || || 2 , || || , , 

2

 . .   

i

n
k k k

i i i i
x z

i

i i

y Ax c x c x x z z f q

s t z D x




    



 (3.4)  

The corresponding augmented Lagrangian function of (3.4) is 

given by 

 
Fig.2.  Illustration of functions |s|0, |s|,  ( )s ,  ( )s  
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2 2

2 2

2

2 2

1

1
( , , ) || || || || 2 ,

2

              || || , , || || ,
2

k

n
k k k

i i i i i i i

i

L z x w y Ax c x c x x

z z f q w z D x z D x





   

 
      

 


(3.5) 

where 
i

w  is the Lagrangian multiplier. The classical ADMM 

framework (3.5) includes the following steps: 

 step1. z –Subproblem update 

1

2

1

2

2

arg min (|| || ,

         , || || )
2

n
k k k

i i i i
z

i

k k k

i i i i i

z z z f q

w z D x z D x









 

   


       (3.6) 

 step2. x –Subproblem update 

1 2 2

2 2

1 2

2

1

1
arg min || || || || 2 ,

2

          , || ||
2

k k

x

n
k k

i i i i

i

x y Ax c x c x x

w D x z D x








   

 
   

 


 (3.7) 

 step3. w – update 
1 1 1( )k k k k

i i iw w z D x                          (3.8) 

where 
1 5

0
2

( , )


  is the step size. 

For the z-Subproblem (3.6), reference [22,23] has the 

closed-form solution as 

1

2

2

1
max || || ,0 .

|| ||

k k k
k i i i

k k k i

k k i i i

i i k k k
k i i i

i

w f q
D x

w f q
z D x

w f q
D x



 

  








 
   

  

(3.9) 

For the x -subproblem (3.7), its closed-form solution is 
1

1 1

1 1

2 ( ) 2
n n

k T T T k T k T k

i i i i i i

i i

x D D A A cI D z D w A b cx 



 

 

   
        
   
  (3.10) 

It is quite complicated to calculate (3.10) directly due to the 

computational complexity of the inverse matrix is 
3O( )n  . To 

simplify the calculation of the subproblem (3.7), the 

linearization approximation technique will be used as 

2

2

2 2

2 2

1
|| ||

2

1 1
|| || , || ||

2 2

k T k T k k

y Ax

Ax y A Ax A y x x x x




      

(3.11) 

Applying the above formula to (3.7), the following result will 

be produced 

1 2

2

2 2

2 2

1 2

2

1

1
arg min || || ,

2

1
        || || || || 2 ,

2

        , || || .
2

k k T k T k

x

k k

n
k k

i i i i

i

x Ax y A Ax A y x x

x x c x c x x

w D x z D x











    

   

 
   

 


    (3.12) 

By considering the first-order optimality condition of (3.12), it 

follows that 
1

1 11 2 1 2 1
( ) ,

k

k T T k k T ki

i

wc c
x D D I D z x A Ax y

 

   



 
    

          
    

(3.13) 

where I  is an identity matrix. Ref [26] points out that equation 

(3.13) can be effectively solved by fast Fourier transform 

(FFT). Now, the specific algorithm steps are given, 

 

 
Note:  According to the proximal operator definition 

2

2|| ||
prox ( ) arg min ( ),

2
f

u

x u
x f u




   

set  

1 2

1 2 2 2

1

|| || ,  , || ||
2

n
k k

i i i i i

i

P z P w D x z D x
 



 
    

 
 , 

the LogTV method solution (3.5) can be regarded as a 

proximity operator. And the z  subproblem (3.6) and 

x  subproblem (3.12) can be formulated as 

1
1

1 prox ,
P

k k k

k k i i i

i i

w f q
z D x








 

  
 

               (3.14) 

2

1

1 2

prox ( ) ,
1 2

k k T k

P
c

x x A Ax y
c













 
   

 
  (3.15) 

respectively. 

 

IV. CONVERGENCE ANALYSIS  

This section demonstrates the analysis of the convergence 

of the sequence { }kx  , which is obtained by the LogTV 

algorithm. Furthermore, to ensure the convergence of the 

LogTV method, the limiting conditions of parameter selection 

are proposed. 

Proposition 4.1. If   
max

1
0

( )Tw A A
  , the sequence of 

the LogTV method satisfies 
1 1 1  ( , , ) ( , , ),

k k k k k k
L z x w L z x w  

where max
( )

T
w A A  is the Lipschitz constant. 

