
 

  

Abstract—This study designs a new stochastic optimization 

i.e., metaheuristic technique, namely run-catch optimizer 

(RCO). RCO provides a distinct mechanism regarding the 

diversification-intensification strategy. Each member runs two 

sequential activities in every iteration. The first activity is 

running and the second one is catching. Each activity generates 

a seed. In the first activity, a virtual best member moves away 

from the corresponding member to become the first seed. The 

second seed is generated along the way between the 

corresponding member and the first seed in the first activity. If 

both seeds fail to improve, the member conducts a random 

search to find a new member. Otherwise, the better seed 

replaces the corresponding member. Then, RCO is challenged 

to handle both theoretical and real-world optimization 

problems. The classic 23 functions represent theoretical 

problems, while the outsourcing optimization problem 

represents the practical problem. In these simulations, RCO is 

confronted with five other algorithms: grey wolf optimizer 

(GWO), particle swarm optimization (PSO), marine predator 

algorithm (MPA), Komodo mlipir algorithm (KMA), and 

pelican optimization algorithm (POA). The result shows that 

RCO is better than POA, KMA, MPA, GWO and PSO in 

optimizing 20, 21, 13, 12, and 21 functions consecutively. 

Meanwhile, RCO is better than PSO, GWO, and KMA, but 

worse than MPA and POA in optimizing the outsourcing 

problem.  

 

Index Terms—optimization, metaheuristic, swarm 

intelligence, outsourcing. 

 

I. INTRODUCTION 

 ETAHEURISTIC is a well-known technique widely 

used in a lot of optimization works. This algorithm has 

been applied in many areas. In transportation, metaheuristic 

algorithm is popular to address various vehicle routing 

problems, for example the capacitated vehicle routing 

problem [1], vehicle problem with time windows and split 

delivery [2], vehicle dispatching problem [3], and so on. In 

the logistic area, it has been applied in addressing various 

truck scheduling [4], cross docking system [5], and so on. In 

 

 
 

production and manufacturing, it has been applied in various 

flow-shop scheduling [6], job-shop scheduling [7], inventory 

management [8], and so on. In the education area, it also has 

been applied in addressing course timetabling [9]. In the 

energy management system, metaheuristic has been applied 

to optimize the operation of power system [10]. Its popularity 

comes from two circumstances. First, the algorithm is flexible 

in addressing various optimization problems with the given 

computational resource. Second, there are hundreds of 

metaheuristic algorithms that be chosen and combined to 

address any optimization problem. 

The flexibility of metaheuristic in addressing various 

problems comes from its approximate approach. By using the 

approximate approach, it does not trace all available or 

possible solutions to find the global optimal solution [11]. It 

conducts a stochastic search within space. Based on this 

circumstance, the metaheuristic method does not guarantee in 

finding the global optimal but put the best effort to find the 

acceptable solution i.e., quasi-optimal solution [11]. It is 

different from the exact method that ensures the global 

optimal solution. However, the exact method is impossible to 

be used in addressing a complex optimization problem with 

high dimensions and ample space because it needs excessive 

computational resources [11]. A metaheuristic generally 

contains two phases: initialization and iteration. A solution is 

generated stochastically within the space during the 

initialization. Then, this solution is improved during the 

iteration phase. Metaheuristic performs two strategies in 

improving the solution: intensification and diversification. In 

intensification, a new solution is generated near the current 

member. In diversification, a new solution is generated 

randomly within the space.  

To the recent day, there are a vast number of metaheuristic 

methods available to select for any optimization problems. 

Many optimizations still use the classic algorithms, such as 

genetic algorithm (GA), tabu search (TS), harmony search 

(HS), simulated annealing (SA), and so on. These algorithms 

are still popular because they have simple mechanics so that 

they can be easily modified and improved. GA used two 

methods: crossover and mutation. Crossover is conducted by 

combining two selected current solutions to produce new 

members [12]. Mutation is conducted by modifying the 

selected current solutions [12]. TS implements neighborhood 

search and uses a list or memory to avoid revisiting the latest 

members [13]. There are two options to generate a new 

member in HS. First, a solution can be generated from the 
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harmony memory [14]. Second, a solution can be generated 

randomly from the space [14]. SA is a local search-based 

algorithm. It generates a new solution near the current 

solution [15]. If this new solution is better than the current 

solution, this solution is accepted immediately to replace the 

current solution [15]. Otherwise, a specific stochastic process 

is conducted to determine whether this new solution is 

accepted to replace the current solution [15]. 

