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A Multi-regional Spatio-temporal Network for
Traffic Accident Risk Prediction
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Abstract—Traffic accident risk prediction is a cornerstone of
intelligent mobility, and the main challenge is adequately
capturing dynamic spatial and temporal characteristics.
However, most existing approaches ignore two critical features
of traffic accident risk prediction. First, they introduce traffic
conditions only at strictly periodic times, thus weakening the
role of temporal continuity. Second, most methods consider the
spatio-temporal characteristics of local or global regions,
ignoring the effects of multi-regional convergence. Considering
the aforementioned issues, we put forward a model of fused
multi-regional spatio-temporal characteristics under periodic
translation (ATCGCN). The model fuses adjacent and multi-
adjacent regions to accurately predict road accident risk by
capturing dynamic spatio-temporal correlations. Inspired by
the first feature, this paper combines traffic data from adjacent
and cycle panning periods, captures their temporal
characteristics through GRU, and uses the attention mechanism
to characterize the space-time features of multi-adjacent regions
dynamically. To achieve the second feature, ATCGCN
introduces CNN and GCN to capture the spatial correlations of
adjacent and multi-adjacent regions, respectively, and then
fuses the spatial and temporal interdependence of the two
different regions to enhance the accuracy of traffic accident risk
prediction effectively. Through executing trials on a pair of
actual datasets from the real world, we highlight the efficacy of
each component in ATCGCN and demonstrate that its
predictive performance surpasses that of several existing
approaches.

Index Terms—Traffic Accident Risk, Multi-regional

Convergence, Cycle Panning Periods, Spatio-temporal
Characteristics

I INTRODUCTION

he increasing number of motor vehicles has led to a

corresponding rise in the frequency of traffic accidents.
This phenomenon has significantly impacted public life, as it
represents a primary contributing factor to traffic congestion.
Accordingly, accurate prediction of traffic accident risk has
emerged as an essential factor in the development of modern
cities. Such predictions enable individuals to make more
informed route-planning decisions and schedule their trips m
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-ore effectively. Additionally, they provide traffic managem-
ent departments with the information necessary to implement
timely measures to prevent traffic accidents and reduce
accident risk, thereby enhancing public safety. Given these
factors, improving the accuracy of traffic accident risk
prediction has become an urgent issue in academic research.
As such, this paper aims to explore an approach to enhance
the precision of traffic accident risk prediction, ultimately
providing insights and recommendations to optimize the
effectiveness of such models further.

In the early stages of research, researchers employed
statistical techniques in traffic prediction studies to anticipate
upcoming traffic scenarios by examining the pattemns in
historical time-series data. For example, the Autoregressive
Integrated Moving Average (ARIMA) model [1] has been
implemented to predict short-term flows during peak hours
by analyzing historical and real-time data. Meanwhile, the
HA model [2] was used to study time series prediction
performance. However, extracting non-linear features using
statistical methods in complex, large-scale traffic data was
difficult. As a result, scholars have begun to use Machine
Learning (ML), which can capture non-linear relationships,
for complex traffic data modeling. Olutayo et al. [3] analyzed
various factors related to the severity of traffic accidents
using decision trees. Tamerius et al. [4] studied non-linear
features that affect traffic accidents by analyzing the
interaction between rainfall and traffic flow. Yu et al. [5]
combined unsupervised learning feature extraction methods
with supervised learning feature classification methods and
proposed the H-ELM algorithm, which utilizes deep features
to enhance the precision of traffic accident forecasting.
Although ML has improved predictive performance to some
extent, capturing the time correlation of traffic accidents
requires further improvement and is heavily dependent on
feature engineering, which ultimately affects the reliability of
traffic collision risk estimation.

To fully capture the nonlinear time correlation of traffic
accident sequence data and further improve the performance
of ftraffic accident risk prediction, Deep Learning has
gradually been applied to this field, providing new ideas for
traffic accident risk prediction. Various neural network
methods, including Recurrent Neural Networks (RINN), have
been used to predict road accidents [6], to extract time series
correlation. While it excels in handling short-term time series,
it encounters issues like vanishing gradients when dealing
with longer time series. Therefore, some scholars have tried
to use Long Short-term Memory Networks (LSTM) [7] to
capture the long-term dependencies of traffic prediction. Ren
et al. [8] constructed a traffic accident risk prediction model
based on LSTM by quantitatively analyzing traffic accident
data and capturing its temporal cyclicity. Although LSTM
shows certain advantages m capturing time correlation
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[9][10]. These approaches emphasize the importance of
individual data points in traffic data but often neglect the
impact of non-linear spatial relationships among nodes within
the framework of the road network.

To more effectively capture the complex non-linear spatial
correlations within road networks, some researchers have
used Convolutional Neural Networks (CNNs) to address the
challenges of traffic prediction. For example, some scholars
can display traffic flows as images to predict {low and speed
over large areas of the network [11]. Moreover, several
researchers [12][13] have attempted to integrate CNNs with
RNN and its enhanced models for road accident prediction,
attaining favorable outcomes. Although CNN performs better
in feature extraction in Euclidean space, traffic road networks
have non-euclidean correlations, making it challenging to
extract the correlations between road sections fully. Therefore,
related scholars have introduced Graph Convolutional Neural
Networks (GCN) to apply spatial correlations of topological
structures, which are more suitable for traffic accident
prediction. Chen et al. [14] proposed the MRA-BGCN model
to extend convolution to more general graph structure data.
At the same time, STGCN [15] represented the problem with
a graph and captured spatial correlations through a complete
convolution structure, achieving better performance in
capturing spatial features than CNIN. However, the above
research has yet to capture spatio-temporal features fully, so
fully utilizing spatiotemporal features is the key to enhancing
the precision of traffic accident risk forecasting.

