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Research on Fault Detection of Rolling Bearing
Based on CWT-DCCNN-LSTM

Yu Wang, Changfeng Zhu, Qingrong Wang, and Jinhao Fang

Abstract—As one of the key components in many fields,
rolling bearing fault detection is very important. Rolling
bearing is in complex and changeable working conditions, so it
is challenging to detect its fault. Because the traditional method
has weak adaptability in complex and changeable situations, it
needs to rely on the opinions of experts more often. Deep
learning methods can make up for the shortcomings of
traditional methods. Therefore, this paper proposes a method
combining continuous wavelet transform (CWT), dual-channel
convolutional neural network(DCCNN), and long short-term
memory network (LSTM), mainly for fault detection of
vibration signals of rolling bearings. Firstly, the vibration signal
is denoised by CWT, then the feature of the vibration signal is
extracted by DCCNN, and finally, the time series of the
vibration signal is extracted by LSTM. Compared with CNN,
CWT-CNN, CNN-LSTM, and CWT-CNN-LSTM four models,
and analyzed the parameters of the model. The results show
that the accuracy of CWT-DCCNN-LSTM model detection is
better than other models, and the accuracy rate reaches
99.98 %.

Index Terms—Deep Learning, Rolling bearings, Continuous

Wavelet Transform(CWT), Dual-Channel Convolutional
Neural Network(DCCNN), Long Short-Term Memory
Network(LSTM)

1. INTRODUCTION

Rzolling bearing plays a key role in the field of aviation
nd other transportation, workshop large equipment, and
precision instruments. However, due to the impact of the
relevant conditions, rolling bearings become one of the most
vulnerable mechanical components, and early weak fault
detection and fault condition monitoring is particularly
important. The real-time monitoring of rolling bearing faults
is mainly based on the analysis of vibration signals. Because
rolling bearings often work in harsh environments such as
high speed, high temperature, and high pressure, the obtained
vibration signals often contain interference problems such as
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artificial noise, which seriously affects the accuracy and
timeliness of detection. Therefore, how to effectively obtain
the fault frequency characteristics and monitor the fault
situation in real time is of great significance for improving
the detection accuracy, reducing the maintenance cost of
rolling bearings, and prolonging their service life.

Early, [1] proposed a rolling bearing fault detection theory
based on the vibration signal detection method, which laid
the foundation for this problem. After that, [2][3] proposed a
stochastic resonance denoising method, where, [2] is based
on the stochastic resonance method of the coupled bistable
system to deal with the noise of the vibration signal, mainly
using its noise to enhance the characteristics of the vibration
signal, [3] proposed a single well model, which combines the
piecewise function with the classical bistable stochastic
resonance method. The model can detect the vibration signal
of the rolling bearing defect. [4][5][6][7]1[8][9], the entropy
function is used to deal with the noise of rolling bearing
vibration signal, whereas, in [4] proposes a model of cyclic
entropy function to deal with the vibration signal with noise,
in [5] proposed an improved multi-scale fuzzy entropy model,
which mainly solves the time series problem of rolling
bearings, in [6][7][8] used the method of multi-scale discrete
entropy, where, in [6][8], multi-scale normalized discrete
entropy is used to solve the time series problem of nonlinear
rolling bearing, in [7], fault identification of weak signals of
rolling bearings by combining cuckoo search algorithm with
multi-scale discrete entropy. [10][11][12] used the Empirical
Mode Decomposition (EMD) method, where, in [10]
combined matching pursuit with EWD to filter the original
signal to generate components, in [11] proposed an ensemble
empirical mode decomposition to reduce its error, in [12]
combined EMD with quantile permutation entropy, and
calculated by quantile permutation entropy algorithm.

However, the above method cannot simultaneously obtain
the time frequency of the vibration signal. Fourier
Transforms (FT) [13] laid the foundation for obtaining the
time frequency at the same time, and then Morlet [14]
proposed Wavelet Transformation (WT) on this basis, which
further improved FT and overcame the problem that the
window size did not change with the frequency
transformation. [15] considered the Q factor contained in the
vibration signal while using WT denoising, and combined
with the characteristic scale decomposition, the model is
better for weak signal extraction. After that, Wavelet-Packet
transform (WPT) was proposed in [16][17], where, in [16]
proposed a Dual-Tree Complex Wavelet Packet Transform
(DTCWPT) to preprocess the vibration signal. The
practicability and accuracy of this method are good, in [17]
used three layers of WPT so that the model can improve the
fault classification performance under sensitive analysis.
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[18][19] used method of Empirical Wavelet Transform
(EWT), whereas, in [18] combines EWT with adaptive
Kurtogram. The model optimizes the method of dividing the
boundary in the frequency domain, in [19] improves the
traditional EWT and combines the improved EWT with a
Support Vector Machine (SVM). The improved EWT
effectively separates the vibration signal from the noise.
Wavelet Transform (WT) mainly includes Continuous
wavelet Transformation (CWT) [20] and Discrete Wavelet
Transformation (DWT) [21]. Because the vibration signal of
the rolling bearing is a non-stationary signal, some scholars
choose to use CWT to denoise the vibration signal. [22][23],
CWT is used to detect the fault of rolling bearing, whereas,
in [22] analyzes the bearing fault by scale and time wavelet
spectrum. The two methods can detect the fault and identify
the fault mode at the same time.

