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Abstract—Periodic patterns assist in the discovery of crucial
information in the fields, including fraud detection, telecommu-
nications, retail marketing, research, and medicine. Numerous
methods have been developed for the extraction of periodic fre-
quent patterns. The capacity to find uncommon or unexpected
combinations that are missed by periodic frequent pattern
mining techniques is the main motivation for Periodic Rare
Pattern Mining. If the rare patterns are distributed across
the transaction dataset, they are periodic and important. A
novel PRPNegTidTreeMiner algorithm is proposed to discover
rare patterns with periodicity along with support threshold. An
efficient tree structure, NegTidTree, is constructed to capture the
complete negative representation of the given static database.
NegTidTree, serves the dual purpose of finding support count
as well as periodicity information. This tree accelerates the
extraction of periodic rare patterns and prevents repeated
database scanning. PRPNegTidTreeMiner uses two mining tech-
niques to generate periodic rare patterns. The first mining
method, NegTidTreeMiner, employs a top-down approach to find
rare patterns with periodicity thresholds which avoids traversal
of frequent patterns. In the second technique, NegTidTreeMiner-
FLP, the mining efficiency is improvised by avoiding the traver-
sal of frequent as well as non-existing patterns. Experiments are
carried out by varying support and periodicity components for
a variety of datasets. The results show that NegTidTreeMiner
performs better than NegTidTreeMinerFLP when the dataset is
small and generates a huge number of periodic rare patterns.
When the size of the database grows, NegTidTreeMinerFLP
continuously outperforms NegTidTreeMiner.

Index Terms—Periodic Rare Pattern Mining, Rare Pattern
Mining, NegTidTree, Rare Patterns, Periodic Patterns, Tree
data structure

I. INTRODUCTION

Extracting and further associating the extracted informa-
tion to discover the significant information from an enormous
bundle of data generated by the various fields are challenging
tasks. In this direction, there exist several algorithms to
discover significant information in the area of Association
Rule Mining(ARM). Pattern Mining is an important phase
of ARM, as it deals with the explosive growth of the search
space. Itemsets or patterns with support values greater than
or equal to the user-defined support threshold value are called
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frequent patterns, whereas itemsets having support lesser
than the threshold are termed rare patterns. Rare Pattern

TABLE I: Pos-Rep Transaction - TD

TID Items
T1 A, B, C, F
T2 A, B, C, D, F
T3 C, E, F
T4 A, B, E
T5 A, B, F
T6 D, E, F, G
T7 E, F

TABLE II: Neg-Rep of TD - TD and Sorted
items of TD after removal of {G}

TID items of TD sorted items of TD
T1 ¬D, ¬E, ¬G ¬D, ¬E
T2 ¬E, ¬G ¬E
T3 ¬A, ¬B,¬D, ¬G ¬D,¬A, ¬B
T4 ¬C, ¬D, ¬F , ¬G ¬D, ¬C, ¬F
T5 ¬C, ¬D, ¬E, ¬G ¬D, ¬C, ¬E
T6 ¬A, ¬B, ¬C ¬C, ¬A, ¬B
T7 ¬A, ¬B, ¬C, ¬D, ¬G ¬D, ¬C, ¬A, ¬B

Mining(RPM) has been emerging as a new promising area
to discover hidden unexpected or unusual activities. The
RPM algorithms focus on discovering low-support significant
association rules. The sample database shown in Table I
consists of 7 transactions and 7 unique items. Let the
maximum support called here as maxSup be equal to 4.
The itemsets having a support count lesser than the maxSup
are treated as rare patterns. In the sample database shown in
Table I, {ABE}, {AD} are considered as some rare items
according to the specified threshold.
The algorithms designed in this area face two challenges.
As rare itemsets are discarded in FPM, the frequent itemsets
can not be discarded in RPM because there is a possibility
that their supersets may become rare. This increases the
volume of the search space requiring finding strategies to
reduce the search space. As rare patterns are low support
patterns, a huge set of spurious patterns is generated along
with the significant information. Filtering unwanted patterns
is another challenging task.
Rare pattern mining algorithms can be classified based upon
the traversal techniques that are used for discovering rare
itemsets: top-down or bottom-up fashion. Szathmary et al.[1]
used bottom-up traversal technique in the Apriori-Rare and
MRG-Exp to find the minimal rare itemsets (MRIs) which lie
in the negative border of the frequent itemset zone. Further,
the ARIMA algorithm[2] finds all rare itemsets from already
discovered MRIs by removing zero generators. To compute
the support at each level the database is scanned which de-
grades the performance. In order to handle the spurious rare
itemsets discovered during mining of low support threshold
value, Bhasker et al.[3], [4] used the bond measure with
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support threshold. CORI algorithm first transforms the input
database into its vertical bitwise representation which aids
in finding the disjunctive as well as conjunctive support
of the itemsets. Using this metric the entire rare correlated
patterns are extracted in a bottom-up fashion. Anindita et
al.[5] developed SSP(Single Scan Pattern Tree) to mine both
frequent and rare patterns from incremental databases in a
bottom-up fashion. A compact tree is built by sorting the
transactions in frequency descending order and then inserting
them into the tree. During the tree construction, if any path of
the tree deviates from the frequency descending order then
the path is re-arranged. The binary count tree (BIN-Tree)
proposed by Shwetha Rai et al.[6] is a compact tree structure
proposed to store the static data in the main memory. An
efficient mining technique is proposed to discover both rare
and frequent itemsets.
In order to reduce the search space, most of the existing RPM
algorithms that follow the bottom-up approach have found
the solution by mining subsets of rare patterns. These algo-
rithms concentrated on finding only rare 1-itemsets and their
supersets by considering only those transactions containing
at least one rare item. Tsang et al.[7] developed a compact
tree structure called Rare Pattern Tree (RP-Tree) which is
similar to the FP-Tree structure [8]. The model displays only
those rare itemsets that fall in the range of minFrepSup and
minRareSup threshold values. Anindita et al.[9] proposed
Hyper-Linked Rare Pattern Mining, a memory-based queue
data structure with the hyper-linked pattern that can mine
subsets of rare patterns. Algorithms proposed in [10], [11],
discovered minimal rare itemsets using the bottom-up ap-
proach which traverses through several frequent itemsets to
reach the minimal rare itemsets in the lattice.
The RPM algorithms that follow the Apriori technique and
top-down approach were able to generate all rare itemsets.
ARANIM, the Apriori Rare and Non-Present Itemset Mining
is an algorithm designed by Adda et al.[12] which extracts
rare itemsets and non-present itemsets in the given database.
It follows a top-down policy by first generating a k-itemset
which is a combination of all the single items in the database.
Then repeatedly the next level of itemsets is obtained as a
result of generating the subsets of the k-itemset. As it starts
from k-itemset which may not be present in the database, it
may generate many non-existent patterns that are discarded
at every level. Troiano et al.[13], [14] designed the Rarity
algorithm, where a level-wise top-down strategy is employed
for extracting the rare itemsets. The framework first identifies
the longest itemset in the database and then its level-wise
subsets are found. Different list structures are used to store
candidate, frequent and rare itemsets generated at each level.
This method avoids scanning the database multiple times.
The memory requirements are higher in order to store the
different lists. NII-Miner is a recent contribution of Liu et
al. [15] which considers the dual perspective of the original
database by the representation of negative items. The missing
items of the original database are represented in the form of
a Neg-Rep database and a Negative Itemset Tree(NI-tree)
is constructed similarly to FP-Tree using the negative items.
This is the first tree-based method to discover all rare itemsets
using a top-down depth-first strategy.
Periodic Frequent Pattern Mining (PFPM), a generalization
of FPM, deals with regularity (shape of occurrence or oc-