Many new algorithms adopt nature’s mechanics, 

especially animals. Several algorithms mimic the behavior of 

animals during foraging or finding food sources, such as grey 

wolf optimizer (GWO) [16], pelican optimization algorithm 

(POA) [17], marine predator algorithm (MPA) [18], capuchin 

search algorithm (CSA) [19], artificial bee colony (ABC) 

[20], cat swarm optimization algorithm (CSOA) [21], and so 

on. Some algorithms, such as emperor penguin colony (EPO) 

[22], firefly algorithm (FA) [23], and cuckoo search 

algorithm (CSA) [24], mimic animal movement. Some 

techniques, like the red deer algorithm (RDA) [25], are 

inspired by the mating process of the animal. Moreover, some 

techniques, such as Komodo mlipir algorithm (KMA), 

combine foraging and mating processes [26]. Other new 

algorithms are inspired by the mechanics of the traditional 

game, such as hide object game optimization (HOGO) [27], 

darts game optimizer (DGO) [28], shell game optimizer 

(SGO) [29], and football game optimization (FBGO) [30].  

This massive number of metaheuristics comes from two 

reasons. First, various stochastic approaches can be used to 

develop a new metaheuristic algorithm. Each method has its 

advantages and disadvantages. Second, the no-free-lunch 

theory has stated that there is not an algorithm that is suitable 

and superior for addressing all kinds of problems [31]. On the 

other hand, there are various optimization problems in the 

real world because optimization is applied widely by human 

beings, from individuals to large-scale organizations. 

Besides, various types of animal behavior have become the 

inspiration to develop new metaheuristic. Unfortunately, 

there are critiques regarding the metaphor-based algorithm 

because of their lack of novel technique and hiding behind the 

metaphors [32]. 

One classic problem in metaheuristic algorithms is the 

adjusted parameters. In general, adjusted parameters are 

needed to generate a better member. One indispensable 

adjusted parameter is the maximum iteration. This parameter 

is essential because all metaheuristic methods rely on 

iteration process in improving their member. The acceptable 

member can be found in some problems in the low iteration. 

On the other hand, high iteration is needed to address a 

complex problem with high dimensions and ample space. The 

swarm size is also the indispensable adjusted parameter in the 

swarm-based metaheuristic algorithm. These multiple 

members or members that work parallelly in every iteration 

are needed to diversify the member. Implementing a swarm-

based approach aims to speed up the convergence and avoid 

the local optimal trap. In general, the higher value of these 

parameters tends to improve the member. 

Many metaheuristic algorithms use several adjusted 

parameters besides swarm size and the maximum iteration. In 

KMA, the proportion of Komodo types can be adjusted to 

prioritize the selected strategy [26]. Meanwhile, the mlipir 

rate can be adjusted to speed up the small male movement 

[26]. In MPA, the fishing aggregate devices can be adjusted 

to prioritize the random search selection between choosing 

from the space or randomly selected from the two current 

preys [18]. Although GWO does not declare the adjusted 

parameters, the existence of three leaders becomes the 

adjusted parameters [16]. The number of leaders can be 

adjusted from three to another number if it does not surpass 

the swarm size. The mutation rate can be adjusted in GA to 

control the diversification [12]. In PSO, the movement 

weights can be adjusted to prioritize the movement between 

the current, global, and local best solutions [33]. In TS, the 

tabu list size can be adjusted to store the number of latest 

solutions that are forbidden to reuse [13]. The algorithm will 

produce a high-quality solution when these parameters are 

correctly adjusted. On the other hand, the wrong adjustment 

will end in a poor solution. 