For the feature extraction of rolling bearing vibration
signal, the traditional method has poor adaptability and low
stability in complex and changeable situations, and more
often needs to rely on expert opinions. Deep learning
methods can make up for the shortcomings of traditional
diagnostic methods, and Convolutional Neural Networks
(CNN) can automatically extract features and is widely used
in image classification and other fields. [24] proposed a deep
learning method for convolutional neural networks. In 2006,
[25] proposed to reduce the data dimension by the neural
network, allowing deep autoencoder networks to learn
low-dimensional code, as a tool to reduce dimension and
provide a guarantee for principal component analysis.
[26][27] used CNN to detect the faults of rolling bearings,
whereas, in [27] improved the traditional LeNet-5 network to
a two-dimensional LeNet-5 network, and the improved
model improved the fault classification ability. [28] proposed
a physics-based CNN model, which can simultaneously
monitor the vibration signals of multiple rolling bearings and
detect their faults. [29] converted the vibration signal into a
spectrum image and then input it into CNN, the model has
good robustness. [30] proposed a model of noise reduction of
vibration signals by multi-kernel maximum mean difference
and then combined it with an adaptive Deep Belief Network
(DA-DBN) to solve the problem of the lack of a large number
of labeled samples under new working conditions.

Due to the significant characteristics of CNN, some
scholars have combined CNN with CWT to diagnose rolling
bearings after CWT has processed the vibration signal noise.
[31] combined CWT with CNN to detect sensor fault
diagnosis of an aero-engine control system. [32] proposed a
model combining WT-CNN, which introduces WT into the
adversarial network to ensure that CNN can be translated
unchanged, this model improves the quality of data
generation and balances the data set. [33][34] is a model that
combines CWT-CNN to detect its faults, whereas, in [33]
combines two-dimensional CWT-CNN, extracts its features
through multi-layer convolution and pooling, and detects
gearbox faults in [34] not only combines CWT-CNN but also
combines the Variational Mode Decomposition (VMD)
method to effectively detect the fault of helicopter bearings.
However, only combining CWT-CNN ignores the timing
characteristics of rolling bearing failure, resulting in a certain
one-sidedness.

Therefore, for the time series feature extraction of rolling

bearing vibration signals, some scholars have proposed Long
Short-Term Memory (LSTM), which can solve the time
series problem, among them, [35] proposed a batch
normalized LSTM model to reflect the mapping relationship
of the data set to generate auxiliary samples, and then align
the auxiliary samples with unlabeled data, which shows that
the model is effective under a small amount of labeling. [36],
a WT-EMD-EEMD-LSTM-based model is proposed to
extract features from EMD-EEMD with LSTM as classifier
to accomplish fault prediction. [37] implemented end-to-end
detection using a model that combines CNN, LSTM, and
Attention Mechanism (AM).

However, single-channel CNN will lose some information.
To make up for this problem, some scholars have proposed
multi-channel CNN. Among them, [38] proposed a
Dual-Channel CNN (DCCNN) method for feature fusion, the
first channel extracts the time domain and the second channel
extracts the time-frequency domain, after, the fused features
are extracted by CWT to detect rolling bearing faults. [39]
proposed the Markov Transfer Field (MTF) method to
convert the vibration signal into a two-dimensional image,
and input two different data sets into the MultiDimensional
Convolutional Neural Network (MDCNN) , which makes the
model more robust. [40] proposed a model combining
MCNN with Multi-Scale Cropping Fusion (MSCF), after,
using MSCF to enhance the vibration signal, the image is
then fused into MCNN, which reduces the complexity.
However, in the fault detection of rolling bearings, some
scholars only use CWT and CNN, without considering the
characteristics of time series, some scholars use CNN and
LSTM, but ignore the noise problem of vibration signal,
which will produce the error of diagnosis results.