currence characteristics or periodicity). The research started
with the work of Tanbeer et al.[16] where the importance of
considering regularity is proposed. Instead of support count,
the transaction ids are stored in the leaf nodes of a Regular-
Pattern tree that aid in the calculation of the regularity of
itemsets. Further, the work is extended to find regular patterns
from stream data[17] and body sensor networks[18]. Rashid
et al.[19] considered variance measure along with support
threshold for finding temporal regularity and discovered
regularly frequent patterns from static data. This research is
continued further in the field of wireless sensor networks to
find regularly occurring frequent sensor patterns[20]. Uday
Kiran et al.[21], [22], [23] addressed the “rare item problem”
by setting multiple support and periodicity thresholds to
enumerate frequent along with rare regular patterns from a
static database. Viger et al.[24] proposed an algorithm to
mine the stable periodic patterns from the database. To assess
the stability of the periodic behaviour of a pattern the novel
measure called lability is defined. The model is extended
further to uncover top-k stable periodic patterns from a
static database [25]. Amphawan et al.[26] designed a single-
pass algorithm to discover top-k regular frequent itemsets
in the static database without setting the support threshold.
The work is improvised by modifying the algorithm based
on partition and estimation techniques. TFRIM-DS, is a
single-pass algorithm designed by Amphawan et al.[27] that
makes use of the sliding window technique to find top-k
regular itemsets with the highest support in the stream data.
MHUIRA, an efficient single-pass algorithm is the contribu-
tion of Amphawan [28] that incorporates regularity in mining
high-utility itemsets. Further, HUIIs-Miner[29] is designed
to discover itemsets with high profits even though these
items are infrequently purchased. PHM designed by Viger
et al.[30] use minimum and average periodicity measures
to enumerate periodic high-utility itemsets from the static
database. Patterns in the non-uniform temporal database will
show varied periods and minimal repetitions. To deal with
partial periodic patterns, Kiran et al. developed models [31],
[32], [33] that allows the number of periods connected to
a pattern to exceed the maxPer threshold by a user-defined
count value. The applications of PFPM is widely focused on
gene and medical data analysis[34], [35], mobility intention
analysis[36], website user behaviour analysis[37] so on.
Even though some itemsets in the database shown in
Table I are rare patterns with respect to maxSup, the
appearance of the patterns may be dominant only at a
certain part of the database. For example, the patterns
{AC},{BC},{AF},{BF},{EF} are some of the rare patterns
with respect to the maxSup considered. The appearance of the
itemsets {AF},{BF} and {EF} are throughout the database
and called in this paper as periodic rare patterns. On the
other hand, the existence of patterns {AC} and {BC} are
only at the beginning of the database and the pattern {G} at
the end of the database. The patterns {AC},{BC} and {G}
are called here as non-periodic rare patterns. Although PFPM
approaches can find regularity, the study is limited to frequent
patterns. On the contrary, in most of the existing RPM ap-
proaches, there is no focus on the periodicity of rare itemsets.
These approaches focus on the support threshold and do not
give importance to the occurrence characteristics which may
unhide significant information for useful decision-making.
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Studying the periodic behaviour of rare patterns is also
useful in many applications. For example, in a retail market,
studying the regularity/irregularity of products purchased
with the quantity helps to understand customer behaviour.
For example, in a supermarket database groceries such as
milk and bread are bought frequently in a month whereas rice
and sugar are bought during the month’s end. Even though
Rice and sugar are rare items but it is periodically bought
by customers. For a year-wise analysis, this rare and periodic
item contributes to the profit of the supermarket. Alternately,
items such as door mats and cushions that are bought yearly
once are categorised as rare non-periodic items. This study,
in turn, contributes to developing new market strategies,
managing the inventory and layout of shelves etc. Similarly,
studying the click sequences of rarely hit pages may help
the web administrator to improvise the demand of the page.
Studies involving the periodicity of rarely co-occurring genes
in DNA sequence may produce unknown information to
the scientists in gene data analysis. In the medical domain,
unexpected responses to medications may be more crucial
in some cases compared to frequent and known responses.
Concentrating on periodic patterns of unexpected responses
may further help the domain experts to study the occurrence
details. Monitoring the occurrence characteristics of network
packets/fraudulent transactions may help in controlling the
network/fraudulent attacks. In traffic accidents, concentrating
on the regularities of abnormal patterns helps to get the real
cause of the accidents. The examples mentioned show the
importance of considering the shape of the occurrence of rare
patterns. Hence, periodicity plays a vital role in discovering
significant rare patterns in a wide variety of applications. The
focus of the study is to discover rare patterns along with their
periodic behaviour. The only work done in this direction is
the MRCPPS algorithm designed by Viger et al.[38] to mine
rare correlated periodic patterns from multiple sequences.
The standard deviation of periods is used as the periodicity
measure. With the support threshold, the bond measure is
used to filter the bundle of spurious patterns generated in the
process of mining useful rare correlated periodic patterns.
The traditional PFPM algorithms focus on the discovery
of periodic frequent patterns, hence following a bottom-up
approach. This approach is not suitable for discovering the
periodicity of rare patterns. NIIMiner[15] is a state-of-the-art
algorithm that discovers rare patterns in a top-down manner.
In this paper, NIIMiner is modified and a novel approach to
the discovery of rare patterns with periodicity is proposed.
The main contributions are:

• A new algorithm called PRPNegTidTreeMiner is pro-
posed to discover the periodicity of rare patterns along
with the support count from a static database. As for
our knowledge, this is the first tree-based top-down
approach that concentrates on the periodicity of rare
patterns along with the support count.