The second problem is that many metaheuristic 

algorithms focus on improving the current solution, not the 

global best solution. The example is as follows. 

Improvements in GA are conducted by cross-overing the 

selected current member [12]. In some cases, these mechanics 

produce a sensible solution. It means that the new solution 

may be better than the inferior parent but worse than the 

superior parent. The improvement of the highest quality 

solution may come from the mutation. However, mutation is 

not conducted for all solutions. In PSO, the improvement is 

conducted based on the proportion of the global and local best 

members [33]. In KMA, the improvement of the high-quality 

solutions is conducted for the big males by avoiding other big 

males whose quality is worse [26]. The females' and small 

males' action does not improve the highest quality member. 

In MPA, the improvement of the high-quality member is not 

conducted in all phases of iteration [18]. This circumstance 

improves the best solution, not fast. 

Based on these problems, a new metaheuristic technique, 

namely run-catch optimizer (RCO), is developed in this work. 

This algorithm is based on swam intelligence. This technique 

contains a certain number of members that act autonomously 

and use the global best member as collective knowledge. The 

algorithm contains two actions in every iteration: run and 

catch. In this work, the effort to improve the global best 

member is conducted in every iteration for all members. It 

differs from many algorithms where the algorithm focuses on 

improving the solution’s quality, not the global best solution. 

In this work, the developed algorithm is challenged to 

overcome both theoretical and real-world optimization 

problems. 

Several contributions regarding this work are as follows. 

• In this developed algorithm, the global best member is 

improved in every iteration by all members. 

• The developed algorithm is a metaphor-free algorithm 

that does not hide behind any nature mechanics. 

• This work implements the developed algorithm to 

optimize the outsourcing problem where this process is 

important and common in production systems due to the 

limitation of production capacity. 

The rest of this paper is arranged as follows. The second 

section depicts the developed algorithm’s model, which 

contains three parts: concept, algorithm, and mathematical 

model. The third section depicts the simulation to assess the 

performance of the developed algorithm. Then, the fourth 
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section discusses the findings and deeper analysis. Finally, 

the fifth section concludes the work and explores the future 

research potential. 

II. PROPOSED MODEL 

In this section, the model of RCO is exhibited. This 

presentation is divided into three issues. The first issue is the 

conceptual model. This issue explains the mechanics of the 

algorithm, especially the diversification and intensification 

strategies. It also depicts the reasoning behind this strategy. 

The second issue is the algorithm. This issue explains the 

formal structure of the algorithm. This algorithm is explained 

in pseudocode. The third part is the mathematical model. It 

explains the detailed formulation and equation in every 

procedure.  

The conceptual model of RCO is as follows. As a swarm-

based algorithm, the system contains several members. These 

members represent a set of solutions. Each member moves 

within space autonomously to find the global optimal 

solution. The global best member is a member whose fitness 

is the best. This global best member is updated every time the 

member moves to a new member. The last value of the global 

best member becomes the final member. This also can be seen 

as a swarm intelligence that adopts animal foraging 

mechanisms. 

The algorithm contains two activities: run and catch. 

These activities become the reason for the naming of this 

algorithm. These activities are conducted sequentially for 

every member in every iteration. Each activity generates a 

seed. In the first activity, the global best member runs away 

from the member’s current location to find a new location. 

This new location becomes the first seed. In the second 

activity, the member tries to catch the first seed by moving 

randomly within the space between the member’s current 

seed and the first seed. Then, there are three possible new 

locations for the members. First, if the member’s current 

location is still equal to or better than the first and second 

seeds, then the member will move randomly within the space. 

Otherwise, the member will move to the seed whose fitness 

score is better. The illustration of these activities is depicted 

in Fig. 1. 

 

 
Fig. 1. Run and catch mechanism 

 

The reasoning behind this concept is as follows. In 

general, the global best member is better than the related 

member. It means there is a possibility of improvement by 

moving the global best member to a new location away from 

the related member. So, the run activity can be seen as an 

effort to improve the global best member. Then, the second 

activity is conducted to search for the possibility of 

improvement within the space between the member’s current 

member and the new location generated in the first activity. 

