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Abstract—A novel targeted multi-agent communication model
based on deep metric learning (DMLTarMAC) is proposed in this
paper. The nonlinear relationship between the internal state of an
agent and the received message is described by the deep metric
learning (DML) module in DMLTarMAC. Compared with the
scheme using a linear relationship, DMLTarMAC can improve
the accuracy and effectiveness of the receiver’s attention. In
order to reveal the advantage of the proposed DMLTarMAC,
it is evaluated in cooperative and competitive multi-agent tasks
with different difficulty levels and environment settings. The
experimental results show that DMLTarMAC outperforms the
benchmarks, especially in challenging settings. Furthermore, the
ablation experiments demonstrate that agents’ communication
and behavior strategies are effective and intuitive.

Index Terms—Deep Reinforcement Learning, Deep Metric
Learning, Targeted Communication, Multi-Agent Systems.

I. INTRODUCTION

COMMUNICATION is the crucial symbol of the
intelligent group. Effective communication can ensure

the stability of the systems and improve overall productivity.
In multi-agent systems with partially observable environments,
agents need to share information with their neighbors to
achieve cooperative goals efficiently.

Recently, deep reinforcement learning (DRL) has been
applied to the field of multi-agent communication [1]–[4],
where the communication protocols are determined by DRL
instead of predefined rules. The learned protocols are used
to answer when and how to communicate. However, as
many researchers have pointed out, numerous undifferentiated
messages lead to poor performance in communication
and harm the cooperative goals when the scale of the
multi-agent network increases. In order to manage complex
communication effectively, the attention mechanism was
introduced as the primary means of message selection and
processing in some promising solutions [5]–[8].

Targeted Multi-Agent Communication (TarMAC) [7] was
the most prominent of these models, which focused on the
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attention mechanism of the message receiver. The critical soft
attention component in TarMAC originated from the self-
attention layer in Transformer [9]. It is well known that
Transformer was originally proposed to be applied in natural
language processing. The input of the self-attention layer
was word vectors, which were considered to have linear
relationships in word vector space [10]–[12]. However, the
linear description of the self-attention layer in Transformer is
unlikely to be applicable to nonlinear relationships in multi-
agent communication.

In this paper, a novel DMLTarMAC is proposed to further
improve the attention mechanism for the message receiver.
DMLTarMAC introduces deep metric learning [13]–[15]
into multi-agent communication learning for the first time
to emphasize and systematically describe nonlinearity.
With the help of this implicit supervisory signal generated
by deep reinforcement learning, the deep metric learning
module can be easily integrated into the existing multi-agent
communication learning framework. Therefore, by deep
metric learning, DMLTarMAC can describe and characterize
the complex nonlinear relationship between the agent’s
internal state and the incoming message and improve the
efficiency of targeted multi-agent communication.

The experiments are conducted in three types of
environments with different difficulty settings. The
experimental results show that DMLTarMAC outperforms
the benchmarks with the performance advantage increases
with the increase of complexity. The demonstration of the
episodes reveals that DMLTarMAC learns more effective
communication and cooperation strategies than its ablation
without deep metric learning, verifying that DMLTarMAC
has better performance and generalization ability.

II. RELATED WORKS

A. Multi-agent Communication Learning

Unlike traditional predefined communication, the agents
in communication learning develop communication protocols
through learning. The learned protocol determines not only the
content and timing of communications but also the source and
target of communications.

The earliest research in this field can be traced back
to the work of Kasai [16] and Giles [17] et al. In their
works, the agent learned the communication content through
reinforcement learning and genetic algorithm to solve the
predator-prey task.

Hausknecht et al. [18] proposed the Deep Recurrent
Q-Network (DRQN) to solve the partially observable Markov
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decision process (POMDP) of a single agent. Foerster et al.
extended DRQN to the multi-agent environment and presented
Deep Distributed Recurrent Q-Networks (DDRQN) [19].
DDRQN successfully realized multi-agent communication
learning for the first time. Based on DDRQN, Foerster et al.
developed Differentiable Inter-Agent Learning (DIAL) [1]
by establishing a differentiable channel for communication
action. This differentiable channel allowed the gradient and
feedback information to be pushed to its neighboring agents
to improve the training effect.