• An efficient tree structure, NegTidTree, is constructed
to capture the complete negative representation of the
given static database. This tree helps in computing the
support count with the periodicity measure. The root
node of NegTidTree contains all periodic rare database
items. PRPNegTidTreeMiner, traverses the items in the
root node of the NegTidTree and extracts entire periodic
rare itemsets from the given dataset.

• PRPNegTidTreeMiner uses NegTidTreeMiner to dis-
cover the periodic rare patterns of every item in the
root node.

• Further the mining efficiency of PRPNegTidTreeMiner
is improvised by designing a mining method called
NegTidTreeMinerFLP which avoids traversal of non-
existent itemsets.

The rest of the paper is organized in the following manner.
Section II focuses on the basic definitions of the proposed
algorithms. Various modules of PRPNegTidTreeMiner are
presented in Section III. Experimental evaluation and result
analysis are shown in section IV. The conclusion and future
directions are highlighted in Section V.

II. BASIC TERMINOLOGIES

This section defines the basic terminologies and theorems
that are used for discovering rare patterns and periodic
patterns. Some of the notations are similar to the notations
used in NIIMiner[15] and MHUIRA[28] algorithm. The ter-
minologies are illustrated based on Example 1.
Let I = {i1, i2,....,im} denote set of items. A transaction
T=(tid, P) where tid represents unique transaction id and P is
an n-itemset formed using n unique items of I. A transaction
database TD consists of a set of tuples {T1, T2,....,Tz} where
each Tx is represented in the form of T.
Example 1. Consider a transaction database TD as given in
Table I. Let the two thresholds maxSup and maxPer be set
as 4. The further example refers to the transaction database
TD shown in Table I.

A. Support of Patterns

Definition 1: For any item i∈I, where I={i1, i2,....,im}, a
positive pattern Ps={ps1, ps2,..psi..,psq}⊆ I is called a Pos-
Rep (Positive-Represented) pattern or simply pattern.
Definition 2: Negative item of i∈I is represented as ¬i.
For the pattern Ps, its corresponding negative pattern can
be represented as ¬Ps={¬ps1, ¬ps2,..¬psi..,¬psq}.
Definition 3: Given I={i1, i2,...,im} and Ps={ps1,
ps2,...,psq} ⊆ I, the corresponding Neg-Rep (Negative-
Represented) pattern is denoted by Ps = {¬i|{(i∈I) ∧
(i̸∈Ps)}} = I\Ps} which contains all the items of I that are
missing in Ps.
Every transaction in TD is represented by its Neg-Rep to
produce the database TD. Neg-Rep transaction database of
TD in Table I is shown in Table II.
Definition 4: The total count of transactions that contain all
the items of Ps is denoted as the intersect support or absolute
support of Ps in TD.
Ps.interSup = |{T∈TD | ps1∈TD ∧ ps2∈TD ∧...∧ psq∈TD}|
In Example 1. Ps.intersup is equal to 3 for the pattern
Ps={AF}.
Definition 5: A pattern Ps is a rare pattern if and only if
(Ps.interSup <maxSup). In Example 1. The pattern Ps={AF}
is a rare pattern since ({AF}).interSup <4).
Definition 6: In Neg-Rep database TD, the total number
of transactions in which at least one item of ¬Ps exists
represents the joint support of ¬Ps. ¬Ps.jointSup = |{T∈TD
| ¬ps1∈T ∨ ¬ps2∈T ∨ ...∨ ¬psl∈T}| [15]
Theorem 1: For a given transaction database TD and its Neg-
Rep database TD , the Ps.interSup = |TD| - ¬Ps.jointSup
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Proof: If a pattern Ps is not present in a transaction T∈TD,
then T ̸⊇ Ps ⇐⇒ T∈TD ∪ ¬Ps̸= ∅. By Defini-
tion 6 joint support of ¬Ps can be obtained from TD,
¬Ps.jointSup=|{T ∈ TD|T ∪ ¬Ps̸= ∅}| = |{T ∈ TD|T
̸⊇ Ps}|. Ps.interSup = |{T ∈ TD |T ⊇ Ps}|.

Thus |TD| = Ps.interSup + ¬Ps.jointSup =⇒ Ps.interSup
= |TD| - ¬Ps.jointSup.
Considering pattern Ps={AF} in Example 1, it is found that
¬Ps.jointSup = 4 and therefore by Theorem 1 Ps.interSup
= 7 - 4 = 3. Thus the support of pattern Ps in TD, which is
a candidate itemset for the rare pattern can also be obtained
using the joint support of the corresponding negative itemset
present in TD.

B. Periodicity of Patterns

Periodicity is the concept used to find the occurrence
behaviour of patterns in the database. It is computed by
observing the consecutive occurrences of patterns and mea-
suring the gap between the consecutive occurrences.
Definition 7: If the pattern P occurs first in transaction Tf ,
this first period is called as fPeriod and is calculated as
fPeriod(P, Tf ) = Tf - 0.
Definition 8: Any other intermediate period of pattern P is
called mPeriod and is measured by the gap between two
consecutive transactions in which pattern P appears. If Tr

and Ts are the two consecutive transactions in which itemset
P appears, then mPeriod(P, Tr, Ts) = Ts - Tr.
Definition 9: The last period of pattern P is called as
lPeriod and is measured in terms of the gap between the
last occurrence of pattern P and the last transaction in the
database TD. If Tx is the last transaction in which pattern P
occurs, then lPeriod is calculated as lPeriod(P, Tx) = Tz -
Tx.
Definition 10: The periods of pattern P is represented as
P.Prd = {fPeriod(P, Tf ), mPeriod(P, Tr, Ts), mPeriod(P, Ts,
Tt),...., mPeriod(P, Tw, Tx), lPeriod(P, Tx)}. Then periodicity
of itemset P denoted as P.maxPrd = max(fPeriod(P, Tf ),
mPeriod(P, Tr, Ts), mPeriod(P, Ts, Tt),...., mPeriod(P, Tw,
Tx), lPeriod(P, Tx)).
For example the periods of pattern P={AF} in Example 1 is
obtained as {AF}.Prd = {fPeriod({AF}, T1), mPeriod({AF},
T1, T2), mPeriod({AF}, T2, T5), lPeriod({AF}, T5)} = {1,
1, 3, 2}. Further {AF}.maxPrd is obtained as max(1, 1, 3,
2) = 3 accoding to Definition 10.
Problem Statement: Given the database TD, a support
threshold maxSup and a periodicity threshold maxPer, the
task of mining periodic rare pattern is to discover the entire
set of patterns with (P.interSup <maxSup ) ∧ (P.maxPrd ≤
maxPer).