So, the catch activity can be seen as an effort to improve the 

current member.  

Generally, the first seed tends to be better than the second 

seed. It usually occurs when this directed movement is in the 

appropriate direction, but the global optimal has not yet been 

reached. However, when the first seed jumps over the global 

optimal, the second seed may be better than the first seed. 

Based on this circumstance, the better seed should be chosen 

as the new member. 

This run and catch activities may fail to improve the 

current member. There are two possibilities related to this 

circumstance. First, the global optimal has been reached. 

Second, there is more than one optimal member, for example, 

in multimodal problems. In this context, the system may be 

trapped in the local optimal. This problem is overcome by 

conducting a random search within space. 

The diversification-intensification strategy of RCO can be 

explained as follows. The random search within space 

represents the diversification strategy. Meanwhile, the 

directed movement for both run and catch can be either 

diversification or intensification. The movement can 

represent diversification when the current member is far from 

the global best member. Meanwhile, when the current 

member is near the global best member, the movement can 

be seen as an intensification. 

Before the further explanation, there are several 

annotations used in RCO. These annotations are as follows. 

Meanwhile, the algorithm of RCO is depicted in algorithm 1. 

 

bl, bu lower boundary, upper boundary 

c1 first seed 

c2 second seed 

d dimension of the problems 

f fitness function 

x member 

X set of members 

xbest global best members 

t iteration 

tmax maximum iteration 

U uniform random 

 

The explanation of algorithm 1 is as follows. Line 1 states 

that the best member becomes the final member. Lines 5 and 

6 depict the initialization step. Lines 11 to 14 depict the 

iteration step. Line 9 states that the iteration is conducted 

from the first iteration until maximum iteration is reached. 

Line 10 states that all members are updated in every iteration. 

Lines 11 and 12 depict the seed's generation. Line 14 states 

that the global best member is updated after every member is 

updated. 

The third part is the mathematical model. The 

mathematical model of RCO is very simple. It consists of 

only five equations.  

 

𝑥 = 𝑈(𝑏𝑙 , 𝑏𝑢)                  (1) 

 

𝑥𝑏𝑒𝑠𝑡
′ = {

𝑥, 𝑓(𝑥) < 𝑓(𝑥𝑏𝑒𝑠𝑡)

𝑥𝑏𝑒𝑠𝑡 , 𝑒𝑙𝑠𝑒
            (2) 
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algorithm 1: RCO algorithm 

1 output: xbest 

2 begin 

3 //initialization 

4   for all x do 

5     set initial member using (1) 

6     update xbest using (2) 

7   end 

8   //iteration 

9   for t=1 to tmax do 

10     for all x do 

11       generate c1 using (3) 

12       generate c2 using (4) 

13       set new member for x using (5) 

14       update xbest using (2) 

15     end for 

16   end for 

17 end 

 

𝑐1 = 𝑥𝑏𝑒𝑠𝑡 + 𝑈(0,1). (𝑥𝑏𝑒𝑠𝑡 − 𝑥)          (3) 

 

𝑐2 = 𝑥 + 𝑈(0,1). (𝑐1 − 𝑥)             (4) 

 

𝑥′ = {

𝑐1, 𝑓(𝑐1) < 𝑓(𝑐2) ∧ 𝑓(𝑐1) < 𝑓(𝑥)

𝑐2, 𝑓(𝑐2) < 𝑓(𝑐1) ∧ 𝑓(𝑐2) < 𝑓(𝑥)

𝑥, 𝑓(𝑥) ≤ 𝑓(𝑐1) ∧ 𝑓(𝑥) ≤ 𝑓(𝑐2)
       (5) 

 

The explanation of these equations is as follows. Equation 

(1) is used to generate the initial member. It states that this 

initial member is generated randomly within the space. Then, 

(2) is used for the global best updating process. It states that 

the new member replaces the global best member only if it is 

better than the global best member. Equation (3) states that 

the first seed is generated randomly within the space between 

the global best member and its improvement point based on 

the current member. Equation (4) states that the second seed 

is generated randomly between the current member and the 

first seed. Equation (5) states that there are three possible new 

members for the replacement of the current member: the first 

seed, the second seed, and a randomized member within the 

space. This decision is taken based on the quality of the first 

and second seeds, compared to the current member. 