To capture spatiotemporal features more comprehensively,
relevant scholars have conducted in-depth research. Bao etal.
[16] proposed a spatiotemporal convolutional Long Short-
Term Memory Network (STCL-Net) by dividing the city into
grids of different sizes, which can predict traffic accidents on
a weekly, daily, and hourly basis, and effectively capture the
short-term spatiotemporal features of the city. Du et al. [17]
introduced a Hybrid Multiple DL Framework (HMDLF) for
short-term traffic flow prediction, effectively dealing with the
intricate nonlinear space-time relationships in multimodal
traffic data. However, the studies above only capture local
spatiotemporal features, ignoring the mutual influence of
non-adjacent regions in the urban road network.

Therefore, scholars extended the local area to the global
area. Sun et al [18] proposed an end-to-end Global
Spatiotemporal Graph Attention Network (GST-GAT) that
captures dvnamic spatiotemporal correlations through
"global interaction + node query," improving the accuracy
and speed of traffic prediction. Chen et al. [19] studied the
impact of unevenly distributed traffic conditions in different
spaces (suburbs and urban areas) on traffic flow prediction by
considering the complexity of different prediction tasks.
Wang et al. [20] apphed GCN to model global multi-scale
spatiotemporal correlations and similarities. Pan et al. [21]
proposed a ST-MetaNet model based on deep meta-learning,
which predicts traffic flow for all locations at once. Zhang et
al. [22] combined GCN with LSTM based on the road
network structure, using actual road segments as spatial
prediction units, effectively capturing spatiotemporal
correlations of traffic accident risks. Compared with previous
research, some scholars have extended the prediction unit to
the global area, effectively capturing spatiotemporal features
and improving the accuracy of traffic accident risk prediction.

However, the above methods capture only static
spatiotemporal features and cannot fully reflect the actual
traffic conditions in the road network, weakening the role of
long-term temporal dynamics in traffic accident risk
prediction.

Currently, the Attention Mechamsm (AM) has been
employed in traffic forecasting because of its remarkable
capacity for capturing temporal dependencies. It can handle
long sequential data better than RNN and avoid issues such
as vanishing and exploding gradients. In traffic accident
forecasting, the AM can bolster the model's capability to
extract the continuance and periodicity present in time series
data. For example, some researchers have combined the AM
with LSTM to enhance the performance of series prediction
[23]. Guoetal [24] proposed the AM-based Spatio-Temporal
Graph Convolutional Network {(ASTGCN) model, which
investigated the short-term, daily, and weekly time
dependencies and captured the dynamic space-time
correlations that affect traffic flow. Zhang et al [25]
introduced a Structure Learning Convolution (SLC) module
based on Attention Networks, which fully captured the
dynamic features that affect traffic flow prediction. Zheng et
al. [26] employed an architecture combining an encoder-
decoder structure with multiple spatio-temporal attention
blocks to capture the influence of time and space dimensions
on traffic conditions. They proposed a Graph Multi-Attention
Network (GMAN) model, effectively forecasting traffic
conditions for various nodes in future time steps. Yao et al.
[27] combined GCN with AM, allocating weights to nodes of
different impact levels and incorporating node-adaptive
learning to extract spatio-temporal features effectively.
Despite the existing methods combining GCN with Attention
Mechanism, which can capture dynamic spatio-temporal
features during strict periodic periods well, they neglect the
combination of traffic sequences in neighboring and period-
shifted periods, resulting in mnadequate capture of dynamic
spatio-temporal correlations across multiple regions.

The studies mentioned above have employed various
approaches to capture the spatiotemporal characteristics that
impact traffic accident risk by partitioning the road network
nto regions or using individual road segments as prediction
units, thus enhancing the performance of road accident risk
prediction to some extent. However, they must still integrate
the space and time characteristics of adjacent regions and the
changeable non-linear spatio-temporal correlations of
multiple neighboring regions into prediction. Instead, most
scholars have only considered local or global regions,
limiting the capacity to capture non-linear spatiotemporal
features fully. Furthermore, concerning the temporal
correlation that affects traffic accident risk, most scholars
have yet to consider the shift of long-period segments, only
focusing on strict periodicity, which weakens the continuance
and periodicity of the temporal sequence and reduces the
accuracy of traffic collision hazard.

To overcome these difficulties, this paper presents a model,
namely the Attention-based Temporal and Cross-regional
Graph Convolutional Network (ATCGCN), which integrates
spatiotemporal features from multiple regions to predict
future traffic accident risk. The model takes adjacent time
periods and long-period shifted traffic sequences as input.
The spatiotemporal features of adjacent regions are captured
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using a combination of CNN and GRU. In contrast, multiple
neighboring regions' dynamic non-linear spatiotemporal
correlations are captured using an Attention-GRU-GCN
model. Finally, the spatiotemporal features of the two
different regions are weighted and fused to reduce the impact
of unnecessary features, such as little fog and low-traffic
volume roads, on the model prediction, thereby improving the
accuracy of traffic collision hazard prediction.