Proof. For any nx R , the Hesse matrix of quadratic term   

 

Algorithm LogTV 

Initialization: Given A,b, Select  

0
,  ,  ,  ,  ,  ,  

iter
c N     ， .  

Initialize 
0 0
,x w .  

Main iteration loop: 

for max1,2,...,k N  do 

 z - updating: 

compute 1k
z

   by using (3.9). 

 x- updating: 

compute 1k
x

   by using (3.13) . 

w- updating: 

1 1 1( )k k k k

i i i iw w z D x       

Exit criterion: 
1

1 2

2

|| ||

|| ||

k k

k

k

x x

x




 
   

if 
1

0

k    then 

exit 

end 

end 

where 
max

N  represents the maximum number of iterations. 

 

Vertical lines are optional in tables. Statements that serve as captions for 

the entire table do not need footnote letters.  
aGaussian units are the same as cgs emu for magnetostatics; Mx = 

maxwell, G = gauss, Oe = oersted; Wb = weber, V = volt, s = second, T = 

tesla, m = meter, A = ampere, J = joule, kg = kilogram, H = henry. 
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2

2

1

2
|| ||y Ax satisfies the Lipschitz condition, and the 

following result will be obtained 

2 2

2 2

2

2

1 1

2 2
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(4.2) 

By comparing (4.2) with (3.7), combined with formula (4.1) 

and 1kx   is the minimum of (4.2), the following inequality 

will be produced 
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Then, comparing (4.2) with (3.11), thus 
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the result holds. 

Based on Proposition 4.1, where the parameter satisfies 

certain conditions, the solution generated from the LogTV 

method showed descending direction of the x-subproblem. 

 

Theorem 4.1. Assume that the parameter  satisfies 

Proposition 4.1, then the sequence  { }kx  generated from the 

LogTV method satisfies 1

2lim || || 0k k

k
x x


   . 

Proof. To prove the theorem's conclusion, we first analyze 

that the sequence { ( )}kE x is monotonically decreasing and 

the sequence { }kx  is bounded. 

Firstly, from the definition of function ( )E x   in (3.7), the 

following function is obtained 
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As 1+k
x  is the iterative solution of the ADMM framework 

(3.6-3.8) for the sub-problem (3.5), then  
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 (4.4) 

Combined with the concept of subgradient, the following 

equation is obtained 
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  (4.5) 

Subtracting (4.4) from (4.5) and comparing it with (4.4), we 

have 
+1( ) ( ) 0.k kE x E x   

Secondly, since the sequence { ( )}kE x  is monotonically 

decreasing, for all 0k  , it is resulted as  0( ) ( )kE x E x . 

Since the function ( )E x  is level-boundedness, then it is noted 

that the sequence { }kx  is bounded. 

Now, we prove that 1

2lim || || 0k k
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  . For the 

convenience of discussion, the 2

2|| ||iD x  item is expanded as 
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It is much easier to observe from (4.6) that 
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Then, from the inequality properties of logarithmic functions 
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From the inequality (4.8) and the definition of (3.2), obtained 

as 
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Adding both sides of (4.13) from 0k   to  ,  
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Because 0c  , of the above relationship and the properties of 

the series, it is noted that 1
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Proposition 4.2. For any nx R  , we have a property for the 

subgradient of  ( )Dx ,  
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The functions g,  and ( - )g   are discontinuous at the point 

(0,0). It is noted that the proof proposition 4.2 is supposed to 

be estimated at the point (0,0). For a detailed analysis, please 

refer to [28]; the proofs are omitted. 

Theorem 4.2. According to Proposition 4.2, any limit point 
*x  of { }kx  satisfies the weak first-order optimality condition 

of the ( )E x , i.e. 
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From the definition of ,k k
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This completes the proof. 

V.   NUMERICAL EXPERIMENTS 

This section demonstrates the numerical results to show the 

effectiveness of the proposed LogTV method and the 

comparison to traditional TV [21]. In addition, the most 

recent proposed nonconvex methods MCTV [12] and 

AtanTV [16], are also presented. All experiments are 

conducted using Windows 10 and MATLAB R2015a on the 

PC (Intel(R) Core(TM) i5-5200U CPU @ 2.20GHZ, 8.00G 

RAM). 