III. SIMULATION AND RESULT 

RCO is then utilized in the simulation so that its 

performance can be assessed. This work carries out four 

simulations. In the first simulation, RCO is challenged to 

overcome the theoretical optimization problem. In the second 

simulation, the convergence of RCO is assessed. In the third 

simulation, the relation between the population size and the 

performance of RCO is assessed. In the fourth simulation, 

RCO is challenged to optimize a real-case problem. 

The first simulation is carried out to assess the 

performance of RCO in optimizing the theoretical problem. 

This work uses the well-known 23 functions. The twenty-

three functions can be classified into three groups. The first 

group contains seven high dimension unimodal functions. 

The second group contains six high dimension multimodal 

functions. The third group contains ten fixed dimension 

multimodal functions. The detailed description related to 

these functions is exhibited in Table 1. Functions 1 to 7 are 

the high dimension unimodal functions. Functions 8 to 13 are 

high dimension multimodal functions. Functions 14 to 23 are 

the fixed dimension multimodal functions. In this work, the 

dimension for high dimension functions is set to 30, which 

represents a high dimension problem. 

 
TABLE I 

 FUNCTIONS 

No Function Dim Space Target 

1 Sphere 30 [-100, 100] 0 

2 Schwefel 2.22 30 [-100, 100] 0 

3 Schwefel 1.2 30 [-100, 100] 0 

4 Schwefel 2.21 30 [-100, 100] 0 

5 Rosenbrock 30 [-30, 30] 0 

6 Step 30 [-100, 100] 0 

7 Quartic 30 [-1.28, 1.28] 0 

8 Schwefel 30 [-500, 500] -418.9 x dim 

9 Ratsrigin 30 [-5.12, 5.12] 0 

10 Ackley 30 [-32, 32] 0 

11 Griewank 30 [-600, 600] 0 

12 Penalized 30 [-50, 50] 0 

13 Penalized 2 30 [-50, 50] 0 

14 Shekel Foxholes 2 [-65, 65] 1 

15 Kowalik 4 [-5, 5] 0.0003 

16 Six Hump Camel 2 [-5, 5] -1.0316 

17 Branin 2 [-5, 5] 0.398 

18 Goldstein-Price 2 [-2, 2] 3 

19 Hartman 3 3 [1, 3] -3.86 

20 Hartman 6 6 [0, 1] -3.32 

21 Shekel 5 4 [0, 10] -10.1532 

22 Shekel 7 4 [0, 10] -10.4028 

23 Shekel 10 4 [0, 10] -10.5363 

 

These 23 functions represent various kinds of 

optimization problems. The unimodal function is a function 

that has only one optimal solution. On the other hand, the 

multimodal function is a function that has more than one 

optimal solution. One member is the global optimal, while the 

others are the local optimal. The high dimension function is a 

function where dimension varies from only two dimensions 

to a hundred or thousand dimensions. On the other hand, the 

fixed dimension function is a function in that dimension that 

is static and cannot be modified. The space of these functions 

varies from narrow, such as in Quartic Rastrigin, Hartman 3 

and Hartman 6, to very wide, such as Schwefel and Griewank.  

 
TABLE II 

PARAMETER SETTING 

Parameter Value 

swarm size 20 

maximum iteration 100 

weights (PSO) 0.1 

fishing aggregate devices (MPA) 0.5 

big male proportion (KMA) 0.4 

number of females (KMA) 1 

mlipir rate (KMA) 0.2 

 

This simulation confronts RCO with five metaheuristics: 

PSO, GWO, MPA, KMA, and POA. The reason for choosing 

these algorithms is as follows. These five algorithms are also 

swarm-based metaheuristics that use foraging mechanisms. 