Based on this, this paper comprehensively considers the
noise, fault characteristics, and time series characteristics of
rolling bearing vibration signals, and introduces CWT theory,
DCCNN theory, and LSTM theory. These three theories can
reduce the noise of vibration signals and extract the fault
characteristics and time series characteristics of vibration
signals. Considering the three elements of rolling bearings, a
model based on CWT-DCCNN-LSTM is finally constructed
to detect and classify rolling bearing faults.

The rest of this article is introduced as follows: Section II
elaborates the theories of CWT, DCCNN, and LSTM
respectively, and constructs the CWT-DCCNN-LSTM model.
Section III, taking the bearing data center of Case Western
Reserve University as an example, the fault of the rolling
bearing is detected based on the CWT-DCCNN-LSTM
model and compared with other models to test its accuracy.
Section IV gives the conclusion for the above discussion.

II. CONSTRUCTION OF ROLLING BEARING FAULT
DETECTION MODEL BASED ON CWT-DCCNN-LSTM

Rolling bearings work at high speed and long time under
complex conditions such as tension, compression, and
alternating, which leads to friction and damage of the inner
ring, outer ring, and rolling element of rolling bearings. The
peak spectrum of the acceleration signal in the
time-frequency domain is mainly used to detect the fault. But
the actual detection of the vibration signal will contain noise,
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Fig. 1 Rolling bearing detection structure based on CWT-DCCNN-LSTM model.

which will lead to early some of the weaker features will be
ignored, resulting in errors for bearing fault detection having
a certain challenge.

Due to the error caused by the noise contained in the
initially detected rolling bearing signal, CWT is used for
noise reduction to obtain a time-frequency map. Then, the
time-frequency diagram is input into DCCNN to extract the
features of rolling bearings. Then the signal of the rolling
bearing after dimension reduction is input into LSTM for
further filtering, and then the signal is input into the fully
connected layer, and finally, the fault diagnosis of the rolling
bearing is completed. The rolling bearing detection structure
based on the CWT-DCCNN-LSTM model is shown in
Fig.1.

A. Data Noise Reduction Based on CWT

Firstly, the noise of the vibration signal of the rolling
bearing should be considered. To reduce the error of
detecting the fault of the rolling bearing, the vibration signal
should be denoised first. CWT can divide the vibration
signal into multiple time intervals to complete the initial
vibration signal denoising. Because CWT can obtain both
the time domain and the frequency domain, CWT is selected
to denoise the vibration signal, that is, the signal is input into
the CWT layer first. The noise reduction process of rolling
bearing vibration signal based on CWT is shown in Fig.2.

To better simulate the waveform of a rolling bearing
vibration signal, considering that the waveform generated by
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the one-dimensional original signal processed by CWT is
similar to the waveform of the wavelet basis function
because the Morlet wavelet waveform is similar to the
impact characteristics generated by the bearing fault, the
Morlet function is selected as the waveform of the simulated
rolling bearing vibration signal. The wavelet function is
defined as follows
2
p(t)=e"e 2 (1)
Since the Morlet wavelet DC component is not zero, a
Morlet function considering the correction term is proposed.
The final definition of function is as follows :

2
1 2 m

¢(t) = e"'"'eig(a) —2e + et )
Where m represents the main frequency of the wavelet
function, and ¢ represents the bandwidth of the modulated
wavelet function.
The one-dimensional original signal acquisition time
domain considering CWT processing is

NOSIRC ®

Considering that the one-dimensional original signal
processed by CWT obtains the frequency domain wr(a,b),

that is

Lo t-b
wt(a,b)=|a| Zwa(t)qﬁ*( - jdt 4)
Where a represents the scale parameter of the expansion or
contraction wavelet of the rolling bearing vibration signal in
the market function. b represents the shift parameter of the
wavelet transformed along the time axis in the market
function of the rolling bearing vibration signal.

B. Feature Extraction Based on DCCNN

After the vibration signal of the rolling bearing is
denoised by CWT, the characteristic information of the
signal needs to be extracted. DCCNN mainly extracts
features from the time-frequency diagram of rolling bearings
after CWT denoising, which can automatically extract
features and avoid the influence of other factors, thus
improving the recognition accuracy of rolling bearing faults.
However, when the single-layer CNN extracts information,
some information will be lost, and the optimal classification
cannot be achieved. Therefore, a dual-channel convolutional
neural network is used for the diagnosis of rolling bearing
faults. So, after the signal is denoised by the CWT layer, it is
input into the DCCNN layer to extract the feature
information of the vibration signal.

