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Abstract—We propose an index and relative normaliza-
tion for multicriteria situations by considering the maximal-
usefulness among election vectors. We demonstrate that these
two indexes can be analyzed using a reduction and introduce an
alternative formulation for the normalized incremental index
using an surplus function. Additionally, we present various
dynamic processes for the normalized incremental index based
on the reduction and surplus function. Finally, a different
normalization are also considered by employing conditional-
scales.

Index Terms—Multicriteria situation, maximal-usefulness, re-
duction, surplus function, dynamic process.

I. INTRODUCTION

In the context of traditional games, power indexes can be
defined to quantify the political power of each member within
a voting mechanism, such as a political party in a country
or a parliament in a confederation, where each member has
a distinct number of votes. Various results on power indexes
can be found in the literature, such as Banzhaf [1], Dubey
and Shapley [4], Haller [5], Hwang and Liao [7], Lehrer [9],
Liao et al. [12], van den Brink and van der Laan [2], among
others.

A multi-choice game is a natural extension of a traditional
game, where each member has multiple operational elections.
Several generalized allocations and corresponding results for
the core, the equal awards notional surplus dependability
(EANSC), and the Shapley value for a given member under
multi-choice behavior have been proposed by Cheng et al.
[3], Hwang and Liao [6], Huang et al. [8], Liao [10], [11],
and Nouweland et al. [15].

Under the framework of theoretical-game theory, depend-
ability is a fundamental property of viable solutions that
guarantees their robustness under different specifications of
the return structure. dependability requires that the value
assigned to a member dependabilityor a coalition should not
depend on the return vectors of the other players or coalitions
that are not involved in the bargaining. This property reflects
the intuition that the outcome of a negotiation should not
be affected by the behaviors or outcomes of parties that
are not participating in the negotiation. dependability has
been axiomatized via different ways, basing on the definition
of the residual game, which is the game that arises when
the returns of the fixed players are subtracted from the
original game. Several well-known solution concepts, such
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as the core, the nucleolus, and the Shapley value [16], have
been demonstrated to fit various dependability axioms, such
as the additivity, dummy player, proficiency, and covari-
ance axioms. The dependability property has also motivated
the study of reductions, which are obtained by restricting
the coalition structure or the set of feasible outcomes of
the game. Reductions allow for a simpler analysis of the
dependability properties of a given solution concept, and
can be used to derive explicit formulas or algorithms for
computing the value of the solution. Differ from axiomatic
processes, dynamic processes also can be analyzed that
lead the members to specific solutions, generating from an
proficient return vector. Stearns [17] laid the foundation for
a dynamic resolution in this area.

Under real-life situations, even if the same person or group
of people take the same action in a game, they would produce
different utility and consequently receive different returns
based on different contexts. For example, a teacher and an ac-
countant would have different levels of influence in a school
environment, so, based on their influence respectively, the
teacher should receive a higher proportion of returns during
the allocation stage compared to the accountant. Therefore,
considering different contexts and assigning corresponding
scales based on influence seems reasonable.

The motivation of this paper is to extend the power indexes
under multi-choice behavior and multicriteria situation simul-
taneously. The major outcomes of this article are as follows.

• The paper firstly considers the context of multicriteria
multi-choice games in Section 2, and further introduces
a power index and its normalization, the multi-choice
incremental index and the multi-choice normalized in-
cremental index, by considering the maximal-usefulness
among election vectors.

• An extended reduction is proposed to axiomatize these
indexes in Section 3, and an alternative formulation
for the multi-choice normalized incremental index is
presented using surplus functions.

• The paper also demonstrates that the multi-choice nor-
malized incremental index can be approach by members
who start from an proficient return vector using reduc-
tion and surplus function respectively in Section 4.

• Taking into account different situations and their re-
sulting variations in influence in Section 5, we apply
conditional-scale function to present the multi-choice
weighted normalized incremental index. Related ax-
iomatic processes also demonstrate mathematical cor-
rectness and practical applicability for this weighted
normalization.
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II. THE MULTI-CHOICE INCREMENTAL INDEX AND ITS
NORMALIZATION

Let UM be the universe of members. For i ∈ UM and
ei ∈ N, Ei = {0, 1, · · · , ei} can be regarded as the election
space of member i and E+

i = Ei \{0}, where 0 means non-
participating. Let M ⊆ UM and EM =

∏
i∈M Ei be the

product set of the election spaces of all members throughout
M . For all K ⊆ M , we define ϖK ∈ EM is the vector with
ϖK

i = 1 if i ∈ K, and ϖK
i = 0 if i ∈ M \K. Indicate 0M

the zero vector in RM . For t ∈ N, let 0t be the zero vector
over Rt and Nt = {1, · · · , t}.

Let (M, e, d) be denoted as a multi-choice game, where
M with 0 < |M | < ∞ represents the set of members,
e = (ei)i∈M is the vector that represents the total elections
for each member, and d : EM → R is a characteristic
mapping. The mapping d fits the condition d(0M ) = 0,
and it assigns a value to each β = (βi)i∈M ∈ EM that
represents the worth the members can obtain if each member
i contributes to the election βi. Given a multi-choice game
(M, e, d) and β ∈ EM , we define N(β) = {i ∈ M | βi ̸= 0}
and βT as the set of members who have a non-zero con-
tribution in β, and βT as the restriction of β to the subset
T ⊆ M . Furthermore, we introduce d∗(T ), which is defined
as the maximum worth obtained by any behavior vector
β with N(β) = T . This value represents the maximal-
usefulness1 among all behavior vectors β with N(β) = T .
Let (M, e,Dm) be denoted as a multicriteria multi-choice
game, where m ∈ N, Dm = (dt)t∈Nm

, and (M, e, dt) is a
multi-choice game for each t ∈ Nm.