The primary contributions of this study are as follows:

(1) The fusion of spatiotemporal features from adjacent
regions and the dynamic nonlinear spatiotemporal correlation
from multiple neighboring regions enhance the prediction of
traffic collision hazards. The model effectively captures both
short-range and extended-range temporal dependencies,
along with spatial characteristics hike road hierarchy and
connectivity, across multiple scales.

(2) The Dynamic Time Warping (DTW) algorithm [28] and
the road network spatial graph are utilized to build a
spatiotemporal relation graph. The adjacency matrix 1s
updated into the Laplacian matrix used in GCN to more
effectively represent the space relationships within the road
network.

(3) By integrating the periodic shift of peak periods and the
neighboring traffic sequence and adopting the Attention
mechanism, this study dynamically expresses various spatio-
temporal features.

(4) Experimental results on NYC and Chicago datasets
demonstrate that the ATCGCN model outperforms other
existing methods regarding prediction performance.

II THEORETICAL BASIS

A. Problem Description

The road network graph @ 1s constructed by partitioning
the similar road segments in the network into a < b regions.
An undirected graph G =(V,E,A) is then formed by using
these regions as nodes to describe the network topology of
the road network &G consists of a node set
with n nodes, an

V ={w,v; -,v,} edge set

E ={ e, €13, €5} Tepresenting the connectivity between
regions % and §, and an adjacency matrix Ac R*"* for
the graph, which is constructed using DTW (X, 4, Xy,0) t0

establish the similarity between two road segments.

When predicting traffic accident risk, we often define the
severity of a traffic accident in a particular area during time
interval t by the number of casualties in that area [29], which
can classify into three categories: minor injuries, moderate
njuries, and severe injuries.

This study aims to predict traffic collision hazards in all
related neighboring areas during time interval T'+1 by

utilizing the historical data of time interval T'. The model
takes the features Xz R*®?% of all neighboring areas
during time interval T as input, where d represents the

feature dimension of each area, including traffic accident risk,
weather conditions, traffic volume, POIL, and other relevant
features.

T
e e
»
h T+l
m
Fig.l. Time series

In addition, it is necessary to incorporate both adjacent
time intervals and cyclically shifted time intervals. As shown
in Fig. 1, this includes the h adjacent time intervals, as

indicated by the blue section, and the m cyclically shifted

time intervals, as indicated by the light blue section.

— spatial correlation — temporal correlation

-1 h-I h

Fig.2 Temporal correlation

Fig. 2 illustrates that the traffic conditions in the previous
time interval strongly correlate with those in the next time
interval. The urban road network i1s complex, and road
segments in a tegion have a high degree of connectivity,
especially for short segments, which are prone to widespread
congestion during peak hours. Moreover, the congestion
dissipation rate is slow, significantly increasing the risk of
traffic accaidents. Additionally, POIs such as schools and
shopping malls around roads can induce significant traffic
flow, and there are mutual influences among them. For
example, Node 1's traffic conditions are affected by Node 2,
Node 5, and Node 6. In densely populated urban areas, even
sub-adjacent nodes' traffic conditions can still affect each
other, such as Node 5 having a particular impact on Node 1.

Hence, researchers partition the entire urban traflic
network into various areas according to the city's latitude and
longitude. The author uses traffic historical sequence data to
analyze the spatiotemporal characteristics of nearby and
multiple neighboring regions and predict the likelihood of
traffic accidents in future time intervals. Finally, the research
problem 1s to forecast the region feature graph Gpii at

T+1 time based on the given region feature graph
(G\,G2,++,Gy) for the previous T time intervals, as
shown in Eq. (1).

Grn= f[(Gth,'"aGT),XT] (1)

Where:Gr € R****¢ s the regional feature map at the time
T, XrcR*%? s the region containing d-dimensional

features, and f is the road accident risk prediction model.

B. Temporal Characteristics

Traffic accidents within a region are not only influenced by
adjacent ime intervals but also exhibit periodic trends.
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Fig.3. Accident periodicity

Fig. 3 depicts the count of traffic accidents that took place
on the same day for the previous three weeks, revealing a
higher occurrence of accidents during daily peak hours, thus
indicating the cyclic nature of traffic accident risk prediction.

However, capturing only long-period features of the same
time interval may only partially reflect the long-term time
dependence. Typically, the period between 11:00 and 14:001s
considered a peak period, with a higher risk of traffic
accidents. However, as shown in Fig. 3, the number of
accidents between 10:00 and 11:00 and 14:00 and 15:00 1s
also relatively high. Therefore, capturing only strict period
features of the same time interval will not fully reflect the
cyclic continuity of time features. Consequently, in addition
to capturing strict period time correlation, it is necessary to
research periodic shifts by adding Z time intervals to the same
time interval of the previous m weeks. For example, for the
period between 11:00 and 14:00, two-time intervals are added
before and after two-time points, 1.e., from 10:00 to 15:00, to
capture long-term time dependence.