III. PRPNEGTIDTREEMINER(PERIODIC RARE PATTERN
NEGATIVE TRANSACTIONID TREE MINER): THE

PROPOSED ALGORITHM

The proposed method PRPNegTidTreeMiner is able to dis-
cover an entire set of periodic rare patterns(PRPs) from the
given static database. It discovers PRPs in two steps: (i) The
given static database is converted into its Neg-Rep database
and the corresponding NegTidTree is constructed (ii) The
NegTidTree is mined in a top-down manner to find periodic
rare patterns. Two user-defined threshold values maxSup and

maxPer are accepted help to reduce the search space by
discarding non-periodic patterns during the mining task.

A. Construction and Updation process of SPList

The support and periodicity information related to all 1-
itemsets in the database are maintained in a list called SPList.
SPList maintains three fields related to an item i: support
count - Sup(i), The previous transaction id in which the item
i present - preTid(i) and maxPrd of item i is - maxPrd(i).
During the first scan of the database, the support count and
the maximum periodicity values are updated in the SPList as
shown in Algorithm 1. For the database shown in Table I, the
SPList creation and updation is as shown in Figure 1. Once
the entire database is scanned, those 1-itemsets which are not
present in the last transaction are updated based on maximum
periodicity. It is observed from Figure 1(d), maxPrd of item
{C} is updated because the maxPrd obtained by considering
the last transaction is greater than its previous maxPrd value.
Further, the non-periodic 1-itemsets are discarded and the
remaining 1-itemsets are sorted in descending order by their
support value. Figure 1(e) shows the final SPList after
discarding the non-periodic 1-itemset {G} and sorting the
remaining 1-itemsets in descending order with respect to the
support count. This updated SPList is used in the process of
NegTidTree creation.

Algorithm 1 Construction of SPList
Input: TD - a transactional database, maxPer - maximum
periodicity threshold
Output: SPList containing sorted list of items

1: for each transaction T ∈ TD with tid tIDCur do
2: for each item i ∈ T do
3: Increment Sup(i) by 1
4: Compute current period curPrd by subtracting the

preTid(i) with tIDCur. If curPrd is larger than maxPrd(i)
then replace maxPrd(i) by curPrd

5: preTid(i) ← tIDCur
6: end for each
7: end for each
8: Update Periodicity of all items in SPList with respect to
|TD|

9: Remove each item i from SPList having maxPrd(i)
>maxPer and Sort SPList in descending order of Support
Count

10: end procedure

B. NegTidTree Structure

The NegTidTree is constructed to represent the transactions
present in the Neg-Rep database TD. The tree consists
of a root node NTRoot and a set of item-prefix sub-trees
represented as the children of NTRoot. Every path of the
item-prefix sub-tree represents a unique transaction of TD
where common paths are shared similar to NI-Tree[15]. The
transactions in TD are arranged in ascending order with
respect to the support count of items in TD. ILabel field
of every child node c represents a negative item. As the
root node NTRoot represents an itemset, it is differentiated
from other nodes with the field ISLabel. Each node c keeps
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Fig. 1: (a)After scanning tid = 1 (b) After scanning tid = 2 (c) After scanning tid = 7 (d) After updating maxPrd (e) Final
sorted SPList after discarding non-periodic 1-itemsets

track of childList pointers which represent the children of
the node c. The main purpose of NegTidTree is to discover
the occurrence behaviour with the support count. So, it is
insufficient to maintain only the support count information
as in NI-Tree. Therefore, instead of maintaining the support
count, transaction ids are considered and these serve the
dual purpose of finding support count as well as periodicity
information. The transaction-ids(tid) are stored only in the
leaf nodes, which help in the computation of periodicity.
Moreover, literature[16], [17], [18], [19], [20], [24] show
that keeping the tid information only in the leaf node is
memory efficient rather than keeping the support count in
all the nodes. The nodes of NegTidTree except the root node
r can be divided into two types called ordinary nodes and
tail nodes. The ordinary nodes represent only the negative
item information. Whereas the tail nodes represented in the
form ILabel [t1,t2,....,tn] serve the purpose of discovering
occurrence information. If tx = {¬i1,¬i2,....,¬iTail}, then
ILabel field of tail node represents the negative item ¬iTail.
The tid-list [t1,t2,....,tn] denotes all the transactions in which
¬iTail is the tail node and is represented as TidSet(¬iTail).
Lemma 1: A tail node in a NegTidTree inherits the properties
of an ordinary node and not vice versa.
Proof: An ordinary node in a NegTidTree maintains the
negative item information. In addition, it maintains childList
pointers. Whereas, a tail node pointer maintains all this
information along with the additional information regarding
the tid-list information. Therefore, the tail node inherits the
properties of an ordinary node, but an ordinary node does not
represent all the information represented by the tail node.

C. Construction process of NegTidTree

The construction process of NegTidTree is given in Al-
gorithm 2. Initially, the root node of the NegTidTree named
NTRoot is created. The TidSet and ISLabel fields of NTRoot
are initially empty. During the second scan of the transaction
database, the non-periodic 1 itemsets are removed and the
itemsets are sorted in ascending order with respect to the
original database. Further, the Neg-Rep tx of every trans-
action tx is produced using SPList. To incorporate a top-
down strategy, the ISLabel field of the NTRoot is updated
by considering the newly added items in the Neg-Rep tx.
NTRoot.ISLabel maintains descending order with respect to
the original database. After the removal of non-periodic item
{G}, the remaining negative items sorted in ascending order
with respect to the support count in TD are represented in
Table II and inserted into the NegTidTree. The insertion

process is as shown in Procedure Constructing-Negative-
TidSet-Tree. Similar to RP-Tree[7], the path is shared if there
is any common path of transaction tx exists in NegTidTree.
The remaining path(if any) is attached at the end of the
shared path. If there is no common path of transaction tx
present in NegTidTree then it is inserted as a new path. The
tid of tx is added to the TidSet of the tail node of the inserted
path. Figure 2 shows the construction process of NegTidTree
for the Neg-Rep database TD shown in Table II. The sorted
Neg-Rep transactions are inserted into the tree similar to RP-
Tree. The final prefix shared NegTidTree is shown in Figure
2(d). As shown in this Figure, ISLabel field of the root node
contains the sorted k-itemset {FABECD}.
Let for every transaction tx∈TD, negItemSet(tx) represent
all negative items of tx.
Property 1: As NegTidTree is a prefix shared tree, it main-
tains negItemSet(tx) for every transaction tx∈TD at best by
a single path. Further, the tid x is stored only once in ¬iTail

representing the tail node of this path.
Lemma 2: Let TD be represented by NegTidTree with root
NTRoot. Then the∑

¬iTail∈NTRoot

Ti is equal to|TD|.

Proof: According to Property 1, each negItemSet(tx) of
every transaction tx ∈ TD represented in NegTidTree at
best by a single path. The tid of tx is stored only once in the
¬iTail where ¬iTail represents the tail node of tx. Therefore∑

¬iTail∈NTRoot

Ti is equal to |TD|.