Indicate the collection of total multicriteria multi-choice
games by Φ. Let (M, e,Dm) ∈ Φ. A return vector of
(M, e,Dm) is a vector ξ = (ξt)t∈Nm

and ξt = (ξti)i∈M ∈
RM , where ξti indicates the return to member i in (M, e, dt)
for each t ∈ Nm and for each i ∈ M . A return vector
ξ of (M, e,Dm) is multicriteria proficient if

∑
i∈M ξti =

dt∗
(
M

)
for all t ∈ Nm. The collection of all multicriteria pro-

ficient vector of (M, e,Dm) is indicated by P (M, e,Dm).
A solution is a map σ assigning to each (M, e,Dm) ∈ Φ
the following element

σ
(
M, e,Dm

)
=

(
σt
(
M, e,Dm

))
t∈Nm

,

where σt
(
M, e,Dm

)
=

(
σt
i

(
M, e,Dm

))
i∈M

∈ RM and
σt
i

(
M, e,Dm

)
is the return of the member i assigned by

σ in
(
M, e, dt

)
.

Next, we provide the multi-choice incremental index and
the multi-choice normalized incremental index over multicri-
teria situation.

Definition 1: The multi-choice incremental index (MII),
Θ, is defined by

Θt
i(M, e,Dm) = dt∗(M)− dt∗(M \ {i})

for each (M, e,Dm) ∈ Φ, for each t ∈ Nm and for each
i ∈ M . Based on Θ, all members receive its incremental
contributions respectively related to maximal-usefulness in
M .

A solution σ fits multicriteria proficiency (MPFY)
if for each (M, e,Dm) ∈ Φ and for each t ∈ Nm,

1From this point onwards, we will focus on bounded multi-choice games,
which are defined as games (M, e, d) where there exists a real number Kd

such that d(β) ≤ Kd for all β ∈ EM . We introduce this condition to
ensure the well-definedness of d∗(T ).

∑
i∈M σt

i(M, e,Dm) = dt∗(M). The MPFY property means
that all members in a game allocate whole the usefulness
available. It is straightforward to see that the MII does
not fit the EFF property. Thence, we introduce a proficient
normalization.

Definition 2: The multi-choice normalized incremental
index (MNII), Θ, is defined by

Θt
i(M, e,Dm) =

dt∗(M)∑
k∈M

Θt
k(M, e,Dm)

·Θt
i(M, e,Dm)

for each (M, e,Dm) ∈ Φ∗, for each t ∈ Nm and for each i ∈
M , where Φ∗ = {(M, e,Dm) ∈ Φ |

∑
i∈M

Θt
i(M, e,Dm) ̸=

0 for each t ∈ Nm}.
Lemma 1: The MNII fits MPFY on Φ∗.

Proof: For all (M, e,Dm) ∈ Φ∗ and for all t ∈ Nm,∑
i∈M

Θt
i(M, e,Dm) =

∑
i∈M

dt
∗(M)∑

k∈M

Θt
k(M,e,Dm)

·Θt
i(M, e,Dm)

=
dt
∗(M)∑

k∈M

Θt
k(M,e,Dm)

∑
i∈M

Θt
i(M, e,Dm)

= dt∗(M).

Thus, the MNII fits MPFY on Φ∗.
We present a brief applied instance for multicriteria multi-

choice games under the context of “management”. This
type of issues can be formulated as follows. Let M =
{1, 2, · · · ,m} indicate the set of all members in a large-
scale management mechanism (M, e,Dm). The function dt

can be considered as a usefulness function that assigns a
value to each election vector β = (βi)i ∈ M ∈ EM ,
which represents the benefits that the members can obtain
if each member i adopts an operating election βi ∈ Ei in
the sub-management mechanism (M, e, dt). The large-scale
management mechanism (M, e,Dm) can then be modeled
as a multicriteria multi-choice game, where dt serves as the
characteristic function, and ei indicates the collection of total
operating elections for member i. In the following sections,
we demonstrate that the MII and the MNII can offer optimal
allocating mechanism among all members, in the sense that
this organization can obtain returns from each combination
of operating elections of all members under multi-choice
behavior and multicriteria situations.

III. AXIOMATIC PROCESSES

In this section, we demonstrate the existence of a reduction
that can be utilized to axiomatize the MII and the MNII.

Additionally, we provide an alternative formulation for the
MNII utilizing the concept of surplus. Let (M, e,Dm) ∈ Φ∗,
S ⊆ M and ξ be a return vector in (M, e,Dm). Define
that ξt(S) =

∑
i∈S ξti for each t ∈ Nm. The surplus of a

coalition S ⊆ M under ξ is

P (S,Dm, ξ) = (P (S, dt, ξt))t∈Nm

and
P (S, dt, ξt) = dt∗(S)− ξt(S).

(1)

The quantity P (S, dt, ξt) indicates the ”objection” of coali-
tion S when all members are assigned their returns from ξt

in (M, e, dt).
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Lemma 2: Let (M, e,Dm) ∈ Φ∗, t ∈ Nm, ξ ∈
P (M, e,Dm) and τ t =

dt
∗(M)∑

k∈M

Θt
k(M,e,Dm)

. Then

P (M \ {i}, dt, ξt

τt ) = P (M \ {j}, dt, ξt

τt ) ∀ i, j ∈ M
⇐⇒ ξ = Θ(M, e,Dm).