C  Map of Space-time Relationships

The DTW algorithm calculates the likeness between two-
length time series data by employing dynamic programming.
It constructs both one-to-many and many-to-one matches to
mimmize the cumulative distance between them, deriving the
time series’ similarity. This paper uses the idea to construct a
time correlation matrix of traffic accident volume between
any two nodes in the road network, where each node
represents a segment of temporal sequence data. The author

compute the distance between any two nodes ¢ and j by
denoting the traffic accident volumes of node 4 and § as

X« and X, .. respectively, and using Eq. (2).

d(t'; l) - |X1J.-,T,a - Xv-,T,al (2)

¥

Where: X, 7,0 1s the traffic incident volume of node ¢ at

the period T .
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Fig.4. Path matrix

As shown in Fig. 4, the distance obtained by Eq. (2)
calculates the mimimum path using dynamic programming,

representing the similarity between two-time series.
L (8,0 — 1)+

Ls.—1,u)+ | (3
L(Sk —1 YU — 1)

L(-?ka”k) = d(3k1vk) + min

DTTW(X,,‘,G,XU:,“):M‘!:R [L(X%,G:Xu,,a)] (4)

Where: (8,v) represents the coordinates of the points
passed in the path matrix shown in Fig. 4, and L(ss,t)

denotes the minimum distance at the (84,%%) coordinates,

thus obtaining the time correlation matrix, as shown in Eqg.
().
DTW(X, ., X,.0) '+ DIW(X, 01X, 0)

: . - (5)
MW(X,,”,,,X,,[,,) o DTW(X,,”,,,,X,,_,,,)

Fig.5 Traffic road network map

To more accurately represent how road networks change
over time, this research uses the time correlation matrix
obtained from Eq. (5) in conjunction with the spatial road
network (as depicted in Fig. 5) to create a temporal graph
denoted as S. V represents the set of nodes in the spatial road
network graph. D 1is the set of temporal similarity degrees
between nodes. The smaller the temporal similarity degree
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value, the closer the traffic accident volumes between the two
nodes. By setting a given similarity degree threshold, any two
nodes can be judged whether they are similar, thus
establishing a temporal correlation matrix as expressed in Hq.

6).

1, DITW(X,, . Xe,0) < Sihroshotd

4 (v.-,‘Uj)Z{O ©)

, others

Where: Ar(w;,v;) is the temporal correlation matrix, and

DTW isthe temporal similarity between nodes.

Fig. 6.

Spatio-temporal relationship diagram

To capture the spatial relationship of nodes within the
context of spatiotemporal relationships, we propose

constructing a spatiotemporal relationship graph 8,(V,A4,)
by combining a temporal and spatial graph. Specifically, V
represents the node set in the spatial graph, while A4,
signifies the combined adjacency matrix of the spatial graph
integrated with the temporal correlation matrix. Using S,

we acquire the spatial similarity of the transportation grid and
subsequently select the top K nodes with the highest
similarity scores to construct an undirected road network
graph that belongs to a certain region, as depicted in Fig. 6.

1, A(w,v)=1lorAz(v,v;)=1

7
0, others @

Ay (v,v5)= {

Where: A(v,v;) is the
transportation grid diagram and A, {(w;,¥;) is used to update
the Laplacian matrix of the GCN.

adjacency matrix of the

I  MODEL BUILDING

A. Model Framework

Fig. 7 depicts the proposed ATCGCN model framework in
this study. The ATCGCN model comprises four inputs:
traffic network, temporal features, vehicle collision volume,
and outside influences. The road network has spatial
correlations, and this study extracts spatial features of
adjacent regions and multiple neighboring regions separately.
The spatial features of adjacent regions use the grid area as
the mput of CNN. In contrast, multiple neighboring regions
employ GCN to capture spatial features, and the proximity

matrix of the space-time relationship graph replaces the
Laplacian matrix of GCN. In the temporal feature extraction,
neighboring periods are considered, and long-period shifted
periods are incorporated, providing near-term and long-range
temporal relationships for forecasting traffic accident
susceptibility. Moreover, the AM is used in multi-
neighborhood areas to capture the dynamic spatial and
temporal interrelations of neighboring periods and periodic
shift periods. Traffic accident volumes can serve as the basis
for determining accident risk levels and calculating road
section similarities. This study also incorporates outside
influences such as weather, temperature, and POI to boost the
model's capacity for generalization. Finally, the spatio-
temporal correlations of two different spatial neighborhoods
are weighted and fused, and the forecast is generated via a
densely connected layer.

g ’thm_m‘
E d 8 @ m s
T:l::l;:—b l¢_Traffic accidents | 5
== % FPIW(X,X} - DIW(X,X)]
Periodic translation ’lmﬁ(x,n DTW‘(X,XL

Af("f‘”’i]:l

i
@ D

W d
One-Hi

GUN

Fig. 7. ATCGCN-Risk model framework

B. Capture of Adjacent Areas Features

B.1Spatial Feature

Since regions tend to have similar POl and road features
[30] and adjacent regions are directly connected and features
relatively concentrated, we use regions as nodes and utilize
local CNNs to capture adjacent region features, achieving
extraction of spatial correlations. We divide the target region
i and its adjacent regions at period T into @b size and

take the features X, of the region as inputs. Eq. (8)
defines the convolutional layer of the local CNIN.

Xk p=ReLu{W* % Xz +b%) (8)

Where:W* and b* are learnable parameters, and the spatial

correlation of the adjacent region Xf ¢ are output after the
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convolution of the stacked k layers.

B.2. Spatio-temporal Corvelation

R
-

2
S TEER >

Cycle translation status

| e ‘1—2X3+s t—1X3+z | iX3+2z

Fig. 8.