At the same time, Sukhbaatar et al. reported a similar multi-
agent reinforcement learning communication network called
CommNet [2]. CommNet uses continuous and differentiable
communication channels to learn and train communication
actions through the back-propagation algorithm. By simply
averaging all the messages on the shared channel, the agents
exchanged information sufficiently and improved cooperation
efficiency.

Mao et al. [20] imposed the limited-bandwidth restriction
in multi-agent communication learning to apply the above
methods to real-world systems. They integrated their
approach into the real-world packet routing system. In
addition to bandwidth-related constraints, SchedNet [21]
considered sharing the communication medium, mainly
when agents communicate over wireless channels. Different
from the methods of downsizing the communication group
via a scheduler, Informative Multi-Agent Communication
(IMAC) [22] compressed communication messages from the
information theory perspective to save bandwidth.

B. Attention in Multi-agent Communication
In multi-agent communication learning, many unprofitable

messages are broadcast at each time step. These redundant
messages not only bring problems such as limited bandwidth
and communication delay but also impair the communication
learning process. In order to solve these problems, attention-
based solutions were introduced. The first attentional
communication model, ATOC [5], encoded local observation
and action intention as thought. Based on the thought, the
attention module decided whether and whom to communicate
with at each step.

In the light of CommNet, Singh et al. proposed
Individualized Controlled Continuous Communication
Model (IC3Net) [6] by implementing a hard attention
mechanism for the message sender. The agent in IC3Net
decided when to communicate, and the communication vector
was calculated by averaging the hidden states of other active
agents gated by the Communication-Action module. The
results showed that IC3Net has better training efficiency than
the simple continuous communication models and can be
applied to mixed or competitive settings.

Meanwhile, Das et al. offered TarMAC, applying a soft
attention mechanism, for the message receiver. Each agent in
TarMAC learned what message needed to be sent and who
would be the receiver of the message. TarMAC can be easily
integrated with the attention model of the sender, such as
IC3Net, which can improve performance and reduce sample
complexity in a mixed or competitive environment.

Recently, Structured Attentive Reasoning Network
(SARNet) [23] employed an attention unit to inform the
agent of the most critical entities at each time step. With
guidance from the attention unit, SARNet used previous
memories to extract the shared information that was the
most relevant at the reasoning stage. Multi-Agent Graph-
attentIon Communication (MAGIC) [8] utilized a Scheduler
consisting of a graph attention encoder and a differentiable
hard attention mechanism to decide when to communicate
and whom to communicate with. In Target-oriented Multi-
agent Communication and Cooperation(ToM2C) [24], each
agent inferred the intention and observation of other agents
according to the Theory of Mind (ToM) module. With the
blessing of this ”social skill”, the agents decided when and
with whom to share their intention to achieve sub-goals
and reach team consensus. The agent of the Multi-Agent
Incentive Communication (MAIC) [25] learned the targeted
teammate model according to its local messages. Using
a mutual information regularizer, this model can generate
targeted messages for relevant agents without expanding
the policy space. Li et al. used mutual information to
characterize attention in a multi-agent environment and
proposed Progressive Mutual Information Collaboration
(PMIC) [26] for more effective MI-driven cooperation. Since
the mutual information measured the relationship between
global states and joint actions in their work, the core idea of
PMIC was to maximize mutual information about positive
cooperative behaviors and minimize mutual information about
poor cooperative behaviors.

C. Deep Metric Learning

Metric learning aims at learning similarity measures from
data. It plays a vital role in machine learning, especially in
computer vision, and has many applications [15], [27]–[29].
By mapping input vectors into a feature space, metric learning
makes similar samples close and different samples far apart.

Due to the limitation of linear mapping, traditional metric
learning suffered from poor performance in capturing the
nonlinear relationship of complex data. Deep metric learning
(DML), however, is the combination of deep learning and
metric learning. It maps samples into a feature space through
a multi-layer nonlinear transformation of the deep neural
network, which unifies discriminative feature embedding and
metric learning into a joint learning framework [13].