Proof: Let (M, e,Dm) ∈ Φ∗ and ξ ∈ P (M, e,Dm).
For t ∈ Nm and for i, j ∈ M ,

P (M \ {j}, dt, ξt

τt )

= P (M \ {i}, dt, ξt

τt )

⇐⇒ dt∗(M \ {j})− ξt(M\{j})
τt

= dt∗(M \ {i})− ξt(M\{i})
τt

⇐⇒ dt∗(M \ {j})− ξti
τt

= dt∗(M \ {i})− ξtj
τt

⇐⇒ ξti − ξtj
= τ t · [dt∗(M \ {j})− dt∗(M \ {i})].

(2)

By definition of Θ,

Θt
i(M, e,Dm)−Θt

j(M, e,Dm)

= τ t · [dt∗(M \ {j})− dt∗(M \ {i})]
(3)

Based on (2) and (3), for i, j ∈ M ,

ξti − ξtj = Θt
i(M, e,Dm)−Θt

j(M, e,Dm).

Hence,∑
j ̸=i

[ξti − ξtj ] =
∑
j ̸=i

[Θt
i(M, e,Dm)−Θt

j(M, e,Dm)].

That is, (|M |−1)·ξti−
∑

j ̸=i ξ
t
j = (|M |−1)·Θt

i(M, e,Dm)−∑
j ̸=i Θ

t
j(M, e,Dm). Since ξ ∈ P (M, e,Dm) and Θ fits

MPFY, |M | · ξti − dt∗(M) = |M | · Θt
i(M, e,Dm) − dt∗(M).

Therefore, ξti = Θt
i(M, e,Dm) for t ∈ Nm and for i ∈ M ,

i.e., ξ = Θ(M, e,Dm).
Remark 1: It is trivial to examine that P (M \

{i}, Dm,Θ(M, e,Dm)) = P (M \ {j}, Dm,Θ(M, e,Dm))
for each (M, e,Dm) ∈ Φ and for arbitrary i, j ∈ M .

Inspired by Moulin’s [14] reduced notion, we introduced a
multi-choice reduction and corresponding dependability. Let
σ be a solution, (M, e,Dm) ∈ Φ and S ⊆ M . The reduction
(S, eS , D

m
S,σ) is defined by Dm

S,σ = (dtS,σ)t∈Nm
and

dtS,σ(β)

=

{
0 , β = 0S ,
d∗

(
M(β) ∪ (M \ S)

)
−

∑
i∈M\S

σi(M, e, d) , o.w.

σ fits dependability (DEP) if σt
i(S, eS , D

m
S,σ) =

σt
i(M, eS , D

m) for each (M, e,Dm) ∈ Φ, for each S ⊆ M
with |S| = 2, for each t ∈ Nm and for each i ∈ S.
However, it is trivial to examine that

∑
k∈S Θt

k(M, e, d) = 0
for some (M, e,Dm) ∈ G, for some t ∈ Nm and for
some S ⊆ M , i.e., Θ(S, eS , D

m
S,σ) doesn’t exist for some

(M, e,Dm) ∈ Φ and for some S ⊆ M . Thence, one can
consider the resilient dependability. A solution σ fits resilient
dependability (RDEP) if (S, eS , D

m
S,σ) and σ(S, eS , D

m
S,σ)

exist for some (M, e,Dm) ∈ Φ and for some S ⊆ M with
|S| = 2, it holds that σt

i(S, eS , d
m
S,σ) = σt

i(M, e,Dm) for
each t ∈ Nm and for each i ∈ S.

Lemma 3:
1) The MII fits DEP on Φ.
2) The MNII fits RDEP on Φ∗.

Proof: To demonstrate item 1, let (M, e,Dm) ∈ Φ∗ and
S ⊆ M . It is trivial if |M | = 1. Assume that |M | ≥ 2 and
S = {i, j} for some i, j ∈ M . For each t ∈ Nm and for
each i ∈ S,

Θt
i(S, eS , D

m
S,Θ)

= (dtS,Θ)∗(S)− (dtS,Θ)∗(S \ {i})
= max

β∈ES
{dtS,Θ(β)|N(β) = S}

− max
β∈ES

{dtS,Θ(β)|N(β) = S \ {i}}

= dt∗(M)− dt∗(M \ {i})
= Θt

i(M, e,Dm).

(4)

Thus, the MII fits DEP.
To demonstrate item 2, let (M, e,Dm) ∈ Φ∗ and S ⊆ M .