To apprehend the time-related associations of
neighboring and periodically shifted periods, the authors
emploved a GRU to grasp the time-based dependencies of
road accident risks over time. As shown in Fig. 8, we
utilize the features of adjacent periods and z-period shifted
cycles to predict the traffic accident risk of period T'+41.
Specifically, they extracted the features of h periods,
such as £—0, t—1, and ¢+—2, as the features of
neighboring periods and the features of m periods, such
as tX3+z, t—1x3+2z, and £t—2x3+4 2z, as the

features of periodically shifted periods. Finally,
T(h+m) pericd information was input into the GRU
module to acquire near-term and far-term time-related

dependencies. Eq. (9) describes the computational process
of the GRU.

gt =GRU ([ X34 Po), g ) ©)

Where: X507 represents the spatial feature output of region

i at time T, while Pg# represents outside influences
m,z
gﬂ‘,T

spatiotemporal feature of the adjacent region i after a

such as weather and holidays. denotes the

periodic shift of 2 periods.
C. Capture of Multi-neighbor Regions Features

C. 1. Spatial Feature

@,

@\‘

X3

X4

inputs —= hidden — outputs
_____ S S S
| I
; i
L oo e v |
v I vy ’ -— i
i 46 DIW—® :
RUSS A i
Fig. 9. Spatial features of multi-neighborhood areas

The urban road networks' structural characteristics are
similar to the graphs' topological structure. However, due to
the geographical conditions of roads and the impact of
surrounding infrastructure, the spatial influence between
some adjacent regions may be weaker than between non-
adjacent regions. Meanwhile, traffic congestion or temporary
traffic control in non-adjacent areas may significantly impact
adjacent downstream areas. Therefore, we employ the idea of
DTW to divide the road network mnto multiple regions and
combine it with GCN to capture spatial correlations. As
shown in Fig. 9, this approach captures the spatial features of
multiple neighboring regions.

In Part C of Section II, the authors constructed a
spatiotemporal relationship graph based on the DTW
algorithm. They updated the GCN Laplacian matrix with
A,(v,v;) to extract spatial dependencies among multiple

neighboring regions based on GCN features. Eq. (10)
provides the formula for GCN computation.

F=RELU(A,RELU{A,X;W°+ " )W'+b") (10)
Where: A, € BR**™is the adjacency matrix constructed by
A(v;,v;) and A, (v;,v;) . W cR**
parameters of layer 0, 8°< R* is the adjustable parameters

of the layer 0, d,
FER*™¥% i3 the spatial feature output of the multi-

is the learnable
1s the convolution kemnel size,

neighborhood region , and the activation function is RELU .

C.2. Dynamic Spatio-temporal Correlation

Similarly, after obtaining the spatial correlations among
multiple neighboring regions, the authors utilized GRU to
capture the time characteristics of adjacent periods and
periodically shifted periods. They also use Attention to
compute node weights, enabling the dynamic expression of
spatiotemporal features and ultimately improving the
accuracy of vehicle collision hazard forecasting, as shown in

Eq. (11).
Gri=GRU((frf;

]y Graf 1 (11)

Where: fi# < R* is the output of GCN, d; indicates the
quantity of kernels in the I layer convolution kernel, while
GIM_1 corresponds to the output from the previous moment,
G2 is the region's output in the period T, and Py

indicates the external factors.

Fig. 10. Attentional mechanism
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In actual road networks, spatiotemporal features are
dynamically changing, and neighboring nodes have different
degrees of influence on the target node, which can be
adaptively captured by attention to capture the correlations
between regions. As shown in Fig. 10, different weights are
dynamically assigned to diverse nodes (regions) at varying
time steps. Additionally, we calculate the weighted sum of
node w; and provide its new feature vector in Eq. (12).

,:::Tcr( > aprx Wk G;;:-;) (12)
weV,zeZ

Where: a7 denotes the attention score of node w; at the
period with periodic translation z, W is a learnable
parameter, ¢ is the activation function, and Gy is the

output of dynamic spatiotemporal correlations among
multiple neighboring regions.
Eq. (13) is the weight factor of the node.

ems = a(WG M, WG ) (13)

Where: a(-) denotes the function used to compute the

relationship between a pair of nodes and &% is the weight

coefficient of adjacent nodes #; to w;.

Eq. (14) is normalized by softmax.

ezp (ems)

Y emplens

v,eEV,zeZ

Ot = (14)

At this peint, aq7is brought into Eq. (12) to update the
new feature vector.

To fully capture the dynamic spatio-temporal correlation,
we employ a multi-headed attention mechanism by
combining vectors of different single attentions, as shown in
Eq. (15). This mechanism allocates attention to the target
node. Also, it considers neighboring nodes, thus avoiding
excessive attention concentration on the self-position.

Grr=11010(}, ., ot x W* % G2)  (15)

Where: ofg%" is the importance of the u head attention

mechanism, and W™ is the learnable parameter.

D. Fusion Prediction

We perform a weighted combination to fuse the
spatiotemporal correlations of two different spatial
neighborhoods. The prediction unit preserves the spatial and
temporal characteristics of adjacent regions and the dynamic
spatio-temporal features of multiple neighboring regions. As
a result, a fully connected layer is utilized to capture the
complex nonlinear relationships better, as shown in Eq. (16).