PSO represents the early version of swarm intelligence. MPA 

and GWO represent the new techniques used in many studies 

related to optimization. Meanwhile, KMA and POA represent 

new metaheuristics, but studies that used these techniques are 

still rare to find. The adjusted parameters. PSO and MPA 

represent algorithms with few adjusted parameters. KMA 
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represents an algorithm with many adjusted parameters. 

GWO and POA represent algorithms without any explicit 

adjusted parameters. The parameter setting related to this 

simulation is exhibited in Table 2. The simulation result is 

depicted in Table 3 for the average fitness score and Table 4 

for the standard deviation. The maximum iteration setting 

represents the low iteration. 

The result in Table 3 shows that RCO is a good 

metaheuristic algorithm. In general, RCO can find the quasi-

optimal solution for the functions. RCO also can avoid the 

local optimal trap in addressing multimodal functions. 

Moreover, it found the global optimal in addressing four 

functions: Schwefel 2.22, six hump camel, Branin, and 

Goldstein-Price. It is also competitive compared with the 

sparing algorithms. RCO outperforms PSO, GWO, MPA, 

KMA, and POA in addressing 21, 12, 13, 21, and 20 functions 

respectively. Based on this result, GWO becomes the most 

challenging algorithm to beat. The number of functions 

beaten by RCO in every group for every algorithm is depicted 

in Table 5. 

Table 5 shows that RCO is superior among sparing 

metaheuristics in addressing fixed dimension multimodal 

functions. Its superiority occurs for all sparing algorithms. 

Meanwhile, RCO is superior to PSO, KMA, and POA but 

inferior to GWO and MPA in addressing high dimension 

unimodal functions. This circumstance also occurs in 

addressing the high dimension multimodal functions. 

 

 

 
TABLE III 

SIMULATION RESULT (AVERAGE FITNESS SCORE) 

Function PSO GWO MPA KMA POA RCO Better Than 

1 6.227x103 1.136x10-2 5.812x102 6.404x103 3.167x104 3.743x10-2 PSO, MPA, KMA, POA 

2 0 0 0 6.975x1022 0 0 KMA 

3 1.773x104 3.137x10-1 2.806x103 2.336x104 5.803x104 8.426x103 PSO, KMA, POA 

4 2.716x101 2.126x10-3 2.201 3.276x101 6.451x101 3.057x101 KMA, POA 

5 1.091x106 4.761x102 2.695x102 3.776x106 6.321x107 8.083x102 PSO, KMA, POA 

6 5.068x103 7.259 6.578x102 5.544x103 3.187x104 5.170x10-2 PSO, GWO, MPA, KMA, POA 

7 8.924x10-1 3.653x10-2 1.293x10-1 1.823 3.032x101 2.425x10-1 PSO, KMA, POA 

8 -2.608x103 6.763x10-2 -3.328x103 -8.138x103 -3.438x103 -7.707x103 PSO, GWO, MPA, POA 

9 2.316x102 1.245x10-2 1.229x102 2.116x102 3.257x102 1.274x102 PSO, KMA, POA 

10 1.259x101 2.139x10-3 6.845 1.373x101 1.932x101 9.441 PSO, KMA, POA 

11 5.548x101 4.356x10-3 6.632 6.494x101 2.906x102 1.684x10-1 PSO, MPA, KMA, POA 

12 8.473x104 1.663 6.505 3.799x105 7.583x107 9.349 PSO, KMA, POA 

13 1.640x106 5.719x10-2 4.779x102 6.548x106 1.999x108 2.249x101 PSO, MPA, KMA, POA 

14 4.837 1.267x101 3.198 9.718 1.771 1.045 PSO, GWO, MPA, KMA, POA 

15 3.086x10-2 1.484x10-1 4.591x10-3 1.548x10-2 2.102x10-3 6.301x10-3 PSO, GWO, KMA 

16 -1.029 7.932x10-18 -1.026 -9.786x10-1 -1.029 -1.032 PSO, GWO, MPA, KMA, POA 

17 9.032x10-1 5.560x101 7.095x10-1 8.713x10-1 4.042x10-1 3.981x10-1 PSO, GWO, MPA, KMA, POA 