The dual-channel CNN model uses the time-frequency
map generated by CWT processing the original signal to
input into the first CNN channel, and the one-dimensional
original signal is input into the second CNN channel. After
that, the signals enter their respective convolutional layers
and pooling layers to further process the signals. Finally,
after the last layer is summarized, it enters the fully
connected layer. The DCCNN structure model is shown in
Fig.3, where convld represents a one-dimensional
convolutional layer, conv2d represents a two-dimensional
convolutional layer, maxpool represents a pooling layer, and
FC represents a fully connected layer.

As shown in Fig.3, the first channel convolution layer
mainly processes the time-frequency diagram of the rolling
bearing, and the second channel convolution layer mainly
processes the one-dimensional original signal of the rolling
bearing. Considering that the input of the neuron maps to the
output, the real function is selected to operate on it. The
convolution layer calculation formula is defined as

x| =f(2xj‘*ki’/+bj} 5)

ieM;

f = O-(Wu [ht—l > X, ]+ bLl ) (6)
Where xj. represents the time-frequency diagram of the jth

rolling bearing in the / layer after processing. f{) represents
the calculation of the activation function, which selects the
relu function. M, represents the set of selected rolling
bearing time-frequency diagrams. The * sign indicates that
the convolution kernel k is convoluted on all the associated
rolling bearing time-frequency diagrams of the /-7 layer. The
purpose of this layer is to reduce the influence of the
waveform phase of rolling bearing on diagnosis results.

The pooling layer is to reduce the dimension of the
vibration signal of the rolling bearing. The pooling layer can
be calculated by the following formula

X, = f(;/j.down (x,.H +b; )) 7
Where down() denotes the pooling function. ;/_i. represents

multiplicative bias. The purpose of this layer is to indicate
whether the signal has failed and align the time series of
fault events.

The fully connected layer is mainly classified, and The
forward propagation formula is defined as

) _ gl 4 g
2 =wla'O 1 p! (8)

Where 2"/ represents the logistics value of the jth output
neuron in the /+/ layer. Wij' represents the weight between

neuron / and the /+/th neuron in the / th layer. This layer is
mainly to complete the classification of rolling bearing
faults.

C. Time Series Extraction Based on LSTM

After the feature extraction of the vibration signal of the
rolling bearing by the DCCNN layer, the time series feature
of the signal needs to be extracted. LSTM is mainly to solve
the time series problem of rolling bearings and further filter
the vibration signals processed by DCCNN. Because LSTM
is an improvement made to solve the long-term dependence
problem of general recurrent neural network (RNN), after
the signal is processed in the pooling layer of DCNN, it is
selected to be summarized in the LSTM layer.

The CWT-DCCNN-LSTM model is composed of three
layers of the LSTM network. Through the three parts of the
forgetting gate, input gate, and output gate, the vibration
signal is filtered, so that the time series features ignored by
the 1D-CNN part can be further extracted to ensure the
accuracy of the fault diagnosis model. The process of
processing vibration signals by LSTM is shown in Fig.4.The
LSTM structure has three steps :

Step1: The vibration signal is processed by the forgetting
gate. The forgetting gate processes the convolution layer in
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the DCCNN layer, and the pooling layer does not filter the
information, to forget the information that is considered
useless, and further processes the information of the
vibration signal. The specific calculation formula for
forgetting the gate is as follows

z' =o(W,*[h_.x]+b,) ©)

Where o denotes the sigmoid function. W, represents the
weight matrix. [ht-1, xt] represents connecting two vectors
to form a long vector. byrepresents the biased term.
Step2:The information of the vibration signal is input into
the forgetting gate and then passed into the input gate. The
input gate is mainly to process the information left by the
forgetting gate, mainly to update the old unit state. The
specific calculation formula of the input gate is as follows

i =o (W *[hx ]+b) (10)

C, = tanh (W, *[h.,x, |40, ) (11)
Where C,

repeating module.

Step3:After the information is processed by the forgetting
gate and the input gate, the information flows into the output
gate and outputs useful information. The specific calculation
formula of the output gate is as follows

o,=(W,[h_.x]+b,) (12)
h, =0, *tanh(C,) (13)

Where C; represents the updated unit state.