It is trivial if |M | = 1. Assume that |M | ≥ 2. If S =
{i, j} for some i, j ∈ M and (S, eS , D

m
S,Θ

) ∈ Φ∗. Similar to
equation (4), for each t ∈ Nm and for each i ∈ S,

Θt
i(S, eS , d

m
S,Θ

) = Θt
i(M, e,Dm). (5)

By definition of Θ and equation (5),

Θt
i(S, eS , d

m
S,Θ

)

=
(dt

S,Θ
)∗(S)∑

k∈S

Θt
k(S,eS ,dm

S,Θ
)
·Θt

i(S, eS , d
m
S,Θ

)

=
dt
∗(M)−

∑
k∈M\S

Θt
k(M,e,Dm)∑

k∈S

Θt
k(S,eS ,dm

S,Θ
)

·Θt
i(S, eS , d

m
S,Θ

)

(by definition of dm
S,Θ

)

=
dt
∗(M)−

∑
k∈M\S

Θt
k(M,e,Dm)∑

k∈S

Θt
k(M,e,Dm)

·Θt
i(M, e,Dm)

(by equation (5))

=

∑
k∈S

Θt
k(M,e,Dm)∑

k∈S

Θt
k(M,e,Dm)

·Θt
i(M, e,Dm)

(by MPFY of Θ)
= τ t ·Θt

i(M, e,Dm), where τ t =
dt
∗(M)∑

k∈M

Θt
k(M,e,Dm)

= Θt
i(M, e,Dm).

Thus, the MNII fits RDEP on Φ∗.
Next, we axiomatize the MII and the MNII by applying

the properties of DEP and RDEP.
• A solution σ fits incremental-norm for games (MNG)

if σ(M, e, d) = Θ(M, e, d) for each (M, e, d) ∈ Φ with
|M | ≤ 2.

• A solution σ fits normalized-norm for games (NNG)
if σ(M, e, d) = Θ(M, e, d) for each (M, e, d) ∈ Φ∗

with |M | ≤ 2.
Lemma 4: A solution σ fits MPFY on Φ∗ if it fits NNG

and RDEP on Φ∗.
Proof: Let (M, e,Dm) ∈ Φ∗. If |M | ≤ 2, then σ fits

MPFY on Φ∗ by NNG. Suppose that |M | > 2. Assume,
on the contrary, that there exists (M, eS , D

m) ∈ Φ∗ such
that

∑
i∈M σt

i(M, e,Dm) ̸= dt∗(M) for some t ∈ Nm. This
presents that there exist i ∈ M and j ∈ M such that
[dt∗(M) −

∑
k∈M\{i,j} σ

t
k(M, e,Dm)] ̸= [σt

i(M, e,Dm) +

σt
j(M, e,Dm)]. By RDEP and σ fits MPFY for two-person

games, this contradicts with

σt
i(M, e,Dm) + σt

j(M, e,Dm)
= σt

i({i, j}, dm{i,j},σ) + σt
j({i, j}, dm{i,j},σ)

= dt∗(M)−
∑

k∈M\{i,j}
σt
k(M, e,Dm).
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Hence σ fits MPFY.

Theorem 1:

1) On Φ, the MII is the only solution fitting MNG and
DEP.

2) On Φ∗, the MNII is the only solution fitting NNG and
RDEP.

Proof: By Lemma 3, Θ and Θ fit DEP and RDEP on
Φ and Φ∗ respectively. Absolutely, Θ and Θ fit MNG and
NNG on Φ and Φ∗ respectively.

To demonstrate uniqueness of item 1, suppose σ fits DEP
and MNG on Φ. Let (M, e,Dm) ∈ Φ. If |M | ≤ 2, then
σ(M, e,Dm) = Θ(M, e,Dm) by MNG. Suppose that |M | >
2. Let t ∈ Nm and i ∈ M . Assume that S ⊆ M with |S| = 2
and i ∈ S. Then,

σt
i(M, e,Dm) = σt

i(S, eS , d
m
S,σ)

(by DEP of σ)
= Θt

i(S, eS , d
m
S,σ)

(by MNG of σ)
= (dtS,σ)∗(S)− (dtS,σ)∗(S \ {i})
= dt∗(M)− dt∗(M \ {i})
= Θt

i(M, e,Dm).

Hence, σ(M, e,Dm) = Θ(M, e,Dm) for all (M, e,Dm)Φ.

To demonstrate uniqueness of item 2, suppose σ fits RDEP
and NNG on Φ∗. By Lemma 4, σ fits MPFY on Φ∗. Let
(M, e,Dm) ∈ Φ∗. The proof will be finished via induction
on |M |. It is trivial that σ(M, e,Dm) = Θ(M, e,Dm) by
NNG if |M | ≤ 2. Assume that it holds if |M | ≤ r − 1,
r ≥ 3. The situation |M | = r: Let t ∈ Nm and i, j ∈
M with i ̸= j. Based on Definition 2, Θt

k(M, e,Dm) =
dt
∗(M)∑

h∈M

Θt
h(M,e,Dm)

· Θt
k(M, e,Dm) for all k ∈ M . Assume

that αt
k =

Θt
k(M,e,d)∑

h∈M

Θt
h(M,e,d)

for all k ∈ M . Therefore,

σt
i(M, e,Dm)

= σt
i

(
M \ {j}, dmM\{j},σ

)
(by RDEP of σ)

= Θt
i

(
M \ {j}, dmM\{j},σ

)
(by NNG of σ)

=
(dt

M\{j},σ)∗

(
M\{j}

)
∑

k∈M\{j}
Θt

k

(
M\{j},dm

M\{j},σ

)Θt
i

(
M \ {j}, dmM\{j},σ

)
=

dt
∗(M)−σt

i(M,e,Dm)∑
k∈M\{j}

Θt
k(M,e,Dm)

Θt
i(M, e,Dm)

(by equation (5))
=

dt
∗(M)−σt

i(M,e,Dm)
−Θt

j(M,e,Dm)+
∑

k∈M

Θt
k(M,e,Dm)

Θt
i(M, e,Dm).