In general, DML can be achieved through pair-based losses
and classification-based losses. Pair-based losses operate on
the relationships between samples in a batch [14], while
classification-based losses benefit from class labels and
discriminative feature vectors. Almost all the pair-based
losses are rooted in the contrastive loss [30] and the triplet
loss [31]. The principle behind these two works is that the
loss function should narrow the distance between positive
samples as much as possible and push the distance between
negative samples over a threshold. In light of this fundamental
concept, a wide variety of losses, such as lifted structure loss
[32], N-pair loss [33], and triplet Center loss [34], have been
proposed. These follow-up methods took full advantage of
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the structural information on sample pair or hard negative
mining [15] through the objective function.

The most typical and essential classification-based loss
is softmax loss. A-softmax [35], L2-constrained softmax
loss [36], and NormFace [37] normalized or constrained the
features or weights to get more discriminative features or
solve the problem of data imbalance. On the other hand,
L-softmax loss [38], AM-Softmax [39], and ArcFace [40]
introduced margin into the softmax loss to encourage intra-
class compactness and inter-class separability.

III. MODEL

A. Communication Architecture

DMLTarMAC integrates deep metric learning into the
communication framework proposed by TarMAC. The
communication architecture of DMLTarMAC is illustrated in
Figure 1.

Fig. 1. Communication architecture of DMLTarMAC

In DMLTarMAC, each agent maintains a recurrent
neural network (RNN) to hold the memory through its
hidden state. At each step t, the i-th agent(i = 1, 2, · · · , N)
makes a discrete action decision ati and sends a continuous
communication message mt

i according to the local observation
Ot

i, the weighted communication Ct
i , and the internal state

of RNN hti. In other words, the agent interprets the newly
received aggregate messages Ct

i and local observations
Ot

i according to its internal state hti, and produces the
corresponding action ati and the message vti that maximize
the cumulative team reward.

The state embedding and message aggregation modules
form the core of DMLTarMAC’s communication architecture.
The state embedding module encodes the internal state of
agents into three related vectors: query vector q, key vector
k, and value vector v. Then, the generated vectors and
the received messages are fed into the message aggregating
process to develop the weighted message. The following is a
detailed description of these two modules.
State Embedding Module

At each step, the internal state of RNN is updated with
the local observations Ot

i and the aggregate communication
Ct

i . This internal state is also considered the internal state

of an agent. From the system point of view, it encodes all
communication and observation sequences of the i-th agent
up to time t into hidden state hti in combination with its state.

hti = RNN
(
Ot

i ∥ Ct
i , h

t−1
i

)
.

Then, the state embedding module transforms the hidden
state into three related feature vectors. The value vector vti
is just a linear transformation of the hidden state hti. Unlike
TarMAC, DML is used in DMLTarMAC to train the nonlinear
mappings φ and τ of the query vector qti and key vector kti .

qti = φ
(
hti
)
, kti = τ

(
hti
)
, vti = ψ

(
hti
)
,

qti , k
t
i ∈ Rdq , vti ∈ Rdv .

The query vector qti and key vector ktj are designed to
measure the correlation between the hidden state of i-th agent
and the message from j-th agent. These correlations are then
used to weigh received messages and generate the following
aggregation message Ct + 1

i . The value vector vti is the message
the i-th agent sends at step t. It is aimed at extracting
information needed by relevant agents from its internal state.
For the convenience of implementation, the value vector is
usually sent with its key vector kti .

[kti ∥ vti ], kti ∈ Rdq , vti ∈ Rdv .

At the same time, the RNN network delivers a discrete
action as its response to the environment according to the
internal state. The cardinality of discrete action space is M.

ati = π
(
hti
)
, ati ∈ [0, 1, · · · ,M − 1].

Message Aggregating Module
After receiving all the keys from other agents, the i-th agent

includes its key to forming a key matrix Kt.

Kt =
[
kt1, k

t
2, · · · , ktN

]
, Kt ∈ Rdq×N.

The key matrix Kt and the query vector qti are input into
the metric function to get the attention for incoming messages
at step t. This attention essentially reflects the correlation
between the internal states of agents.

ati = d
(
qti ,K

t
)
, ati ∈ RN×1.

The attention vector ati is then fed into the softmax function
for stretching and normalization to convert into the attention
weights wt

i .

wt
i = softmax

[
ati
]

= softmax
[(
ati1, a

t
i2, · · · , atiN

)T ]
.