For the prediction of rolling bearing faults, the model is
mainly considered from three aspects. Firstly, considering
the noise contained in the obtained rolling bearing vibration
signal, to denoise, the CWT layer is input for processing.
Secondly, considering the extraction of vibration signal
features, input to the DCCNN layer. Finally, considering the
time series characteristics of the vibration signal, the LSTM
layer is input for processing. The establishment of the whole
model takes into account three aspects to be dealt with in
predicting the vibration fault of rolling bearings In summary,
the model structure flow chart of rolling bearing fault
detection based on CWT-DCCNN-LSTM is shown in Fig.5.

represents the information generated by the

III. DATA ANALYSIS

A. Data Sources
The data come from the Bearing Data Center of Case We
stern Reserve University [41]. The dimensions of the rollin
g bearings are 0.007 in, 0.014 in, and 0.021 in, respectively,

TABLE 1
UNITS FOR MAGNETIC PROPERTIES ROLLING BEARING DATA TYPES
data type failure mode Rolling bearing size sampling set
1 inner fault 0.007 in 1600
2 inner fault 0.014in 1600
3 inner fault 0.021in 1600
4 outer fault 0.007 in 1600
5 outer fault 0.014in 1600
6 outer fault 0.021in 1600
7 roller fault 0.007 in 1600
8 roller fault 0.014in 1600
9 roller fault 0.021in 1600
10 normal 1600

and have four load states. The sampling frequency of each
type of data is 48 kHz. Each data set samples 1600 samples,
and according to the 7: 3 as the training set and test set. The
whole model is run through Python software and runs under
the framework of TensorFlow. The specific data types of
rolling bearings are shown in Table I.

B. Data Processing

It can be seen from Table I that the rolling bearing is
composed of an inner ring, a rolling element, and an outer
ring. The waveform diagrams of the inner ring, rolling body,
and outer ring of the rolling bearing and the normal state are
visualized. Therefore, the six waveforms of rolling bearings
are shown in Fig.6 a, b, ¢, d, e, and f.
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Fig. 6 Data waveform of rolling bearing.

As shown in Fig.6, the horizontal and vertical coordinates
represent the amount of data sampled by the rolling bearing,
and the vertical coordinates represent the amplitude of the

Volume 31, Issue 3: September 2023



Engineering Letters, 31:3, EL._31 3 12

rolling bearing signal. Through the comparative analysis of
the three states of the inner ring state, the rolling body state,
the outer ring, and the normal state in Fig.6, there are
differences in the distribution of sample data. After the noise
processing of the vibration signal of the rolling bearing by
CWT, the time-frequency diagrams of normal, inner ring,
rolling element, outer ring center direction, orthogonal
direction, and relative direction are shown in Fig.7 a, b, c, d,
e, f.

As shown in Fig.7, the time-frequency analysis results of
CWT are presented in the form of a time-frequency diagram.
Under normal conditions, the vibration signal sampled at a
frequency of 0.5 f/ Hz for 0.01 s has 1600 data points. When
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Fig. 7 Time-frequency diagram of continuous wavelet transform

the bearing is in a fault state, the amplitude of the signal is
about -40 to 40, which is larger than normal. In the wavelet
power spectrum, the color of each point represents the size
of the wavelet coefficients on the time-frequency grid. The
yellow representation is well localized in the time and
frequency domains. After the vibration signal of the rolling
bearing is denoised by CWT, the time-frequency diagram
represents the frequency of the vibration signal and the
specific position of the time domain, which can detect the
fault more accurately.

Volume 31, Issue 3: September 2023



Engineering Letters, 31:3, EL._31 3 12

C. Comparative Analysis

Considering the three aspects of noise reduction, feature
extraction, and time series extraction of rolling bearing
vibration signals based on the CWT-DCCNN-LSTM model,
to verify the performance of the three models, the model is
divided into CNN, CWT-CNN, CNN-LSTM, and
CWT-CNN-LSTM. The five models were evaluated from
three aspects: accuracy, recall, and Fl-score. Each model
epochs 15 times. The experimental results are shown in
Table II.

TABLE II
CWT-DCCNN-LSTM MODEL COMPARED TO OTHER MODELS

model Accuracy Recall Fl-score

CNN 0.78 0.74 0.73

CWT-CNN 0.85 0.78 0.78

CNN-LSTM 0.90 091 091

CWT-CNN-LSTM 0.98 0.98 0.98

CWT-DCCNN-LSTM 0.99 1.00 0.99

It can be seen from Table II that the
CWT-DCCNN-LSTM model performs best in terms of
accuracy, recall, and Fl-score, which indicates that the
model can improve the accuracy of rolling bearing fault
diagnosis and better judge the fault of rolling bearing.
Considering the vibration signal denoising, time series
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Fig. 8 The accuracy of CNN, CWT-CNN, CNN-LSTM,
CWT-CNN-LSTM and CWT-DCCNN-LSTM models iteration

feature extraction, and Dual-Channel CNN feature
extraction of rolling bearings, the above five models are
divided into five comparison types: the model of CNN and
the model of CWT-CNN comparison, the model of CNN
and the model of CNN-LSTM comparison, the model of
CNN-LSTM and the model of CWT-CNN-LSTM
comparison, the model of CWT-CNN and the model of
CWT-CNN-LSTM  comparison, the model of
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CWT-CNN-LSTM and the model of CWT-DCCNN-LSTM
comparison. The accuracy of the five models are shown in
Fig.8 a,b,c, d,e.