In this study, the peak signal-to-noise ratio (PSNR), the 

relative error (RE), and the structural similarity index 

measurement (SSIM) are used to evaluate the quality and 

accuracy of image reconstruction, which are respectively 

defined as 
22
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where x represents the original MRI data,  x is the mean of 

value ,x k  represents the number of iterations of the 

algorithm, 
kx  is the restored image, kx

 represents the mean 

of  
kx ,  

2
x  denotes the variance of x , 2

kx
 denotes the value 

kx , kxx
  denotes the covariance of x and

kx , C1, C2 are 

stabilization parameters. Among the three quantitative 

evaluation index, the smaller the RE, the better the effect of 

model reconstruction. For the PSNR, the larger the value, the 

better the reconstruction effect. Moreover, the SSIM value 

lies in the range of [0,1], with a value closer to one indicating 

better structure preservation. In visual effect evaluation, the 

reconstruction effects of different models and the difference 

image between the reconstructed image and the observed 

image are given for each MRI observation image to compare 

better and analyze the results.  

In Figure 3-7, five MR images are chosen, which include 

(Shepp Logan (256×256), Brain (256×256), Brain 

angiography (256×256), Shepp Logan (512×512), and Brain 

(512×512)). For the image reconstruction experiment, three 

different sample models will be used to evaluate the 

performance of the proposed LogTV model. Moreover, 

comparing the results of four reconstruction models (TV, 

MCTV, AtanTV, and LogTV) will be evaluated using three 

sampling templates (radial, Cartesian, and random sampling). 

In the experiments, the parameters are defined as 

0.001,  40,  10.       

In Figs 3-5, the Shepp Logan (256) / Brain (256)/ Brain 

angiography (256) are chosen to evaluate the performance of 

the LogTV method. The comparison is conducted separately 

for the four reconstruction models (TV, MCTV, AtanTV, and 

LogTV) proposed above under radial, Cartesian, and random 

sampling. Firstly, from the visual effect, the MR images effect 

reconstructed by the new LogTV model is better than the 

other three models. Furthermore, it is obviously seen that the 

reconstructed images of the LogTV model are much more 

precise. In addition, from the specific numerical results, it is 

observed that the LogTV method can reconstruct Shepp 

Logan(256) PSNR≈45.2533, which is much higher than TV, 

MCTV, and AtanTV methods at least 4.6%; Brain(256)  

PSNR≈37.8437, Brain angiography (256) PSNR≈38.0511 

are also higher than the other three methods. 
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Fig.3. Reconstruction results of four methods for Shepp Logan (256) data with a radial sampling rate of 3% 

 

 
 

 
 

Fig.4. Reconstruction results of four methods for Brain (256) data with a Cartesian sampling rate of 34% 

 

 
 

 
 

Fig.5. Reconstruction results of four methods for Brain angiography (256) data with a random sampling rate of 20% 
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At the same time, the RE of reconstruction with the LogTV 

model is observed to be very small under different sampling. 

For example, it is noted that the RE of Shepp Logan (256) is 

0.02217, Brain (256) 's is 0.04496, and Brain angiography 

(256) 's is 0.06311 which all of these values showed much 

lower than TV, MCTV, and AtanTV. As a result, intuitively, 

from the reconstructed images in Figs 3-5, it is obvious that 

the LogTV model's reconstructed images are much more 

precise than others. 

From the previous results combined with Table 1, it could 

be concluded as follows: 

  Under the three common undersampling templates, the 

reconstruction results obtained by the nonconvex 

method are better than the traditional TV method in 

overall quality; 

     Among SIMM, PSNR, and RE, the LogTV method 

proposed in this paper is superior to the other three 

methods. 

    Both the LogTV and the traditional TV methods show 

good CPU time performance. In 256 data, the traditional 

TV method has a slight advantage, but in 512 data, the 

LogTV is better.  

  In comparing three different nonconvex methods 

(MCTV, AtanTV, LogTV), the LogTV model has 

advantages in reconstruction quality and CPU time. The 

MCTV is the most time-consuming CPU method among 

the four methods 

 

Without losing generality, the 512 MRI data is selected 

to test the new method's performance. In Figs 6-7, the test on 

the performance of the LogTV method on MRI data of size 

512 (Shepp Logan (512) and Brain (512)) is conducted. 

Similarly, a comparison of the four modes (TV, MCTV, 

AtanTV, and LogTV) under random and radial sampling, 

respectively. The images with higher reconstruction accuracy 

through numerical experiments are obtained. The PSNR of 

LogTV is 73.3411 and 35.5977 under random sampling and 

radial sampling, which is higher than TV, MCTV, and 

AtanTV by 1.4% to 35%. And the RE of reconstruction with 

the LogTV model is also very small (0.00087/0.06948) and 

almost close to 0, which is lower than TV, MCTV, and 

AtanTV. In the residual comparison in Fig 6, we used 100 

times residual to display the image and intuitively compare the 

differences between the four methods. 