By multiplying the value matrix vt = [vt1, v
t
2 · · · vtN ] by the

attention weights wt
i , the input aggregate message of agent i

at step t+ 1 is obtained.

Ct + 1
i = vt ·wt

i =
N∑

j = 1

at
ijv

t
j .
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B. Deep Metric Learning Module

The signature-based soft attention is a fundamental
component of TarMAC. In essence, it can be expressed as the
scaled inner product of the query vectors and the signatures
of incoming messages followed by a softmax function.

aj = softmax


(

Wqh
t + 1
j

)T
(Wkh

t
1)

√
dk

· · ·

(
Wqh

t + 1
j

)
(Wkh

t
N )

√
dk


= softmax

[
qt + 1T

j kt1√
dk

· · ·
qt + 1T

j ktN√
dk

]
.

Through this soft attention, TarMAC can effectively measure
the internal state correlation between agents to achieve
better performance. However, in DMLTarMAC, deep metric
learning is employed to unify feature embedding and metric
learning according to different applications. The nonlinear
transformation of deep metric learning can capture the
nonlinear relationship of data, which can be used to describe
and characterize the complex correlation between the agent
state and messages. Equipped with deep metric learning,
DMLTarMAC can further improve the accuracy and efficiency
of targeted multi-agent communication. Specifically, the scaled
inner product used by TarMAC can be considered a particular
case of the metric learned by DMLTarMAC.

Fig. 2. Illustration of the deep metric learning module using the simple multi-
layer perceptron in DMLTarMAC

For simplicity, the deep metric learning module’s deep
neural network in DMLTarMAC is instantiated as a simple
multi-layer perceptron(MLP). And the same neural network
structure is applied to the query embedding and key
embedding, respectively. The deep metric learning module in
DMLTarMAC is shown in Figure 2.

The inputs to the networks are the hidden states of the agent
i and agent j at the time step t.

x = h
t(0)
i ∈ Rr(0) , y = h

t(0)
j ∈ Rr(0) .

The outputs of m-th layer can be represented as:

h
t(m)
i = φ

(
W (m)h

t(m - 1)
i + b(m)

)
∈ Rr(m)

,

h
t(m)
j = τ

(
V (m)h

t(m - 1)
j + s(m)

)
∈ Rr(m)

, 1 ⩽ m ⩽M.

The matrices W (m) ∈ Rr(m)×r(m−1)

,V(m) ∈ Rr(m)×r(m−1)

and the vectors b(m) ∈ Rr(m)

, s(m) ∈ Rr(m)

are the weights
and biases of the m-th layer of the MLPs. The M is the total
number of layers, and the r(m) is the number of neurons in
layer m. φ : Ri 7→ Ro and τ : Ri 7→ Ro are nonlinear
activation functions(e.g., Sigmod and Relu), where i and o are
the dimensions of the input and output vectors, respectively.
Thus, the top layer outputs of the MLPs, namely query vector
and key vector, can be represented as:

qti = fθ (x) = h
t(M)
i = φ

(
W (M)h

t(M - 1)
i + b(M)

)
∈ Rr(M)

,

ktj = gϖ (y) = h
t(M)
j = τ

(
V (M)h

t(M - 1)
j + s(M)

)
∈ Rr(M)

,

where the mappings f : Rr(0) 7→ Rr(M)

and g : Rr(0) 7→ Rr(M)

are nonlinear parametric functions which are determined by
the parameters of their feedforward neural networks. The
parameter sets can be expressed as follows:

θ =
{
W(m),b(m)

}M

m=1
, ϖ =

{
V(m), s(m)

}M

m=1
.

With the mappings, f and g, the hidden states of agent i
and agent j are mapped to the deep metric space. Thus, the
distance between the mapping points of the hidden states in
the deep metric space can be expressed as follows:

d
(
qti , k

t
j

)
= d (fθ (x) , gϖ (y)) ,

where d is a metric function such as cosine similarity.
In summary, the feature embedding process of the deep

metric learning module in DMLTarMAC is to learn the f
and g mappings. With the help of the metric function, these
mappings transform the hidden states into a common feature
space which encourages intra-class similarity and inter-class
separation. In practice, the nonlinear mappings f and g
can embrace different network structures according to their
applications.