(6)

By equation (6),

σt
i(M, e,Dm) · [1− αt

j ]
= [dt∗(M)− σt

j(M, e,Dm)] · αt
j

=⇒
∑
i∈M

σt
i(M, e,Dm) · [1− αt

j ]

= [dt∗(M)− σt
j(M, e,Dm)] ·

∑
i∈M

αt
j

=⇒ dt∗(M) · [1− αt
j ]

= [dt∗(M)− σt
j(M, e,Dm)] · 1

(by MPFY of σ)
=⇒ dt∗(M)− dt∗(M) · αt

j

= dt∗(M)− σt
j(M, e,Dm)

=⇒ Θt
j(M, e,Dm)

= σt
j(M, e,Dm).

The proof is finished.
The subsequent instances aim to demonstrate that each

of the properties utilized under Theorem 1 is logically
independent from the other properties.

Example 1: Define a solution σ by for each (M, e,Dm) ∈
Φ, for each t ∈ Nm and for each i ∈ M , σt

i(M, e,Dm) = 0.
Clearly, σ fits DEP and RDEP on Φ and Φ∗, but it does not
fit MNG and NNG on Φ and Φ∗.

Example 2: Define a solution σ by for each (M, e,Dm) ∈
Φ, for each t ∈ Nm and for each i ∈ M ,

σt
i(M, e,Dm) =

{
Θt

i(M, e,Dm) , if |M | ≤ 2,
0 , o.w.

On Φ, σ fits MNG, but it does not fit DEP.
Example 3: Define a solution σ by for each (M, e,Dm) ∈

Φ∗, for each t ∈ Nm and for each i ∈ M ,

σt
i(M, e,Dm) =

{
Θi(M, e,Dm) , if |M | ≤ 2,
0 , o.w.

On Φ∗, σ fits NNG, but it does not fit RDEP.

IV. DYNAMIC RESULTS

In this section, we apply surplus function and reduction to
offer dynamic results for the MNII.

To establish the dynamic notion for the multi-choice
normalized incremental index (MNII), we begin by defining
a amendment function using surplus functions. The amend-
ment function is depended on the idea that each member
reduces the objection related to its own and others’ non-
participation, and applies these adjustments to switch the
initial return.

Definition 3: Let (M, e,Dm) ∈ Φ∗ and i ∈ M . The
amendment function is f = (f t)t∈Nm , where f t = (f t

i )i∈M

and f t
i : P (M, e,Dm) → R is define by

f t
i (ξ)

= ξti + w
∑

j∈M\{i}
τ t

(
P (M \ {j}, dt, ξt

τt )− P (M \ {i}, dt, ξt

τt )
)
,

where τ t =
dt
∗(M)∑

k∈M

Θt
k(M,e,Dm)

and w ∈ R with w > 0 is a

fixed number, which reflects the assumption that member i
does not ask for complete amendment but only a fraction of
it. Define [ξ]0 = ξ, [ξ]1 = f([ξ]0), · · · , [ξ]q = f([ξ]q−1)
for each q ∈ N.

Lemma 5: f(ξ) ∈ P (M, e,Dm) for all (M, e,Dm) ∈ Φ∗

and for all ξ ∈ P (M, e,Dm).
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Proof: Let (M, e,Dm) ∈ Φ∗, t ∈ Nm, i, j ∈ M and
ξ ∈ P (M, e,Dm).∑

j∈M\{i}
τ t
(
P (M \ {j}, dt, ξt

τt )− P (M \ {i}, dt, ξt

τt )
)

=
∑

j∈M\{i}
τ t
(
dt(M \ {j})− ξt(M\{j})

τt

− dt(M \ {i}) + ξt(M\{i})
τt

)
=

∑
j∈M\{i}

τ t
(
dt(M \ {j})− dt(M \ {i})− ξti

τt +
ξtj
τt

)
.

(7)
By definition of Θ,

Θt
i(M, e,Dm)−Θt

j(M, e,Dm)

= τ t ·
(
dt(M \ {j})− dt(M \ {i})

)
.

(8)

Based on (7) and (8),∑
j∈M\{i}

τ t
(
P (M \ {j}, dt, ξt

τt )− P (M \ {i}, dt, ξt

τt )
)

=
∑

j∈M\{i}

(
Θt

i(M, e,Dm)−Θt
j(M, e,Dm)− ξti + ξtj

)
= (|M | − 1)

(
Θt

i(M, e,Dm)− ξti
)
+

∑
j∈M\{i}

ξtj

−
∑

j∈M\{i}
Θt

j(M, e,Dm)

= |M |
(
Θt

i(M, e,Dm)− ξti
)
− dt∗(M) + dt∗(M)

(by MPFY of Θ, ξ ∈ P (M, e,Dm))
= |M |

(
Θt

i(M, e,Dm)− ξti

)
.

(9)
Moreover, ∑

i∈M

|M |
(
Θt

i(M, e,Dm)− ξti

)
= |M |

( ∑
i∈M

Θt
i(M, e,Dm)−

∑
i∈M

ξti

)
= |M |

(
dt∗(M)− dt∗(M)

)
(by MPFY of Θ, ξ ∈ P (M, e,Dm))

= 0.

(10)

So we have that∑
i∈M

f t
i (ξ)

=
∑
i∈M

[
ξti + w

∑
j∈M\{i}

τ t
(
P (M \ {j}, dt, ξt

τt )

− P (M \ {i}, dt, ξt

τt )
)]

=
∑
i∈M

ξti + w
∑
i∈M

∑
j∈M\{i}

τ t
(
P (M \ {j}, dt, ξt

τt )

− P (M \ {i}, dt, ξt

τt )
)

= dt∗(M) + 0(
by equation (10) and ξ ∈ P (M, e,Dm)

)
= dt∗(M).