Every transaction tx of TD is constructed by considering
Neg-Rep of each transaction in TD. This results in |TD|=
|TD|. Therefore∑

¬iTail∈NTRoot

Ti is equal to|TD|.

D. Mining process of NegTidTree

This section demonstrates PRPNegTidTreeMiner, a top-
down divide and conquer method to mine the low support
periodic rare itemsets using the NegTidTree. The root node of
NegTidTree contains all periodic rare database items. PRP-
NegTidTreeMiner, traverses the items in the root node of the
NegTidTree and extracts entire periodic rare itemsets from the
given dataset. PRPNegTidTreeMiner uses NegTidTreeMiner
to discover the periodic rare patterns of every item in the root
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Fig. 2: (a)After inserting tid = 1 (b) After inserting tid = 2 (c) After inserting tid = 3 (d) After inserting tid = 7

Algorithm 2 Construction of NegTidTree
Input: TD - a transactional database, maxSup , maxPer -
threshold values, SPList
Output: NTRoot - Root of NegTidTree

1: Create NTRoot as the root of NegTidTree and do the
following initialization:

2: NTRoot.ISLabel ← {∅} and NTRoot.TidSet ← {∅}
3: for each transaction T ∈ TD with tid tIDCur do
4: Sort the items of T in descending order with respect

to their Support
5: Create NegTransT representing Neg-Rep of T

using SPList and Discard non-periodic items from
NegTransT

6: Add any missing item to NTRoot.ISLabel from
NegTransT

7: Call Constructing-Negative-Tidset-Tree
(NegTransT , NTRoot)

8: end for each
9: Return NTRoot

10: Procedure Constructing-Negative-Tidset-Tree
([¬p|negP], curNode)

11: Let ¬p represents the current negative item of
NegTransT and remaining negative items are repre-
sented by negP.

12: if curNode has a child N such that curNode.ILabel = ¬p
then Select N as C

13: else Create a new node N as child of curNode with
N.ILabel ← ¬p

14: end if
15: Remove ¬p from [¬p|negP]
16: if negP is nonempty then call Constructing-Negative-

Tidset-Tree(negP, N)
17: else Add tIDCur to TidSet(N)
18: end if
19: end procedure

node. Further the mining efficiency of PRPNegTidTreeM-
iner is improvised by designing a mining method called
NegTidTreeMinerFLP which avoids unnecessary traversal of
noise-itemsets.
The PRPNegTidTreeMiner deals with every item represented
by NTRoot. Let symbol ≺ denote a ”less frequent” item.

In every iteration, PRPNegTidTreeMiner considers the next
≺ item with respect to the support count in the original
dataset. In the database shown in Table I item D ≺ C
≺ A ≺ B ≺ E ≺ F. The proposed PRPNegTidTreeMiner
uses a top-down depth-first strategy where the first iteration
excludes item {D}. The procedure NegTidTreeSubtraction is
invoked, which results in a new NegTidTree without {D}.
NegTidTreeMiner method is called by passing the resultant
NegTidTree and a NULL value as the initial item. A divide
and conquer paradigm is used to generate all combinations
of PRPs without {D}. In the next iteration, all those PRPs
including item {D} and without item {C} are generated. This
excluding and generation process is repeated by considering
every item present in the NTRoot.

1) NegTidTreeMiner - A Top-down approach for mining
PRPs : The mining process of every item in NTRoot is as
shown in Algorithm 3. In every iteration, NegTidTreeMiner
considers the next ≺ item iN with respect to the sup-
port count in the original dataset. The new NegTidTree is
built by sending the current NegTidTree to the Procedure
NegTidTreeSubtraction. The root node of the new NegTidTree
is named as newNTRoot. The ISLabel field of newNTRoot is
formed by removing the item iN from ISLabel of NTRoot.
The nodes of the new NegTidTree are built by considering the
first layer nodes of the current NegTidTree after removing the
nodes with label iN. As shown in Procedure TraverseSubTree,
the processed node C is attached to the new root node if it
exists in the ISLabel field of the newNTRoot. During the
process of attaching children, if a node X already exists
matching the ILabel of C in the newNTRoot then only
TidSet of C is added to the existing TidSet of the node
X. Otherwise, C is added to ChildList of newNTRoot. If
the processed node C is matching with label iN then, the
node C is skipped and its TidSet is added to the TidSet of
newNTRoot. Further, children of the node C are processed
recursively as shown in Procedure TraverseSubTree. When
this removal and attaching process is finished, the TidSet of
newNTRoot represents the tid-list of the itemset represented
by its ISLabel in the original database. Using maxSup and
maxPer thresholds the NegTidTreeMiner extracts the peri-
odic rare itemsets and stores it in PRPList. The removal
process is continued in the path until a frequent itemset
is obtained. Once a frequent itemset is found continuing
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Algorithm 3 NegTidTreeMiner - Mining PRPs
Input: NTRoot - Root of NegTidTree, maxSup, maxPer -
threshold values, iP - Previous 1-item considered
Output: PRPList - List of PRPs

1: for each item iN ∈ NTRoot.ISLabel, iP ≺ iN do
2: newNTRoot ← NegTidTreeSubtraction ( NTRoot,

iN)
3: currentCount ← Calculate Support from newNT-

Root.TidSet
4: currentmaxPrd ← Calculate maximum periodicity

from newNTRoot.TidSet
5: if (currentCount <maxSup ) then
6: if (currentmaxPrd ≤ maxPer ) then
7: PRPList ← PRPList ∪ newNTRoot.ISLabel
8: end if
9: NegTidTreeMiner(newNTRoot, maxSup, max-

Per, iN, PRPList)
10: end if
11: end for each
12: procedure NegTidTreeSubtraction(NTRoot,iN)
13: newNTRoot.ISLabel ← NTRoot. ISLabel \ iN
14: newNTRoot.ChildList ← ∅
15: Call TraverseSubTree(NTRoot, newNTRoot, iN)
16: return newNTRoot
17: Procedure TraverseSubTree(Q, P, iN)
18: for each child C ∈ Q.ChildList do
19: if C.ILabel = iN then
20: add C.TidSet to P.TidSet
21: TraverseSubTree(C, P, iN)
22: else Add C to P.ChildList
23: end if
24: end for each
25: end procedure