C. Training

DMLTarMAC follows the training framework adopted by
IC3Net and TarMAC, which uses Actor-Critic(A2C) [41] as
the multi-threaded reinforcement learning algorithm. Different
worker threads in training share the same parameters. As
shown in Figure 3, DMLTarMAC updates its network
parameters with the gradient average of N worker threads.

In each worker thread, DMLTarMAC maintains actor and
critic networks. These two networks generate the policy π(a|s)
and state value V (s) of the agent at each step when the hidden
state sequence of the RNN network is given. The critic model
ϕ is trained by minimizing the squared error between the
estimated value V ϕ(s) and the Monte Carlo return.

argmin
ϕ

N∑
i=1

T∑
t=1

(
Vϕ
(
sti
)
−Rt

i

)2
.
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Fig. 3. Illustration of the multi-threaded synchronous training framework of
DMLTarMAC

Here, Rt
i is the discounted Monte Carlo return for agent i

from step t, and T is the horizon of the episode. Then, the
state value function V (s) is introduced into the actor model as
a baseline to reduce variance and improve sampling efficiency.
Thus, the policy gradient of actor model ϑ can be expressed
as the following formula.

∇Jϑ(ϑ) =
N∑
i=1

T∑
t=1

∇ϑ logπϑ
(
ati|sti

) (
Q(sti, a

t
i)− V (sti)

)
,

Q(sti, a
t
i) = r(sti, a

t
i) + V (st+1

i ).

Here, Q(sti, a
t
i) is the state-action value and r(sti, a

t
i) is the

reward for taking action ati in state sti. Thus, the advantage
value A(sti, a

t
i) = Q(sti, a

t
i) − V (sti) is independent of the

actor parameters ϑ.
A coefficient λ balances the value and policy losses.

Therefore, the gradient of the overall loss function can be
defined by the following formula.

∇ϑ,ϕL =
N∑
i=1

T∑
t=1

(
∇ϑ log πϑ

(
ati|sti

) (
Q(sti, a

t
i)− Vϕ(s

t
i)
)

+λ∇ϕ

(
Vϕ
(
sti
)
−Rt

i

)2
)
.

To minimize this overall loss, as shown in Figure 3, the
gradient propagates back to the RNN network along the actor
and critic networks. Since the aggregate message Ct + 1

i is fed
into the RNN network as an input, according to the chain rule,
it is adjusted with the update of the RNN network parameters.
Consequently, this aggregate message indirectly develops into
an implicit supervisory signal of the attention weights ati for all
incoming messages. Therefore, the distance between the query
vector and key vector in the mapping space can be defined as
the attention weight of the agent i to the message sent by
agent j:

atij = d
(
qti , k

t
j

)
= d (fθ (x) , gϖ (y)) .

Under this definition, the implicit supervision signal of the
attention weight atij will be used as the “distance label” to train
the nonlinear mappings f and g in the deep metric learning
module of DMLTarMAC. In this way, the DML module is
embedded into the framework of TarMAC without explicit
labels.

IV. EXPERIMENT

DMLTarMAC is evaluated in three multi-agent
environments: Traffic Junction [2], SHAPES [7], and
Predator-Prey [42]. DMLTarMAC is mainly compared with
TarMAC with the same attention communication architecture
and CommNet without an attention mechanism. For a
fair comparison, DMLTarMAC and benchmarks use the
same parameters in the same environment unless specified
otherwise. The hidden state dimension of the GRU contained
in agents is 128. The dimension of the query and key vector
is 16, and the dimension of the value vector is 32. For
simplicity, the depth metric learning module in DMLTarMAC
uses two layers of MLP for the depth neural network, with
64 and 16 neurons in each layer. All results are averaged
over 4 or 5 independent seeds, and error bars are standard
deviations of the mean.