Where: Wi and W, are the adjustable parameters, FC is

the fully connected layer, and Y represents the traffic

accident risk of all relevant neighborhoods in the period

T+1.

D.1. Loss Function

Throughout the leaming phase, to make the predicted
results as close to the ground truth as possible, we adopt a
loss function to reduce the error. Also, assign weights to
samples with different traffic accident risk values during
calculation. Eq. (17) 1s the loss function.

LOSS(V,0) = 5 X, (Y@ Y @) (7)

Where: ¥ denotes the observed value, Y is the model
output value, and g; means the traffic accident risk-

weighting factor.

IV EXPERIMENTAL ANALYSIS

A. Experimental Data

This paper utilizes two traffic accident datasets, the NYC
and Chicago datasets, which contain information on the
latitude and longitude of the accidents, ime, and number of
casualties. Since taxis often leave one area and enter another
after some time, the number of times they leave or arrive ata
certain area 1s used as the traffic flow information. The risk
level of vehicle collisions is divided according to the number
of casualties. Other discrete data, such as POI data, weather
conditions, and holidays, are normalized through One-Hot
encoding. Table 1 provides an overview of the datasets.

TABLE IDATASET OVERVIEW TABLE

Data Type Features
Accident Data Longitude and latitude, number of casualties, etc.
Traffic flow Number of cab inflows/outflows
POI Data Schools, shopping malls, neighborhoods, ete.
Weather Temperature, humidity, ete.
Holiday Yes, No
Risk Level Mild, Moderate, and Severe
Peak time 8:00-13:00, 16:00-21:00

B. Evaluation Indicators

We employ six evaluation metrics in this study: Mean
Square Error (MSE), Mean Absolute Error (MAE), Root
Mean Squared Hrror (RMSE), Recall, Precision, and F1-
Score. The specific definitions are as follows:

MSE=37_ (s ) /n (18)
MAE=37 \|ly:—§l/n (19)
RMSE—/ Y7 (y:—4)/n (20)
Recall =TP/TP+ FN (21)
Precision = TP/TP + FP (22)
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Fl— 2 * Precision * Recall
~ Precision + Recall

(23)

Where: y; isthe observed value, §; isthe output value, TP

is the traffic accident that occurred, and the prediction is
correct, FIN is the traffic accident that occurred, but the
forecast is wrong, FP is the traffic accident that did not occur,
but the forecast occurred.

C. Parameler Setting

This study used the PyTorch framework to implement the
proposed model. We split the dataset into three sets: 60% for
training, 20% for validation, and 20% for testing. We set the
size of each region to 1km x<1km , the adjacent period

T =3, and the long period m set to 3. We designed the

GRU with two layers and set the number of road similarities
for building an undirected road network graph to K =10,

with two convolutional lavers. We set the periodic translation
periods to 2=0.z2=1, and 2=2. The learning rate was

set to 0.0001, batch size to 16, epoch to 20, and step to 350.
Additionally, we set the weights for different risk levels to
{0.05, 0.25, 0.50%.

C. 1. Parameter Analysis

The selection of hyperparameters is crucial for network
traiming. As a rtesult, this study conducted further
optimization analysis on the GRU hidden layer unit number,
GCN filter number, batch size, and epoch on the Chicago
dataset.

(1) The count of hidden units within the GRU layer has an
impact on the efficiency of the model.
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Fig.11. Number of hidden layer cells

We configured the GRU with 16, 32, 64, 128, and 256
hidden units, respectively. Fig. 11 illustrates that with 256
hidden units, both Recall and F1-Score evaluation metrics
outperformed those with other quantities of units.
Consequently, we opted for 256 as the count of hidden units
in the GRU.

(2) The effect of GCN filter count on the model.
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Fig.12. GCN-filters

As shown in Fig. 12, when we set GCN-filters to 64, the
RMSE and MAE were at their minimum, and the F1-Score
was also the mmimum, with a value of 46.47%. However,
when GCN-filters were set to 32, its RMSE and MAE were
the second smallest, and its F1-Score was the highest,
reaching 49.55%. Therefore, setting GCN-filters to 32 made
the ATCGCN model optimal.

(3) The effect of Batch-size on the model.
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Fig. 13. Batch-size

Based on the results in Fig. 13, increasing batch size leads
to higher computational cost and lower training performance
due to a larger nput size per batch. On the contrary, using a
batch size of 16 allows for a smaller input size per batch,
which improves gradient descent accuracy and training
efficiency. Therefore, a batch size of 16 is the optimal choice
to achieve the best performance for the ATCGCN model.

(4) The effect of epoch value on model training,

It 1s crucial to halt the traming throughout the model
traiming phase when the loss function no longer demonstrates
substantial alterations. Doing so can improve the training
efficiency while preventing the propagation of erroneous
features to subsequent predictions. In this study, we trained
the model on the Chicago dataset for 17, 18, 19, and 20
epochs and analyzed the variations in the loss function to
determine the optimal training steps.

Based on the results presented in Fig. 144, 14b, and 14c, it
can be inferred that the loss value exhibits a relatively stable
trend when the step size 1s approximately 200 for each epoch,
whereas increasing the step size results in fluctuations in the
loss value.
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Fig. 14. Vanation of loss for different values of epoch

Hence, optimal training performance is attained with a step
size of approximately 200, independent of the epoch.
Specifically, when the epoch is 19, the training loss value
increases smoothly with a step size of around 200. Moreover,
Fig. 14d indicates that when the epoch is 20, and the step size
is around 200, the trend of the loss value remains stable for a
longer period, suggesting that the model has reached its
optimal performance on the training set.