Hence, f(ξ) ∈ P (M, e,Dm) if ξ ∈ P (M, e,Dm).
Theorem 2: Let (M, e,Dm) ∈ Φ∗. If 0 < t < 2

|M | ,
then {[ξ]q}∞q=1 converges to Θ(M, e,Dm) for each ξ ∈
P (M, e,Dm).

Proof: Let (M, e,Dm) ∈ Φ∗, t ∈ Nm, i ∈ M and
ξ ∈ P (M, e,Dm). By equation (9) and definition of f ,

f t
i (ξ)− ξti

= w
∑

j∈M\{i}
τ t
(
P (M \ {j}, dt, ξt

τt )− P (M \ {i}, dt, ξt

τt )
)

= w · |M | ·
(
Θt

i(M, e,Dm)− ξti

)
.

Hence,

Θt
i(M, e,Dm)− f t

i (ξ)

= Θt
i(M, e,Dm)− ξti + ξti − f t

i (ξ)

= Θt
i(M, e,Dm)− ξti − w · |M | · (Θt

i(M, e,Dm)− ξti)

=
(
1− w · |M |

)[
Θt

i(M, e,Dm)− ξti

]
.

So, for all q ∈ N,

Θ(M, e,Dm)− [ξ]q

=
(
1− w · |M |

)q[
Θ(M, e,Dm)− x

]
.

If 0 < w < 2
|M | , then −1 <

(
1−w ·|M |

)
< 1 and {[ξ]q}∞q=1

converges geometrically to Θ(M, e,Dm).
By extending dynamic notion of Maschler and Owen [13],

a different dynamic form can be offered under reductions.
Definition 4: Let σ be a solution, (M, e,Dm) ∈ Φ∗,

S ⊆ M and ξ ∈ P (M, e,Dm). The (ξ, σ)-reduction
(S, eS , D

m
σ,S,ξ) is given by Dm

σ,S,ξ = (dtσ,S,ξ)t∈Nm
and for

all T ⊆ S,

dtσ,S,ξ(β) =

{
dt∗(M)−

∑
i∈M\S

ξti , N(β) = S,

dtS,σ(β) , otherwise.

Similar to Maschler and Owen [13], a different amend-
ment function also can be considered as follow. The R-
amendment function is g = (gt)t∈Nm

, where gt = (gti)i∈M

and gti : P (M, e,Dm) → R is define by

gti(ξ) = ξti + w
∑

k∈M\{i}

(
Θt

i

(
{i, k}, dt

Θ,{i,k},ξ

)
− ξti

)
.

Define [κ]0 = ξ, [κ]1 = g([κ]0), · · · , [κ]q = g([κ]q−1) for
each q ∈ N.

Lemma 6: g
(
ξ
)
∈ P (M, e,Dm) for all (M, e,Dm) ∈ Φ∗

and for all ξ ∈ P (M, e,Dm).
Proof: Let (M, e,Dm) ∈ Φ∗, t ∈ Nm, i, k ∈ M and ξ ∈

X(M, e, d). Let S = {i, k}, by MPFY of Θ and Definition
4,

Θt
i(S, eS , D

m
Θ,S,ξ

) + Θt
k(S, eS , D

m
Θ,S,ξ

) = ξti + ξtk.

By RDEP and NNG of Θ,

Θt
i(S, eS , D

m
Θ,S,ξ

)−Θt
k(S, eS , D

m
Θ,S,ξ

)

= (dt
Θ,S,ξ

)∗({i})− (dt
Θ,S,ξ

)∗({k})
= (dt

S,Θ
)∗({i})− (dt

S,Θ
)∗({k})

= Θt
i(S, eS , D

m
S,Θ

)−Θt
k(S, eS , D

m
S,Θ

)

= Θt
i(M, e,Dm)−Θt

k(M, e,Dm).

Therefore,

2 ·
[
Θt

i(S, eS , D
m
Θ,S,ξ

)− ξti

]
= Θt

i(M, e,Dm)−Θt
k(M, e,Dm)− ξti + ξtk.

(11)
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Based on equation (11) and definition of g,

gti(ξ)

= ξti +
w
2

[ ∑
k∈M\{i}

Θt
i(M, e,Dm)−

∑
k∈M\{i}

ξti

−
∑

k∈M\{i}
Θt

k(M, e,Dm) +
∑

k∈M\{i}
ξtk

]
= ξti +

w
2

[ ∑
k∈M\{i}

Θt
i(M, e,Dm)−

(
|M | − 1

)
ξti

−
∑

k∈M\{i}
Θt

k(M, e, d) +
(
dt∗(M)− ξti

)]
= ξti +

w
2

[(
|M | − 1

)
Θt

i(M, e,Dm)−
(
|M | − 1

)
ξti

−
(
dt∗(M)−Θt

i(M, e,Dm)
)
+
(
dt∗(M)− ξti

)]
= ξti +

|M |·w
2

[
Θt

i(M, e,Dm)− ξti

]
.