As shown in Fig.§, the above five models are divided into
a comparative analysis of whether the vibration signal is
denoised, a comparative analysis of whether the time series
characteristics are considered, and a comparative analysis of
the vibration signal input single-channel CNN or
dual-channel CNN.

1) Comparative Analysis of Vibration Signal Denoising

CNN and CWT-CNN comparison analysis. The rolling
bearing vibration signal is directly input into the CNN layer
and the vibration signal is denoised and then input into the
CNN layer for comparison. The accuracy of model CNN and
model CWT-CNN are shown in Fig.8(a), and (b),
respectively. (a) Ignoring the noise reduction of the vibration
signal of the rolling bearing, combined with Table 3, the
accuracy of noise reduction by CWT and then input to the
CNN layer is 0.85, while the accuracy of only the CNN layer
is 0.78. Therefore, when extracting data information, the
data noise problem should be given priority. In summary,
CNN and CWT-CNN are compared, and the model
CWT-CNN should be selected.

CNN-LSTM and CWT-CNN-LSTM comparison analysis.

Under the condition that both models consider the time
series features of rolling bearing vibration signals, one
model is non-noise and one model is denoised. The
accuracies of model CNN-LSTM and CWT-CNN-LSTM
are shown in Fig.8(c), and (d), respectively. Model CNN and
model CWT-CNN were selected for comparison. Combined
with Table 3, the accuracy of denoising the vibration signal
is higher than that without denoising, the accuracy of model
CNN-LSTM is 0.90 and that of model CWT-CNN-LSTM is
0.98, and the denoising reduces a certain error. In summary,
the CWT-CNN-LSTM model should be selected.

Combined with the above, denoising should be
considered for the vibration signals of rolling bearings, and
model CWT-CNN with model CWT-CNN-LSTM has
higher accuracy than the model without denoising.

2) Comparative analysis of time series characteristics

CNN and CNN-LSTM comparison analysis. Both models
consist of CNN for feature extraction of rolling bearings,
and the accuracy of models CNN and CNN-LSTM are
shown in Fig.8 (a), and (c), respectively. (a) Without
considering the time series problem of vibration signal, the
accuracy of the CNN model is not as high as that of
combined CNN-LSTM under the condition of simultaneous
epoch 15 times, and the accuracy of the CNN model is 0.78
and that of CNN-LSTM model is 0.90. Therefore, for the
fault identification of the rolling bearing, the time series
problem needs to be considered. In summary, the
CNN-LSTM model should be selected for the comparison of
these two.

CWT-CNN and CWT-CNN-LSTM comparison analysis.
Under the condition that both models denoise the rolling
bearing vibration signal, one model does not consider the
time series features of the vibration signal, and one model
considers the time series features of the vibration signal. The
accuracy of models CWT-CNN and CWT-CNN-LSTM are
shown in Fig.8(b), and (d), respectively. Model (b) ignores
the time series characteristics of the vibration signal by not

considering the time series characteristics of the vibration
signal, which leads to a lower accuracy of the model (b) than
model (d). Combined with Table 3, from the comparison of
the three criteria for model evaluation, model (d)
outperforms model (b), and the accuracy of the CWT-CNN
model is 0.85, and the accuracy of CWT-CNN-LSTM
accuracy is In summary, the CWT-CNN-LSTM model
should be chosen for the comparison of these two.

From 1), it can be seen that model CWT-CNN and model
CWT-CNN-LSTM are more accurate than the model
without denoising. However, after the comparative analysis
of time series feature extraction, the model of
CWT-CNN-LSTM is better than the three models CNN,
CWT-CNN, and CNN-LSTM from the three aspects of
accuracy, recall, and Fl-score, so after these four
comparisons, both denoising and time series feature
extraction should be considered, so that the prediction
accuracy of rolling bearing fault can reach 0.98, and among
these four models, CWT-CNN-LSTM should be selected.