A. Traffic Junction

Task and Setting
The Traffic Junction was first introduced in CommNet. In

the simulated traffic junction environment, at each step, the
car joins the system with the probability parrive until the total
number of cars reaches Nmax. Cars travel along a predefined
two-way road with one or more intersections. Each car has
3 × 3 visual range and can communicate with each other
freely. On the line, the car can only take the “Gas” or “Brake”
action. Even if there is a collision, the car continues to move.
After the agent completes its route, it is removed from the
grid immediately and sampled back into the environment. If
an agent collides, it gets a penalty rcollision = −10. In other
cases, it gets a reward −0.01τ , where the τ is the number of
time steps since the car arrived. The comparative experiment
is performed in the difficult mode. In the difficult mode, there
are four junctions and eight entry points on a 18 × 18 grid
with Nmax = 20.
Results and Analysis

In order to evaluate the impact of metric functions on
performance, three popular metric functions in representation
learning [43]–[46] are applied in DMLTarMAC. They are the
scaled inner product, the bi-linear inner product, and the L2
norm.

The arrival rate parrive is set to 0.1, twice the TarMAC
hard mode setting to make the task harder. Correspondingly,
in order to adapt to this difficulty, curriculum learning [47]
[48] is used to train the agents. As shown in Figure 4(a),
when parrive = 0.1, the average success rate of DMLTarMAC
equipped with the scaled inner product is 89.69%, which is
5.62% higher than that of TarMAC and much higher than
that of CommNet. When the game’s difficulty decreases,
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Fig. 4. Average success rates of 6400 episodes under different arrival
probabilities. (a) models trained under parrive = 0.1 (b) models trained under
parrive = 0.05

the success rates of DMLTarMAC and benchmarks begin to
converge.

To evaluate the generalization performance of
DMLTarMAC, the models trained at parrive = 0.05 are
tested on the arrival rate interval [0.05, 0.1]. Figure 4(b)
shows that DMLTarMAC using the scaled inner product
outperforms the baselines, and the performance advantage
increases with the complexity. This result confirms that
DMLTarMAC has better generalization performance and can
adapt to unknown and difficult situations. It is consistent with
the viewpoint mentioned by Karl Cobbe et al. [49] that the
larger networks, to some extent, have a higher capacity for
generalization in reinforcement learning.

As mentioned earlier, the metric function used in TarMAC
is the scaled inner product. The experimental results show that
DMLTarMAC achieves the best when using the same metric
function as TarMAC. However, when DMLTarMAC adopts
the two metric functions of the bi-linear inner product and
L2 norm, it achieves comparable and relatively poor results
compared with TarMAC. Both cases in Figure 4 indicate
that the selection of metric function is the critical factor
affecting performance, so appropriate metric functions should
be adopted according to different applications.

Ablations
DMLTarMAC uses the scaled inner product as the metric

function in the ablation experiment. Figure 5(a) shows the
state of the episode at time step 5. In this state, car 3 is
closely followed by car 2. As shown in Figure 5(b), in the
episode of DMLTarMAC, car 2 is notified by car 3. But in the
episode of TarMAC, the message sent by car 3 does not attract
enough attention from car 2. Therefore, as shown in Figure
5(c), in the episode of DMLTarMAC, car 2 takes braking
action to keep the distance at time step 6. However, in the
episode of TarMAC, car 2 continues to follow car 3, causing
car 2 and car 3 to collide at step 16. This demonstration
shows that the agents in DMLTarMAC have learned the basic
driving principle of keeping their distance. And this learned
behavior strategy implies that the agents in DMLTarMAC can
understand and capture the complex nonlinear relationship
between messages and internal states to a certain extent.

Figure 6 shows the communication attention probabilities at
the end of the episodes. Compared with TarMAC, the agent
in DMLTarMAC is more focused on messages, so it can
better perceive the system situation and make corresponding
adjustments.

B. SHAPES

Task and Setting
The SHAPES environment was introduced by Das et al. [7]

based on the SHAPES dataset [50]. In our task, four agents are
navigated to the target with the specified color((red, red, green,
blue). 50 * 50 and 100 * 100 maps are used for evaluation,
and the corresponding visual range of the agent is set to 5
* 5 and 7 * 7, respectively. The action space for agents is
{up, down, left, right, stay}. The reward for each agent is
r = number of agents on goal

number of agents , which is a team-based reward.
Results and Analysis

For a more comprehensive assessment, six commonly
used metric functions are evaluated and explored in the
DML module of DMLTarMAC. They are the scaled inner
product, the bi-linear inner product, cosine similarity, Pearson
correlation, L2 norm, and L1 norm, respectively.