Table 1: Comparison of SIMM, PSNR, RE, and CPU time values for the four methods 

Image Template Method   SIMM  PSNR(dB) RE% CPU time(s) 

Shepp 

Logan(256) 

Radial 

sampling  

TV  0.6532 26.9663 18.21% 6.314958 

MCTV 0.8445 30.6109 11.97% 31.821030 

AtanTV 0.8732 43.6376 2.67% 13.338544 

LogTV 0.9018 45.2533 2.22% 6.748855 

Brain (256) 
Cartesian 

sampling 

TV  0.8818 35.0527 6.20% 5.102444 

MCTV 0.9276 36.7415 5.10% 27.952286 

AtanTV 0.9273 37.1394 4.88% 12.878166 

LogTV 0.9289 37.8437 4.50% 5.777371 

Brain 

angiography 

(256)  

Random 

sampling 

TV  0.9398 34.5794 9.41% 5.307055 

MCTV 0.9555 36.3036 7.72% 28.194166  

AtanTV 0.9538 37.3434 6.85% 12.741378 

LogTV 0.9617 38.0511 6.31% 5.464318 

Shepp 

Logan(512) 

Random 

sampling  

TV  0.9816 54.9544 0.72% 33.535037 

MCTV 0.9856 56.2440 0.62% 209.093998 

AtanTV 0.9987 66.8811 0.18% 63.806695 

LogTV 0.9997 73.3411 0.09% 32.341778  

Brain (512) 
Radial 

sampling 

TV  0.9081 34.5786 7.81% 32.152920 

MCTV 0.9294 34.0809 8.27% 209.583115 

AtanTV 0.9752 35.1145 7.35% 64.890815 

LogTV 0.9799 35.5977 6.95% 31.541220 
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Fig.6. Reconstruction results of four methods for Shepp Logan (512) data with a random sampling rate of 30% 

 

 

 
 

Fig.7. Reconstruction results of four methods for Brain (512) data with a pseudo-radial sampling rate of 17% 

 

The advantages of the new model and algorithm are 

reflected in PSNR and RE, as well as the speed of image 

reconstruction and the similarity between the actual and 

original images. Further comparison of reconstruction results 

is shown in Table I. From Table I, it can be seen that the 

image reconstruction speed of the LogTV method is faster. 

For example, 512 high-dimensional image reconstruction 

only takes about 30 seconds, nearly 6 times faster than the 

MCTV method. Furthermore, images with higher PNSR and 

smaller RE are reconstructed at close speed compared with 

TV. In addition, it also can be seen that the SSIM 

values(0.9018, 0.9289, 0.9617, 0.9997, 0.9799) under the 

LogTV model all are higher and close to 1 from the 

simulation results, and always higher than other models in all 

experiments. 

Figs 8-9 show the effects of the sampling rate and the 

number of iterations on MR image reconstruction results. As 

can be seen from Figs 8-9, the comparison results of the 

relative error values between the reconstructed model images 

and the original images are obtained by changing the 

sampling rate and the number of iterations. Under different 

sampling rates and different numbers of iterations, the 

relative error between the reconstructed image and the 

original image of the LogTV model is lower than that 

between the reconstructed image and the original image of 

the other two models, and the higher the sampling rate or the 

increasing number of iteration, the lower the relative error 

between the reconstructed image and the original image, 

which is closer to the original image in visual effect. 

 

 
          Fig.8. Comparison of RE and number of iterations on Brain (256). 

 

Engineering Letters, 31:2, EL_31_2_27

Volume 31, Issue 2: June 2023

 
______________________________________________________________________________________ 



 

 
Fig.9. Comparison of RE and sampling rates on Brain (256) with 

different reconstruction models 

The experimental results show that the LogTV model has 

an excellent reconstruction effect, consistent with the 

theoretical inference. 

VI. CONCLUSION 

In this paper, a nonconvex regularization model for MRI 

reconstruction is constructed by the logarithmic penalty 

function. Compared with the traditional TV model, this model 

can effectively improve the fitting performance of the system. 

In the solution of the new model, the objective function is 

decomposed with the help of the convex difference technique, 

and then the ADMM algorithm is used to solve the 

sub-problem. Theoretical analysis and numerical experiments 

demonstrate the convergence and effectiveness of the 

algorithm, respectively. In the future, the LogTV model 

should be tested for more sparse systems such as video 

processing, dynamic MRI, etc. In addition, in recent years, 

with the deep integration of nonconvex models in deep 

learning, machine learning, and other fields, how to apply the 

new methods proposed in this paper to these fields is the focus 

of later research. 
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