in the path, further resulting in its subsets and according
to the Anti-monotone property[39], the subsets are also
frequent. The removal and the mining process consider all
the items represented by ISLabel of the root node. For the
current NegTidTree shown in Figure 2(d), the recursive node
removal and the construction of the new NegTidTree process
are shown in Figure 3. Item removal process starts from
≺ item {D}. At the beginning, newNTRoot is formed by
removing the item {D} from the ISLabel field of the current
NegTidTree. Further, the children of node {D} are attached
to the newNTRoot. The resultant NegTidTree is as shown in
Figure 3(b). It can be observed from Figure 3(b), as TidSet
of {¬D} is empty, the TidSet of newNTRoot also results in ∅.
This indicates itemset {FABEC} represented by newNTRoot
is a non-existence itemset. This process continued recursively
by considering the next ≺ item {C}, next {A} and further
{B}. The resultant NegTidTree is shown in Figure 3(c), 3(d)
and 3(e) respectively. After the removal of {C} and {A} the
newNTRoot has resulted in non-existence itemsets {FABE}
and {FBE} as shown in Figure 3(c) and 3(d) respectively.
During the removal process of {B}, the TidSet of {¬B} is
added to the TidSet of the newNTRoot as shown in Figure
3(d). The TidSet {3,6,7} of newNTRoot represents the tid-
list of itemset {FE} in the original database. According to
maxSup and maxPer thresholds {FE} is found to be a PRP

and it is added to PRPList.This iteration has generated all
the periodic rare itemsets without {D}. The current iteration
completes and the next iteration starts by considering the next
≺ item {C}. Further, the recursive removal process continues
which generates all itemsets with item {D} and without item
{C}. This process is continued for all the remaining items
in the ISLabel of the root node. Finally, PRPList contains all
the resultant PRPs.
Theorem 2: Given a NegTidTree with root NTRoot represent-
ing an itemset P, then P.interSup is equal to |TidSet(NTRoot)|
Proof: Given a transaction tx∈TD, if tx ∈ TD ∪ ¬P ̸= ∅,
it means at least ¬iPTail the tail node of tx must be present
in the NegTidTree. Otherwise, all the nodes corresponding to
the path of tx will be already removed. By Definition 6, the
number of such transactions is equal to ¬P .jointSup and it
can be represented by ∑

¬iPTail∈NTRoot

Ti

The TidSet of removed nodes are added to TidSet of NTRoot.
According to Lemma 2,∑

¬iTail∈NTRoot

Ti is equal to |TD|.

This results in∑
¬iPTail∈NTRoot

Ti + TidSet(NTRoot) is equal to |TD|.

If
∑

¬iPTail∈NTRoot

Ti

is ¬P .jointSup then according to Theorem 1,
TidSet(NTRoot) represents P.interSup.

2) NegTidTreeMinerFLP - Mining NegTidTree by remov-
ing noise itemsets: The NegTidTreeMiner proposed in section
III-D1 deals with every item represented by NTRoot. A
divide and conquer paradigm is used to generate all PRPs
by considering every item present in the NTRoot. From
the experimentation carried out by considering the real-
world datasets, it is observed that the number of non-
existent itemsets is large. Before reaching the required PRPs,
a bundle of non-existent itemsets has to be unnecessarily
traversed. To reduce the number of non-existent itemsets
traversed, a new mining approach called NegTidTreeMiner-
FLP is designed by improvising the mining method of
NegTidTreeMiner. NegTidTreeMinerFLP is demonstrated in
Algorithm 4. In NegTidTreeMiner, when the current node
is a non-existent itemset then the remaining NegTidTree
are generated recursively by removing all the items having
greater support than the current item removed. Instead of
this in NegTidTreeMinerFLP, when the current itemset is
a noise itemset (itemsets having support count 0 or non-
periodic itemsets), then the procedure NegTidTreeMinerRe-
moveNoise is invoked. NegTidTreeMinerRemoveNoise en-
sures the remaining itemsets in NegTidTree are generated
by removing the items present only in the first layer having
support greater than the current item removed. To reflect this
the NegTidTreeMiner is improvised in NegTidTreeMinerRe-
moveNoise by modifying the line 1 as ”for each item iN ∈
NTRoot.childList, iP ≺ iN”. When huge datasets are taken
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Fig. 3: The subsequent NegTidTree created during mining process for the final NegTidTree shown in 3(a) Resultant NegTidTree
after removal of ¬D, ¬C, ¬A and ¬B is shown in (b),(c),(d) and (e) respectively

Algorithm 4 NegTidTreeMinerFLP - Mining PRPs
Input: NTRoot - Root of NegTidTree, maxSup, maxPer -
threshold values, iP - Previous 1-item considered
Output: PRPList - List of PRPs

1: for each item iN ∈ NTRoot.ISLabel, iP ≺ iN do
2: newNTRoot ← NegTidTreeSubtraction ( NTRoot,

iN)
3: currentCount ← Calculate Support from newNT-

Root.TidSet
4: currentmaxPrd ← Calculate maximum periodicity

from newNTRoot.TidSet
5: if (currentCount <maxSup ) then
6: if ((currentCount = 0 ) ∨ (currentmaxPrd >max-

Per )) then
7: NegTidTreeMinerRemoveNoise(newNTRoot,

maxSup, maxPer, iN, PRPList)
8: else
9: PRPList ← PRPList ∪ newNTRoot.ISLabel

10: NegTidTreeMinerFLP(newNTRoot, maxSup,
maxPer, iN, PRPList)

11: end if
12: end if
13: end for each

into account, there is a possibility that the removal of items
not present in the first layer may also generate PRPs. This is
handled during the mining process, by temporarily storing the
items that are missing in the first layer in an array. As soon
as a PRP is generated, the remaining subsets are generated
using the items in the temporary array. This avoids the non-
existent itemset traversal and ensures the complete generation
of PRPs.

IV. RESULTS AND DISCUSSION

PRPNegTidTreeMiner is the first tree-based algorithm to
employ a top-down strategy in the process of mining low-
support periodic patterns. The proposed algorithm is im-
plemented in the Java platform and is tested for various
datasets by considering different threshold values. It accepts

maxSup and maxPer threshold values from the user and
discovers all the patterns that satisfy the support as well
as periodicity threshold values. PRPNegTidTreeMiner pro-
posed NegTidTreeMiner and an improvised mining method
NegTidTreeMinerFLP. In the experiments it is referred to as
NTTMDFS and NTTMFLP respectively. It is found that the
number of PRPs discovered by both the mining methods
are the same. The methods vary with respect to the time
taken for execution and it is analyzed in this section. Both of
these methods are executed in the system with configuration
Intel(R) Core(TM) i5-7400 CPU@3.00GHz with 8GB RAM
running Windows10 Enterprise.