(12)
So we have that∑

i∈M

gti(ξ)

=
∑
i∈M

[
ξti +

|M |·w
2 ·

[
Θt

i(M, e,Dm)− ξti
]]

=
∑
i∈M

ξti +
|M |·w

2 ·
[ ∑
i∈M

Θt
i(M, e,Dm)−

∑
i∈M

ξti
]

= dt∗(M) + |M |·w
2 ·

[
dt∗(M)− dt∗(M)

]
= dt∗(M).

Thus, g
(
ξ
)
∈ P (M, e,Dm) for all ξ ∈ P (M, e,Dm).

Theorem 3: Let (M, e,Dm) ∈ Φ∗. If 0 < w < 4
|M | ,

then {[κ]q}∞q=1 converges to Θ(M, e,Dm) for each ξ ∈
P (M, e,Dm).

Proof: Let (M, e,Dm) ∈ Φ∗, t ∈ Nm and ξ ∈
P (M, e,Dm). By equation (12), gti(ξ) = ξti + |M |·w

2 ·[
Θt

i(M, e,Dm)− ξti

]
for all i ∈ M . Therefore,(

1− |M |·w
2

)
·
[
Θt

i(M, e,Dm)− ξti
]

=
[
Θt

i(M, e,Dm)− gti(ξ)
]
.

So, for all q ∈ N,

Θ(M, e,Dm)− [κ]q

=
(
1− |M |·w

2

)q[
Θ(M, e,Dm)− x

]
.

If 0 < w < 4
|M | , then −1 <

(
1− |M |·w

2

)
< 1 and {[κ]q}∞q=1

converges to Θ(M, e, d) for each (M, e,Dm) ∈ Φ∗, for each
t ∈ Nm and for each i ∈ M .

V. CONDITIONAL-SCALED CONSIDERATION

As stated in the Introduction, when the same person or
group of people engage in a game, their actions will yield
different benefits depending on different conditions. Thus,
it is appropriate to assign corresponding scales based on
influence under different conditions.

For each i ∈ UM , we employ a positive function
CS : UM → R+ to provide related conditional scales for
each i. This function is referred to as the conditional-scale
function. Furthermore, we will redefine the MNII using the
conditional-scale function as a new power index.

Definition 5: The multi-choice weighted normalized in-
cremental index (MWNII), W, is defined by

Wt
i(M, e,Dm)

=
dt
∗(M)∑

k∈M

CS(k)Θt
k(M,e,Dm)

· CS(i)Θt
i(M, e,Dm)

for each conditional-scale function CS, for each
(M, e,Dm) ∈ Φ∗∗, for each t ∈ Nm and for
each i ∈ M , where Φ∗∗ = {(M, e,Dm) ∈
Φ |

∑
i∈M

CS(i)Θt
i(M, e,Dm) ̸= 0 for each t ∈ Nm}.

Lemma 7: The MWNII fits MPFY on Φ∗∗.
Proof: For all (M, e,Dm) ∈ Φ∗∗ and for all t ∈ Nm,∑

i∈M

Wt
i(M, e,Dm)

=
∑
i∈M

dt
∗(M)∑

k∈M

CS(k)Θt
k(M,e,Dm)

· CS(i)Θt
i(M, e,Dm)

=
dt
∗(M)∑

k∈M

CS(k)Θt
k(M,e,Dm)

∑
i∈M

CS(i)Θt
i(M, e,Dm)

= dt∗(M).

Thus, the MWNII fits MPFY on Φ∗∗.
Next, we axiomatize the MWNII by applying RDEP.

A solution σ fits weighted-normalized-norm for games
(WNNG) if σ(M, e, d) = W(M, e, d) for each (M, e, d) ∈
Φ∗∗ with |M | ≤ 2.

Lemma 8: The MWNII fits RDEP on Φ∗∗.
Proof: Let CS be conditional-scale function,

(M, e,Dm) ∈ Φ∗∗ and S ⊆ M . It is trivial if |M | = 1.
Assume that |M | ≥ 2. If S = {i, j} for some i, j ∈ M and
(S, eS , D

m
S,W) ∈ Φ∗. By definition of W and equation (5),

Wt
i(S, eS , d

m
S,W)

=
(dt

S,W)∗(S)∑
k∈S

CS(k)Θt
k(S,eS ,dm

S,W
)
· CS(i)Θt

i(S, eS , d
m
S,W)

=
dt
∗(M)−

∑
k∈M\S

Wt
k(M,e,Dm)∑

k∈S

CS(k)Θt
k(S,eS ,dm

S,W
)

· CS(i)Θt
i(S, eS , d

m
S,W)

(by definition of dm
S,W)

=
dt
∗(M)−

∑
k∈M\S

Wt
k(M,e,Dm)∑

k∈S

CS(k)Θt
k(M,e,Dm)

· CS(i)Θt
i(M, e,Dm)

(by equation (5))

=

∑
k∈S

Wt
k(M,e,Dm)∑

k∈S

CS(k)Θt
k(M,e,Dm)

· CS(i)Θt
i(M, e,Dm)

(by MPFY of W)
=

dt
∗(M)∑

k∈M

CS(k)Θt
k(M,e,Dm)

· CS(i)Θt
i(M, e,Dm)

= Wt
i(M, e,Dm).