3) Comparison analysis of Single Channel and Dual
Channel CNN

The model of CWT-CNN-LSTM and the model of
CWT-DCCNN-LSTM comparison analysis. The two
models simultaneously denoise the rolling bearing vibration
signal and consider the time series features, one model
inputs the vibration signal into a single-channel CNN and
the other model inputs the vibration signal into a DCCNN.
the accuracy of models CWT-CNN-LSTM and
CWT-DCCNN-LSTM are shown in Fig.8(d), (e),
respectively. Model (d) chooses a single-channel CNN
which is prone to missing information, resulting in imperfect
information and some prediction error. Model (b) selects
DCCNN to make up for the deficiency due to single-channel
CNN, and the accuracy of the CWT-CNN-LSTM model is
0.98 and the accuracy of the CWT-DCCNN-LSTM model is
99.98%. Therefore, the two-channel CNN is chosen to be
superior to the single-channel CNN, and the
CWT-DCCNN-LSTM model should be chosen for the
comparison of these two.

By the comparison of 1) and 2), the CWT-CNN-LSTM
model is chosen. However, by the comparison of
CWT-CNN-LSTM and CWT-DCCNN-LSTM, the
CWT-DCCNN-LSTM model has a higher accuracy. This is
because the CWT-DCCNN-LSTM model takes into account
both the data noise problem, the time series feature
extraction problem, and the problem that a single layer of
CNN will have partial information loss when extracting
information. The problems that may be encountered in
prediction are considered from three aspects, and from a
comprehensive comparison of Figure 8 and Table III, the
accuracy, recall, and F1-score of the evaluated models for all
three methods, the CWT-DCCNN-LSTM outperforms the
other models in all three values, has higher prediction
accuracy, and achieves optimal classification.

D. Parametric Analysis

After the models have been compared and analyzed, the
parameters of the models also need to be analyzed, because
the parameter settings have an important impact on the final
experimental results and can affect the performance of the
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models. To further improve the CWT-DCCNN-LSTM
model performance, the convolutional kernel size, and
LSTM hidden layer size are further explored.

1) The influence of convolution kernel size on the model

The size of the convolution kernel parameter is an
important parameter in the convolution layer. The
parameters of the first layer CNN channel convolution
kernel and the second layer CNN channel convolution
kernel are set to 8-8-16-16, 16-16-32-32, 32-32-64-64,
64-64-128-128, respectively, to test their influence on the
accuracy of the model. The two-channel convolution kernel
size accuracy and loss rates are shown in Fig.9 (a) and (b)
respectively.
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Fig. 9 Convolution Kernel Parameters

As shown in Fig9, (a) represents the first channel
convolution kernel parameter, and (b) denotes the second
channel convolution kernel parameter. When the number of
convolution kernels is relatively small, the accuracy of fault
classification and degree evaluation is relatively low, and the
overall diagnosis result of the model is not ideal. When the
number of convolution kernels is too large, the two tasks
appear serious over-fitting phenomenon at the same time,
and the accuracy of the model test decreases sharply. When
the convolution kernel combination of the first channel
convolution kernel combination is 32-32-64-64, and the
second channel convolution kernel combination is
64-64-128-128, the fault classification accuracy is the
highest. Therefore, the CWT-DCCNN-LSTM model finally
studies the fault classification for the first channel
convolution kernel combination of 32-32-64-64 and the
second channel convolution kernel combination of
64-64-128-128.

2) LSTM hidden layer size

The size of the hidden layer parameters of the LSTM layer
affects the accuracy based on the CWT-DCCNN-LSTM
model. The LSTM layer hidden layer is set to 16-32, 32-64,
64-128, and 128-256 to test its effect on the accuracy of the
model. The LSTM layer hidden layer for model accuracy
and loss rate are shown in Fig.10.

As shown in Fig.10, when the number of hidden layers is
relatively small, the accuracy of fault classification is
relatively low, and the overall diagnosis result of the model
is not ideal. When the number of hidden layers is too large,
the two tasks appear serious over-fitting phenomenon at the
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Fig. 10 Hiding Layer Parameter Size

same time, and the model test accuracy drops sharply. The
fault classification accuracy is the highest when the hidden
layer ~ combination is  64-128.  Therefore, the
CWT-DCCNN-LSTM model finally studies the fault
classification for the LSTM hidden layer of 64-128.