(5) Effect of epoch value on model validation.

After analyzing the influence of epoch value on model
training, we determined that the model reaches its best
performance with an epoch value of 20. We carried loss
function experiments on 20% of the data randomly selected
from the evaluation set to verify whether the training set has
genuinely reached the optimal state.
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Fig. 15. Loss vanation of the validation set

As shown in Fig. 15, the loss value decreases in the epoch
range of 15 to 20, reaching its minimum when the epoch
value approaches 20. Therefore, our model achieves optimal
performance when the epoch value is set to 20.

D. Results Analysis

D.1. Long-period Advection Correlation Analysis

(1) NYC data set validation

Experiments were executed using the NYC dataset to
assess the effectiveness of our model in forecasting traffic
accident risks following a temporal shift. Specifically, we
considered three scenarios: z—=0 for strict periodicity,

z=1 for periodicity shified by one-time intervals, and

z—=2 for periodicity shifted by two-time intervals.
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Fig. 16. Comparison of translation periods
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Fig. 16 shows that when z=2 , the error metric is

relatively lower than the other two shift periods, indicating
superior performance. Although the MAE value for 2—2

is slightly lower than the other two shift periods, it has little
impact on the results, as traffic accidents do not follow a
smooth increasing pattemn. And extreme weather conditions
will influence accidents, such as heavy rain and fog, lead to
outliers in the accident dataset. Moreover, the MAE value
shows a consistent downward trend. Therefore, the proposed
model achieves optimal performance when z=2.

(2) Chicago dataset validation

To further confirm the efficacy of accounting for periodic
shifts in our suggested model (ATCGCN), we analyzed F1-
Score and Precision on the Chicago dataset. Together with the
analysis of the validation set's loss value shown in Fig. 15, we
determined that the best efficiency of the model is obtained
when the epoch is set to 24.
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Fig. 17. Fl-Score

According to Fig. 17, the Fl-Score gradually increases
after each epoch of training, which serves as a comprehensive
evaluation metric combining precision and recall. A higher
F1-Score value indicates better performance of the proposed
model. When z=2, the F1-Score demonstrates a more

tavorable trend than other time periods. If only considering
the neighboring traffic conditions without taking into account
the periodicity, the F1-Score value remains lower than that of
longer cyclic patterns. Thus, the proposed model achieves the
optimal performance when z=2.
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Fig.18. Precision

As per the outcomes depicted in Fig. 18, it is noticeable
that the model reaches the greatest precision at epoch 20
when z—2, and it remains stable at epochs 22 and 24. It

confirms the proposed model performs optimally when
z=2 and the epoch is 20. The precision performance also

indicates that the model accurately predicts traffic accident
risks.

D.2. Comparative Analysis of Benchmark Models

This study evaluates the proposed ATCGCN model by
contrasting it with four established baseline models:

(1) Support Vector Machines (SVM) [31].

(2) Gated Recurrent Unit Network (GRU).

(3) Long Short-Term Memory Network (I.STM).

(4) T-GCN model [32], which models both spatial and
temporal correlations.

(5) ConvL.STM model [33], which captures spatiotemporal
features of local regions.

Table 11 displays the comparative outcomes between the
ATCGCN and other models using the NYC dataset.

According to the experimental results in Table II, the
proposed ATCGCN model outperforms other models in
terms of MSE, MAE, RMSE, and Recall. The results indicate
the relatively poor predictive performance of SVM, GRU,
and LSTM models. when comparing the ATCGCN model and
the LSTM model, the LSTM model's MSE 1s 0.675 higher
than the ATCGCN model's, suggesting that neglecting spatial
features while considering only temporal dependence leads to
a decline in prediction accuracy. Although the T-GCN model
improves the model's predictive accuracy by capturing spatial
and temporal correlations, it ignores the translational of time
series for the periodic window, resulting in an MAE 0.5660
higher than that of the ATCGCN model. The ConvLSTM
model only considers local spatiotemporal features and fails
to capture the dynamic spatiotemporal correlations of
multiple neighboring regions, resulting in an RMSE 0.2296
higher than that of the ATCGCN model.

Given this, in this paper, we investigate the periodic shift
of time series and integrate the spatio-temporal features of
neighboring and multi-neighborhood regions. The ATCGCN
model achieved superior predictive performance.

We used the same parameters and conducted experiments
on the Chicago dataset. Table NI demonstrates that the
ATCGCN model has improved the prediction accuracy to a
certain extent and outperformed other methods.
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Fig.19. Recall of different models in NYC/Chicago
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TABLE. Il COMPARATIVE ANALY SIS OF VARIOUS MODELS ON THE NYC DATASET

uation index
MSE MAE RMSE Recall%

Models
SVM 5.5543 7.6142 7.6413 28.72
GRU 5.2596 TAT6T 7.4273 30.53
LSTM 54164 7.5236 7.5448 30.26
T-GCN 5.3642 7.4961 74726 31.51
ConvLSTM 4.8793 7.2483 7.1154 32.41
ATCGCN 4.7414 6.9301 6.8858 33.03