As shown in Table 1, DMLTarMAC comprehensively
exceeds the baselines. As the difficulty increases, the average
success rate of DMLTarMAC increases by 8.4% and 18.9%,
respectively, compared with TarMAC and CommNet. Not
to mention that TarMAC and CommNet can not train
successfully in some cases. In particular, because there is
only one red shape in the 100 * 100 map and the search
space is enormous, the probability of the agents successfully
navigating to the red target is low. The fourth row of Table 1
confirms this analysis. If agents are given more search steps,
say from 60 to 80 steps, the success rate of the models will
significantly improve.

In addition to being consistent with the conclusion of the
previous experiment, the experimental results further show
that even in different scenarios of the same experiment, the
choice of metric function in DMLTarMAC leads to significant
performance differences. In most cases of the investigation,
the L2 norm and the scaled inner product are pretty choices.
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Fig. 5. Illustration of learned cooperative behaviors and communication of DMLTarMAC agents compared to TarMAC agents in Traffic Junction. The
first column corresponds to the episode of DMLTarMAC, and the second column corresponds to the episode of TarMAC. Darker color indicates closer
communication attention or higher communication attention probabilities.

TABLE I
AVERAGE SUCCESS RATE OF 19200 EPISODES. IF THE SUCCESS RATE IS LESS THAN 30%, IT IS CONSIDERED A TRAINING FAILURE. THE FIRST THREE

ROWS OF THE TABLE CORRESPOND TO THE SCENARIOS WITH INCREASING DIFFICULTY.

Scenario CommNet TarMAC
DMLTarMAC

L1 L2 bi-linear innerproduct cosine Pearson

50*50
step size=3

93.31±0.07 92.30±0.06 92.71±0.10 92.72±0.07 94.40±0.11 94.16±0.08 93.88±0.09 96.09±0.06

50*50
step size=2

64.72±0.21 28.94±0.18 34.66±0.17 77.85±0.05 71.16±0.16 76.94±0.24 72.73±0.11 70.32±0.15

100*100
step num=60

28.80±0.15 44.07±0.09 41.94±0.20 47.23±0.12 44.27±0.28 47.78±0.08 46.05±0.29 45.66±0.12

100*100
step num=80

28.83±0.13 50.81±0.12 51.08±0.05 57.50±0.06 49.85±0.17 55.83±0.09 48.75±0.21 53.37±0.15
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Fig. 6. Comparison of communication attention probability between
DMLTarMAC and TarMAC at the end of the episodes. Darker color
indicates closer communication attention or higher communication attention
probabilities.

However, other metric functions will be better choices in some
specific cases, such as scenario 1.
Ablations

As in the previous experiment, DMLTarMAC uses the
scaled inner product as the metric function in the ablation
experiment. Figure 7(a) shows the state of the episode at the
time of step 1. Agent 4 is on the red square. Since the goal
of agent 1 and agent 2 is to navigate to the red shape, as
shown in Figure 7(b), the message sent by agent 4 attracts the
attention of agent 1 and agent 2 in both models. Thus, agent
1 and agent 2 move to the red square, while agent 4 moves
toward its target, the blue shape.

However, from step 28, agent 1 and agent 2 in the episode
of TarMAC begin to pay less attention to the message sent by
agent 4. And this is particularly evident from step 35 (Figure
7(c)(d)). Correspondingly, from then on, agent 1 and agent 2
seem to lose their targets and begin to wander around. This
situation continues until the end of the episode, leading to the
failure of the task. In contrast, in the episode of DMLTarMAC,
agent 1 and agent 2 always focus on the messages sent by
agent 4(Figure 7(d)) and move efficiently. At step 31, agent 1
reaches the target and starts to guide agent 2 to move towards
the target. At step 58, all agents achieve their goals, completing

the task successfully.

C. Predator-Prey
Task and Setting

The Predator-Prey environment was introduced by Lowe
et al. [42]. In our task, with random initial locations, six
predators with limited vision need to capture the moving prey
within 60 steps. Although the predator and prey have the same
speed, acceleration, and visual range, it is very difficult for the
predator to capture because the prey is trained by MLP. Once
the predator bites the prey, the predator gets a reward of 10,
and the prey gets a bonus of -10. The prey is confined to a
square with an area of 4. Once it leaves this area, it will be
severely punished.