Thus, the MWNII fits RDEP on Φ∗∗.
Lemma 9: A solution σ fits MPFY on Φ∗ if it fits WNNG

and RDEP on Φ∗∗.
Proof: Let (M, e,Dm) ∈ Φ∗∗. If |M | ≤ 2, then σ fits

MPFY on Φ∗∗ by WNNG. Suppose that |M | > 2. Assume,
on the contrary, that there exists (M, eS , D

m) ∈ Φ∗∗ such
that

∑
i∈M σt

i(M, e,Dm) ̸= dt∗(M) for some t ∈ Nm. This
presents that there exist i ∈ M and j ∈ M such that
[dt∗(M) −

∑
k∈M\{i,j} σ

t
k(M, e,Dm)] ̸= [σt

i(M, e,Dm) +

σt
j(M, e,Dm)]. By RDEP and σ fits MPFY for two-person

games, this contradicts with

σt
i(M, e,Dm) + σt

j(M, e,Dm)
= σt

i({i, j}, dm{i,j},σ) + σt
j({i, j}, dm{i,j},σ)

= dt∗(M)−
∑

k∈M\{i,j}
σt
k(M, e,Dm).

Hence σ fits MPFY.
Theorem 4: On Φ∗∗, the MWNII is the only solution

fitting WNNG and RDEP.
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Proof: By Lemma 8, W fits RDEP on Φ∗∗. Absolutely,
W fits WNNG on Φ∗∗.

To demonstrate uniqueness, suppose σ fits RDEP and
WNNG on Φ∗∗. By Lemma 9, σ fits MPFY on Φ∗∗. Let CS
be conditional-scale function and (M, e,Dm) ∈ Φ∗∗. The
proof will be finished via induction on |M |. It is trivial that
σ(M, e,Dm) = W(M, e,Dm) by WNNG if |M | ≤ 2. As-
sume that it holds if |M | ≤ r−1, r ≥ 3. The situation |M | =
r: Let t ∈ Nm and i, j ∈ M with i ̸= j. Based on Definition
2, Wt

k(M, e,Dm) =
dt
∗(M)∑

h∈M

Θt
h(M,e,Dm)

· Θt
k(M, e,Dm) for

all k ∈ M . Assume that ρtk =
CS(k)Θt

k(M,e,d)∑
h∈M

CS(h)Θt
h(M,e,d)

for all

k ∈ M . Therefore,

σt
i(M, e,Dm)

= σt
i

(
M \ {j}, dmM\{j},σ

)
(by RDEP of σ)

= Wt
i

(
M \ {j}, dmM\{j},σ

)
(by WNNG of σ)

=
(dt

M\{j},σ)∗

(
M\{j}

)
·CS(i)Θt

i

(
M\{j},dm

M\{j},σ

)
∑

k∈M\{j}
CS(k)Θt

k

(
M\{j},dm

M\{j},σ

)
=

dt
∗(M)−σt

i(M,e,Dm)∑
k∈M\{j}

CS(k)Θt
k(M,e,Dm)

CS(i)Θt
i(M, e,Dm)

(by equation (5))

=

[
dt
∗(M)−σt

i(M,e,Dm)
]
·CS(i)Θt

i(M,e,Dm)

−CS(j)Θt
j(M,e,Dm)+

∑
k∈M

CS(k)Θt
k(M,e,Dm)

.

(13)

By equation (13),

σt
i(M, e,Dm) · [1− ρtj ]

= [dt∗(M)− σt
j(M, e,Dm)] · ρtj

=⇒
∑
i∈M

σt
i(M, e,Dm) · [1− ρtj ]

= [dt∗(M)− σt
j(M, e,Dm)] ·

∑
i∈M

ρtj

=⇒ dt∗(M) · [1− ρtj ]
= [dt∗(M)− σt

j(M, e,Dm)] · 1
(by MPFY of σ)

=⇒ dt∗(M)− dt∗(M) · ρtj
= dt∗(M)− σt

j(M, e,Dm)

=⇒ Wt
j(M, e,Dm)

= σt
j(M, e,Dm).

The proof is finished.
The subsequent instances aim to demonstrate that each

of the properties utilized under Theorem 4 is logically
independent from the other properties.

Example 4: Define a solution σ by for each (M, e,Dm) ∈
Φ, for each t ∈ Nm and for each i ∈ M , σt

i(M, e,Dm) = 0.
On Φ∗∗, σ fits RDEP, but it does not fit WNNG.

Example 5: Define a solution σ by for each (M, e,Dm) ∈
Φ∗∗, for each t ∈ Nm and for each i ∈ M ,

σt
i(M, e,Dm) =

{
Wi(M, e,Dm) , if |M | ≤ 2,
0 , o.w.

On Φ∗∗, σ fits WNNG, but it does not fit RDEP.

VI. CONCLUSIONS

In this article, we consider the multi-choice incremental
index and the multi-choice normalized incremental index.
We propose two axiomatic characterizations for these in-
dexes by means of reductions. We also introduce alternative

formulations and corresponding dynamic processes for the
normalized incremental index using reduction and surplus
function. Our results can be compared with existing ones in
the following ways:

• The multi-choice incremental index, the multi-choice
normalized incremental index and the multi-choice
weighted normalized incremental index were initially
introduced under the context of multicriteria multi-
choice games.

• Our amendment functions due to Definitions 3 and 4,
and corresponding dynamic processes are inspired by
the dynamic results for the Shapley value [16] proposed
by Maschler and Owen [13]. However, our amendment
functions are depended on ”surplus function”, while
Maschler and Owen’s [13] amendment function is de-
pended on ”reductions”.

The above-mentioned points raise the following question:
• whether there are other normalizations and related re-

sults for other solutions under multicriteria multi-choice
games.

To our knowledge, related questions are still open issues.
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