Table. I COMPARISON OF MODEL PERFORMANCE ON THE CHICAGO DATASET

aluation index
MSE MAE RMSE Recall%
Models
SVM 7.8261 8.3175 8.7823 18.34
GRU 7.6100 81673 8.6764 18.95
LSTM 7.7052 8.1726 8.7462 19.21
T-GCN 7.6275 8.0014 8.6244 19.47
ConvLSTM 73173 7.8531 8.584¢6 19.53
ATCGCN 71572 7.7136 8.4600 21.02
As shown in Fig. 19, the recall of our proposed method on 30 1 e I
both datasets exhibits an upward trend, indicating that the 25 | ;
correctness of predicting positive traffic accident samples —_
. . . I — -
gradually improves. This experiment verifies the 3 20
generalization ability of the ATCGCN. Therefore, the model pqz 15
can be uiilized to predict road accident risk in different cities. 104
.3, Analysis of Ablation Experiments 51

(1) Different component validation analysis

To demonstrate the effectiveness of fully considering the
spatiotemporal features of adjacent and multiple neighboring
regions, three experiments were conducted on the NYC
dataset in this study:

(a) TCGCN, a model without an attention mechanism.

(b) TACCN, a model that only considered the dynamic
spatiotemporal features of adjacent regions.

(c) AGCN, a model that used strictly periodic data without
using period-shifted data.
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Fig. 20. Comparison results of variant models

TCGCN TACCN

Fig. 21. Comparison results of variant models

Fig. 20 and Fig. 21 show certain changes in the evaluation
metrics, including MAE, RMSE, and Recall, as different
model components are progressively reduced. The results
indicate that incorporating the attention mechanism and
dynamic spatiotemporal features of multiple adjacent regions
into the model can substantially enhance predicting traffic
accidents.Moreover, the experiment results are unsatisfactory
when removing the cyclically shifted data, as it weakens the
long-period traffic accident volume trend. Therefore, all the
above components can effectively enhance the precision of
traffic accident risk forecasting.

(2) Different neighborhood validation analysis

To better demonstrate the effectivencss of fusing
spatiotemporal correlations of adjacent and multiple adjacent
regions, this paper analyzes the impact of captured
spatiotemporal features in different regions on model
accuracy through changes in error metrics on the NYC
dataset.
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Fig. 22. Variation of error in different neighborhoods

As shown in Fig. 22a, both RMSE and MAE show an
upward trend when the epoch is 12. The experiment has
already ended, indicating that considering only the
spatiotemporal features captured by neighboring areas is
mnsufficient. If we only consider the spatiotemporal features
of multiple neighboring areas, the model will extract
unnecessary features, leading to a longer training time, as
shown in Fig. 22b. Only when the epoch value reached 80 did
RMSE and other indicators drop below 10, which may lead
to overfitting. As shown in Fig. 22¢, by fusing the
spatiotemporal features of these two types of areas for
prediction, MAE and RMSE can converge quickly, thereby
capturing more valuable features and improving the accuracy
of the model's predictions.

V  CONCLUSION

This study focuses on investigating the problem of
vehicular collision hazard forecasting by capturing the
spatiotemporal correlations across multiple regions. To this

end, we propose the ATCGCN model, which combines the
feature learning of adjacent and multiple neighboring regions
to obtain the spatiotemporal correlations that impact traffic
accident risk. Experimental outcomes show that the
ATCGCN effectively overcomes the limitations of only
considering adjacent or multiple neighboring regions and
exhibits good convergence performance. Moreover,
introducing the attention mechanism in multiple neighboring
regions to capture the dynamic features of long-period shifts
leads to more accurate traffic accident risk prediction,
resulting in more consistent decision-making with real-world
scenarios.

The sensitivity analysis of the model components shows
different effects of incorporating different components into
the ATCGCN model, which improves the prediction accuracy
to different degrees. The primary characteristics include the
following.

(1) To address the issue of time cycle continuity. We flatten
the long period of the time series based on the adjacent times
and dynamically represent the spatio-temporal characteristics
by the AM. In this paper, we verify the effectiveness of period
shifting on the NYC/Chicago dataset, respectively, and the
experiments show that the model performance is optimal
when z=2.

(2) We obtain the TCGCN, TACCN, and AGCN models by
removing different components to analyze the influence of
various components on the model. The evaluation metrics
indicate that considering the dynamic spatiotemporal features
of multiple neighborhoods and the AM can enhance the
prediction performance of the ATCGCN model. Additionally,
experimental results were more favorable when incorporating
a periodic shift.

(3) To enhance the precision of forecasting traffic accident
risk. This study employed two model structures: CNN+GRU
and GCN+GRU+Attention. The former captures the
spatiotemporal features of adjacent areas, while the latter
captures the dynamic nonlinear spatiotemporal correlations
among multiple adjacent areas. Finally, the spatiotemporal
features of the two models are weighted and fused. Compared
to the baseline model, our model performs better in
evaluation metrics such as MSE, MAE, and Recall.

Despite the ATCGCN model demonstrating an
enhancement in prediction outcomes compared to the
baseline model, its predictive scope is limited to the regional
level. Tt has vet to be narrowed down to the level of individual
road segments, which is a limitation of this study.
Furthermore, factors such as driver inattention, pedestrian
non-compliance with traffic rules, and other random events
may contribute to traffic accidents in traffic networks.
Therefore, future research must consider these stochastic
factors to enhance the model's generalizability.
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