3) The influence of CWT time-frequency diagram size on
the model

The size of the time-frequency diagram affects the accur
acy of the model. The size of the time-frequency diagram is
set to 10-10,20-20,30,40-40,50-50,60-60,70-70,80-80,90-9
0,100-100 to detect the influence of these parameters on the
accuracy of the model. CWT time-frequency diagram size
for model accuracy and loss rate are shown in Fig.11.
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As shown in Fig.11, when the frequency diagram is
relatively small, the accuracy of fault classification is
relatively low, and the overall diagnosis result of the model
is not ideal. When the frequency map is relatively large, the
two tasks have a serious over-fitting phenomenon at the
same time, and the accuracy of the model test decreases
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TABLE III
FIRST CHANNEL PARAMETERS OF CONVOLUTIONAL NEURAL NETWORK
Network layer Convolution kernel/step size (or other parameters) Number of convolution kernels strides
Convolutional layerl 3x3 32 1,1
Pooling layerl 2x2 32 1,1
Convolutional layer2 3x3 64 1,1
Pooling layer2 2x2 64 1,1
TABLE IV
SECOND CHANNEL PARAMETERS OF CONVOLUTIONAL NEURAL NETWORK
Network layer Convolution kernel/step size (or other parameters ) Number of convolution kernels strides
Convolutional layerl 3x2 64 2
Pooling layerl 2x2 64 2
Convolutional layer2 3x3 128 2
Pooling layer2 2x2 128 2
TABLE V
UNITS FOR MAGNETIC PROPERTIES LSTM AND DROPOUT PARAMETERS
Network layer Convolution kernel/step size (or other parameters) Number of convolution kernels
LSTM hidden_size=10 64-128
Dropout layer Forgetting rate=0.5

(e)
Fig 12. T-SNE Visualization Scatter Plot
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sharply. The fault classification accuracy is the highest when
the frequency diagram size is 60-60. Therefore, the
CWT-DCCNN-LSTM model ultimately selects 60-60 for
the time-frequency map size.

E. T-SNE Visualization

The t-SNE is a visualization of the data to be able to
compare whether this data set is separable or not, and at the
same time to be able to verify the classification ability of the
model to complete the prediction of rolling bearing failures.
t-SNE validated 3D scatter feature distribution is shown in
Fig.12.

In Fig.12, 0 indicates normal data, 1 indicates inner ring
fault, 2 indicates rolling body fault, and 3 indicates outer
ring fault. (a) indicates the visualization of rolling bearing
data input to the first channel convolutional neural network,
(b) indicates the visualization of rolling bearing data input to
the second channel convolutional neural network, (c)
indicates the process of detection, and (d) indicates the final
predicted result. The input of data at the very beginning is
confusing and does not follow the order of normal, inner
ring, rolling body, and outer ring. After the training of the
model, the data are stacked from the beginning until the
classification of rolling bearings is finally completed, thus
completing the prediction. Fig.12 demonstrates the
feasibility of the model CWT-DCCNN-LSTM with high
prediction accuracy.

In summary, the high accuracy of the model was
demonstrated by the comparative and parametric analysis,
and the feasibility of the model was verified by the t-SNE
visualization. The parameters of the main network layers of
the model are shown in Table III, Table 1V, and Table V.

IV. CONCULSION

To improve the accuracy of detecting rolling bearing
faults, a  diagnosis method based on the
CWT-DCCNN-LSTM model is proposed. The advantages
of CWT, CNN, and LSTM networks are combined to extract
feature information from the acquired original vibration
signals of rolling bearings. The CWT-DCCNN-LSTM
model is more accurate than other methods and achieves
99.98% accuracy, which is better than other networks. The
model takes into account both the noise of the data and the
lack of information in the single-layer convolutional neural
network, which is a more comprehensive consideration
compared to other models. The model has the following
main features.

1) The model selects CWT for the vibration signal of the
rolling bearing for noise reduction processing, which
weakens the artificial error. DCCNN method is selected for
feature extraction of the vibration signal of the rolling
bearing, which avoids the error of information loss in a
single channel. The LSTM method is selected for time series
feature extraction of vibration signals of rolling bearings.
Finally, the fault of the rolling bearing is detected based on
the CWT-DCCNN-LSTM model, which improves the
accuracy of detection.

2) Through the comparison of model CNN and
CWT-CNN, the comparison of model CNN, LSTM, and

CNN-LSTM, the comparison of model CNN-LSTM and
CWT-CNN-LSTM,  the comparison of  model
CWT-CNN-LSTM and CWT-DCCNN-LSTM, four groups
of comparative experiments are analyzed.

3) By analyzing the parameters of the
CWT-DCCNN-LSTM model, it is finally determined that
the first channel convolution kernel combination is
32-32-64-64, the second channel convolution kernel
combination is 64-64-128-128, the time-frequency diagram
size is 60-60, and the LSTM hidden layer is 64-128. The
parameters of the model are verified by t-SNE visualization.
Finally, it is shown that the model has the highest accuracy
and good classification ability under this parameter.

However, due to the level of the model’s more, so for the
model although high accuracy, the running speed compared
with other methods have no advantage, after further study.
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