A. Datasets

For the experimentation, four real datasets with a varying
number of transactions are downloaded from the ”frequent
itemset mining dataset repository” (http://fimi.ua.ac.be/data/).
Chess is a small dataset with total transactions of about 3k,
Mushrooms is a dataset with total transactions of about 8k,
Pumsb dataset is about 49k and Connect dataset is about
67k transactions. The descriptions of the dataset are given in
Table III. The number of transactions is represented by |T|,
the count of unique items by |I|, average transaction length by
|L|. If the maximum transaction length |L| is very high then
it will generate a huge set of rare itemsets because of which
these algorithms are not able to complete the mining task. So
the value considered for the experimentation is mentioned in
the runtime comparison.

TABLE III: Description of datasets

Dataset |T| |I| |L|

Chess 3,196 75 37
Mushrooms 8,124 119 23

Pumsb 49,046 2,113 74
Connect 67,557 129 43

B. Runtime comparison

The runtime performance of the algorithms is obtained by
considering different datasets for various maximum support
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and periodicity threshold values. The total execution time
taken by the algorithms for various thresholds is shown
in Figures 4, 5, 6, 7 and 8. In these figures, the X-axis
represents maxSup threshold values and the Y-axis represents
the runtime in seconds. It has been found that NegTidTreeM-
iner is faster than NegTidTreeMinerFLP for smaller datasets
which generate more PRPs. However, as the dataset size
increases, NegTidTreeMinerFLP performs better. As the same
NegTidTree is used for both methods, the major contribution
to the performance improvement is the mining approach. The
number of PRPs generated and periodic 1-itemsets extracted
after the tree construction phase by various datasets for
different thresholds are shown in Figures 9, 10 and 11
respectively.
As the top-down approach is suitable for producing the
low threshold periodic rare patterns, all the experiments are
carried out by keeping the maxSup and maxPer threshold
values in the low range. In all the experiments maxSup
threshold value is varied in the range of 5% to 50%.

1) Results on varying dimensions of dataset: The total
execution time taken by both algorithms for different di-
mensions of datasets is shown in Figures 4 and 5. The
experiments are carried out by varying the maxPer threshold
in the range of 10% to 30%. The runtime performance for
Mushrooms dataset is shown by setting the value of L as 12,
15, 18, and 21 by keeping maxPer constant as 30%. Com-
pared to NegTidTreeMiner, NegTidTreeMinerFLP has shown
a performance improvement of 17%, 65%, 68% and 84%
respectively as shown in Figures 4(a) and 4(b). Figure 4(c)
and 4(d) depict similar observations for Connect dataset.
The performance of NegTidTreeMinerFLP is improved by
11%, 14%, 50%, and 59% for the L values 6, 10, 12, and
15 respectively when maxPer is kept constant as 10%. The L
value plays a major role in deciding the size of NegTidTree.
As shown in Figure 11, when the L value is increased, the
possibility of periodic 1-itemsets increases which results in
an increase in the number of nodes in the tree and the number
of non-existing itemsets. NegTidTreeMinerFLP avoids the
non-existing item traversal showing a better performance
compared to NegTidTreeMiner. It is also observed that when
the value of L is increased beyond the values taken for
experimentation NegTidTreeMiner takes a longer time for the
execution.

The Pumsb dataset has the same characteristics as the
Connect dataset. A large number of periodic 1-itemsets are
generated as shown in Figure 11 and NegTidTreeMiner takes
longer time when compared to NegTidTreeMinerFLP. There-
fore execution time of NegTidTreeMinerFLP is shown in all
the figures. The time consumed by NegTidTreeMinerFLP is
shown in Figure 5(c) for L values 6 and 9 respectively when
maxPer is kept constant as 10% and 20%. Alternately, for
a small Chess dataset, NegTidTreeMiner always performs
better than NegTidTreeMinerFLP. For a smaller dataset it
takes less time to build NegTidTree tree recursively and
mine it further. The runtime performance is displayed in
Figures 5(a) and (b) where the value of L is varied as 10, 12,
and 15 while maxPer is kept constant at 10% and 30%. Even
though Chess is a smaller dataset compared to Mushrooms,
it can be observed that the number of periodic 1-itemsets
generated is around 20 in both datasets. The number of PRPs
extracted by Mushrooms dataset are around 1000 and 4000

(a) Mushrooms,maxPer = 30%

(b) Mushrooms,maxPer = 30%

(c) Connect,maxPer = 10%

(d) Connect,maxPer = 10%

Fig. 4: Runtime comparison on varying dimensions of Mush-
rooms and Connect datasets

respectively for maxPer 30% and 40% and L value 12 as
shown in Figure 9(c). Furthermore, for the same thresholds
and L value Chess dataset produces more number of PRPs
around 23,000 to 40,000 and 55,000 to 75,000 as shown
in Figure 10(c). This shows that the non-existing itemsets
are lesser in Chess dataset, as a result, NegTidTreeMiner
performs well. In contrast, the NegTidTreeMinerFLP takes
longer to verify the first layer children and generate any
missing itemsets. NegTidTreeMiner has demonstrated a per-
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(a) Chess,maxPer = 30%

(b) Chess,maxPer = 10%

(c) Pumsb,maxPer = 10 and 20%

Fig. 5: Runtime comparison on varying dimensions of Chess
and Pumsb datasets

formance gain of 70% and 90% when maxPer is set to 30%
compared to NegTidTreeMinerFLP. Similarly, NegTidTreeM-
iner has demonstrated speed improvements of 51% and 76%
when maxPer is set to 10%.
Influence of varying dimensions of dataset: The increase in
the value of L exhibits an increase in the number of periodic
1-itemsets as shown in Figure 11. Consequently, it generates
more number of PRPs as shown in Figures 9(a),(b) and
10(a),(b). The increase in the nodes of NegTidTree results in
repeated tree construction and recursive traversals. This leads
to an increase in the mining time which can be observed from
Figures 4 and 5.

2) Results on varying maxPer threshold value: The run-
time performance on varying the maxPer threshold value
by keeping L value constant is shown in figures 6 and
7. The maxPer value is varied from 30% to 60% and for
Mushrooms dataset. NegTidTreeMinerFLP shows a better
performance of 17%, 89%, 98% and 76% respectively than

(a) Mushrooms,L = 12

(b) Mushrooms,L = 12

(c) Connect,L = 11

(d) Connect,L = 11

(e) Connect,L = 6

Fig. 6: Runtime comparison on varying periodicity thresholds
for Mushrooms and Connect datasets
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(a) Chess,L = 12

(b) Pumsb,L = 6

Fig. 7: Runtime comparison on varying periodicity thresholds
for Chess and Pumsb datasets

NegTidTreeMiner as shown in Figures 6(a) and 6(b). For
the Connect dataset, the maxPer threshold value is varied in
the low range of 10%, 20%, 30%, and 40%. Since Connect
is a large dataset, NegTidTreeMiner could not complete the
execution for the threshold values greater than 40%. The
performance of NegTidTreeMinerFLP was improved by 50%,
88%, 56% and 10% respectively as shown in Figures 6(c)
and 6(d). The number of periodic 1-itemsets grows with
the periodicity threshold value thereby increasing the nodes
of the NegTidTree and non-existing itemsets. In comparison
to NegTidTreeMiner, NegTidTreeMinerFLP performs better
since it avoids traversing non-existent items. It should be
noticed that when the maxPer threshold is kept between
20% and 30%, the performance improvement is greater. As
maxPer threshold is increased further there is a decline in
performance improvement. This is because the number of
non-existent items decreases which increases the recursive
tree construction and traversal. As a result, the mining time
increases, and the performance is reduced. Similar results
are obtained for Pumsb dataset. Figure 7(b) shows the result
where maxPer threshold value is varied between 20% and
40% by keeping L value as constant 6.