In order to provide a relatively stable learning environment
in this very competitive task and ensure the success of training,
the alternate training method is used to train the neural network
of predator and prey separately, and the alternate interval is
set to 100 epochs.
Results and analysis

To take the attention mechanism of the sender into
account, DMLTarMAC combines IC3Net to decide
when to communicate and which messages to attend
to. Therefore, DMLTarMAC+IC3Net(Our) is compared
with TarMAC+IC3Net, IC3Net, and CommNet. For the
convenience of analysis and comparison, the scaled inner
product, which has good performance in most cases, is used
as a metric function in the DML module of DMLTarMAC.
As shown in Figure 8(a), the reward of the predator team in
DMLTarMAC+IC3Net is not dominant in the first 300 epochs.
However, as shown in Figure 8(b), DMLTarMAC+IC3Net
begins to lead other models as the training progresses..
In particular, during the subsequent prey training phases,
which imply more difficult challenges, the advantage of
DMLTarMAC+IC3Net becomes more obvious.

In the experiment, the capture time of the first predator
is defined as the earliest capture time, and the capture time
of the last predator is defined as the overall capture time.
Similar to the above reward indicators, Figure 9(a)(b) shows
that the overall capture time of DMLTarMAC+IC3Net starts
to dominate in the second half of training and performs better
in difficult situations.

However, as shown in Figure 10(a)(b), DMLTarMAC+IC3Net
has no obvious advantage over the benchmark regarding the
earliest capture time. As shown in the following observation,
this implies that our model gives up the chance of the
fastest capture and adopts a more sophisticated and advanced
round-up strategy.
Model Observation The three columns (a), (b), and (c) of a
row in Figure 11 correspond to three consecutive 20 steps in
an episode. As observed in the top row of Figure 11(a)(d),
the predator in DMLTarMAC+IC3Net forms a broader attack
surface H, forcing the prey to move towards the boundary.
Once the prey is forced to withdraw due to out-of-bounds
penalties, the predators surround and bite it. Therefore,
DMLTarMAC+IC3Net achieves good experimental results.

However, as shown in the bottom row of Figure 11(a)(d),
in order to catch the prey as soon as possible, the predators
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Fig. 7. Illustration of learned targeted communication of DMLTarMAC agents compared to TarMAC agents in SHAPES. The top row corresponds to the
episode of DMLTarMAC, and the bottom row corresponds to the episode of TarMAC. Agent 4 is initialized on the red square. Darker color indicates closer
communication attention or higher communication attention probabilities.

Fig. 8. Average sum of predators rewards in DMLTarMAC+IC3Net against
benchmark during alternate training in the Predator-Prey environment. Fig. 9. Average steps of overall capturing time (lower is better) in training.
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Fig. 10. Average steps of earliest capturing time (lower is better) in training.

in TarMAC+IC3Net adopt the shortest path to the prey, thus
forming a narrow attack surface h. Because the prey takes the
initiative, it can easily escape from the attack surface of the
predator under the premise of the same visual range, speed,
and acceleration. As shown in the bottom row of Figure 11(a)-
(c), the predators can only follow the prey passively, while the
prey leads the predators in circles. In this case, it is difficult
for the predators to bite the prey, resulting in relatively poor
performance.

V. CONCLUSION

We introduce the concept of deep metric learning into the
attention mechanism for the message receiver in multi-agent
communication learning and propose a simple and novel
DMLTarMAC. Analysis of three types of environments shows
that DMLTarMAC outperforms the existing benchmarks,
and its performance becomes more prominent, especially
when task complexity and difficulty levels ascend. The
ablation experiments imply that DMLTarMAC can learn
and describe complex nonlinear relationships of multi-agent
communication to some extent. The experimental results
further indicate that appropriate metric functions should
be used in the DML module of DMLTarMAC for different

applications and scenarios. In the future, DMLTarMAC will be
explored and applied to the hierarchical communication model
to meet the needs of large-scale multi-agent communication.
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