On the contrary, NegTidTree is built faster recursively for
Chess dataset and it takes lesser mining time. Figure 10(c)
shows the PRPs generated by Chess dataset is more which
implies the non-existing itemsets are lesser. As non-existing
itemsets are lesser, NegTidTreeMinerFLP takes longer to
verify the first layer children and generate any missing
itemsets resulting in prolonged execution time. The runtime
performance is displayed in Figure 7 for the Chess dataset,
where the value of maxPer is varied as 30% and 40% while
L value is kept constant at 12. NegTidTreeMiner has demon-
strated a performance gain of 91% and 97% when maxPer is
set to 30% and 40% respectively compared to NegTidTreeM-
inerFLP. Similar observations are depicted in Figure 6(e)

(a) Connect,L =12, maxPer = 20%

(b) Connect,L =12, maxPer = 20%

(c) Chess,L = 15, maxPer = 20%

(d) Pumsb,L = 9, maxPer = 30%

Fig. 8: Runtime comparison on a varying number of tansac-
tions

where a small set of Connect dataset is constructed by
taking a L value constant as 6, the number of transactions is
restricted to 5K and maxPer is varied as 30% and 60%. In
both the cases NegTidTreeMiner shows a performance gain
of 17% and 16% compared to NegTidTreeMinerFLP when
maxPer is set to 30% and 60% respectively. However, the
improvement is lesser because the number of PRPs generated
is very less compared to Chess as displayed in Figure 9(f).
Influence of varying maxPer threshold: The increase in
maxPer threshold value increases the number of periodic
1-itemsets and PRPs as shown in Figure 11 and Fig-
ures 9(c),(d),(e),(f) and 10(c),(d). This increases the number
of recursive tree construction and traversal which influences
the mining performance.
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(a) Mushrooms,maxPer = 30%

(b) Connect,maxPer = 10%

(c) Mushroom,L = 12

(d) Connect,L = 11

(e) Connect,L = 12, maxPer = 20%

(f) Connect,L = 6, maxPer = 30 to 60%

Fig. 9: Number of PRPs generated for Mushroom and Con-
nect datasets

(a) Chess,maxPer = 10 and 30%

(b) Pumsb,maxPer = 10 and 20%

(c) Chess,L = 12

(d) Pumsb,L = 6

(e) Chess,L = 15, maxPer = 20%

(f) Pumsb,L = 9, maxPer = 30 %

Fig. 10: Number of PRPs generated for Chess and Pumsb
datasets

Engineering Letters, 31:3, EL_31_3_02

Volume 31, Issue 3: September 2023

 
______________________________________________________________________________________ 



Fig. 11: Number of periodic 1-itemsets generated by various
datasets for different maximum periodicity

3) Results on varying the number of transactions: The
runtime performance of the algorithms on Connect dataset by
varying the number of transactions is shown in figures 8(a)
and (b) where L value is set to 12 and maxPer is set to
20%. The number of transactions varied from 10k to 50k in
steps of 10k. It can be observed that NegTidTreeMinerFLP
performed 21%, 84%, 57%, 35%, and 74% better than
NegTidTreeMiner. Due to variations in the number of PRPs
and non-existing itemsets generated, NegTidTreeMinerFLP
performance is also varied. Similar characteristics can also
be seen in the Pumsb dataset as shown in Figure 8(d). Here,
while keeping the L value constant at 9 and maxPer value
constant at 30%, the number of transactions varied from
10,000 to 40,000. For Chess dataset, the number of transac-
tions is varied from 2k to 3k by setting the L value constant
as 15 and maxPer kept constant as 20%. It can be observed
from Figure 8(c) the performance of NegTidTreeMiner was
improved by 87%, and 92% respectively when compared to
NegTidTreeMinerFLP.
Influence of varying number of transactions: The increase
in the number of transactions shows an increase in the num-
ber of PRPs generated which is evident in Figure 9(e), 10(e)
and (f). As the number of transactions increases, periodic 1-
itemsets are increased. For instance, in the case of Pumsb,
periodic 1-itemset is increased from 78 to 94 when the num-
ber of transactions varied from 10k to 40k. This increases
the number of recursive tree construction and traversal which
influences the mining performance.

4) Influence of varying maxSup threshold value: An in-
crease in maxSup threshold value increases the mining time
slowly as observed in Figures 4, 5, 6, 7, and 8. Even
though the number of rare 1-itemsets increases, the number
of periodic 1-itemsets remains the same. The periodic 1-
itemsets created for the Connect dataset is 24 when maxPer is
set to 30%, L value to 12, and maxSup is varied. As a result,
the nodes in NegTidTree remain the same. There is a small
increase in the number of PRPs generated which influences
the mining time slowly as shown in Figures 9 and 10.

V. CONCLUSION

PRPNegTidTreeMiner is the first top-down tree-based
strategy proposed in this paper to discover rare periodic pat-
terns. A novel tree structure, NegTidTree, is presented which
serves the dual purpose of finding support count as well as
periodicity information. The two distinct mining techniques

NegTidTreeMiner and NegTidTreeMinerFLP proposed, are
able to mine periodic rare patterns for various maxSup and
maxPer low threshold values. The study demonstrates that as
the maxPer or L value is raised, the quantity of periodic rare
itemsets increases. The findings exhibit that NegTidTreeM-
iner performs better when compared to NegTidTreeMinerFLP
for smaller datasets which produces more number of PRPs.
As the database size increases, NegTidTreeMinerFLP consis-
tently outperforms NegTidTreeMiner. For low thresholds, as
the number of non-existing itemsets rises, the performance
of NegTidTreeMinerFLP improves. In spite of an impressive
performance, the algorithm has its limitation based on the
size of the neg-rep database for sparse datasets. The limi-
tation can be overcome by a combined strategy using both
top-down and bottom-up tree traversal methods to discover
PRPs. The proposed work can be extended to mine PRPs
from the stream data using NegTidTree.
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