18 4.283 6.000x102 4.647 3.127 3.095 3.000 PSO, GWO, MPA, KMA, POA 

19 -2.163x10-3 -7.520x10-4 -3.733 -9.534x10-1 -4.954x10-2 -4.524x10-2 PSO, GWO, KMA 

20 -2.562 -5.089x10-3 -2.015 -2.797 -2.968 -3.275 PSO, GWO, MPA, KMA, POA 

21 -4.952 -2.731x10-1 -1.791 -5.281 -3.169 -5.713 PSO, GWO, MPA, KMA, POA 

22 -4.007 -2.936x10-1 -1.730 -4.474 -4.020 -6.683 PSO, GWO, MPA, KMA, POA 

23 -4.268 -3.217x10-1 -2.064 -4.772 -3.741 -4.386 PSO, GWO, MPA, POA 

 
TABLE IV 

SIMULATION RESULT (STANDARD DEVIATION) 

Function PSO GWO MPA KMA POA RCO 

1 1.890x103 4.216x10-2 3.049x102 1.949x103 4.722x103 3.373x10-2 

2 0 0 0 2.507x1023 0 0 

3 3.621x103 9.224x10-1 1.387x103 2.591x104 1.376x104 6.959x103 

4 5.549 3.984x10-3 1.528 5.596 4.667 8.567 

5 4.200x105 1.785x103 3.322x102 2.582x106 2.426x107 1.021x10-3 

6 1.520x103 1.677x10-2 3.058x102 1.749x103 4.497x103 1.510x10-1 

7 4.757x10-1 2.127x10-2 5.068x10-2 7.460x10-1 9.782 1.084x10-1 

8 4.164x102 1.987x10-1 3.398x102 1.313x103 3.512x102 6.780x102 

9 3.151x101 5.114x10-2 3.089x101 2.637x101 2.954x101 2.891x101 

10 1.222 3.727x10-3 9.511x10-1 9.479x10-1 6.923x10-1 3.996 

11 1.451x101 1.253x10-2 2.461 1.840x101 3.276x101 2.364x10-1 

12 1.858x105 1.601x10-2 3.349 4.912x105 6.105x107 3.977 

13 1.342x106 2.275x103 1.013x103 4.986x106 8.221x107 1.298x101 

14 2.955 3.669x10-15 1.744 7.566 1.531 2.169x10-1 

15 3.532x10-2 8.420x10-8 2.365x10-3 1.499x10-2 3.248x10-4 8.850x10-3 

16 7.028x10-3 3.073x10-17 5.657x10-3 1.658x10-1 1.420x10-3 2.273x10-16 

17 8.954x10-1 1.877x10-5 2.274x10-1 1.084 7.197x10-3 1.138x10-16 

18 3.980 1.406x10-4 1.535 2.609x10-1 1.274x10-1 0 

19 2.911x10-3 1.869x10-3 1.399x10-1 1.229 1.433x10-17 1.265x10-2 

20 3.863x10-1 8.978x10-19 3.067x10-1 4.980x10-1 1.098x10-1 5.992x10-2 

21 3.239 5.733x10-17 7.169x10-1 2.898 8.700x10-1 3.529 

22 2.836 0 6.497x10-1 2.677 1.617 3.563 

23 2.333 0 8.039x10-1 2.256 1.759 3.057 
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The second simulation is taken to assess the convergence 

of RCO, especially in the low iteration. RCO is still 

challenged in this simulation to overcome the 23 functions. 

Meanwhile, there are three maximum iteration values in this 

simulation: 25, 50, and 75. The result is depicted in Table 6. 

 
TABLE V 

NUMBER OF FUNCTIONS BEATEN IN EVERY GROUP 

Algorithm 
Number of Functions 

In 1st Group In 2nd Group In 3rd Group 

PSO 5 6 10 

GWO 1 1 10 

MPA 2 3 8 

KMA 7 5 9 

POA 6 6 8 

 
TABLE VI 

CONVERGENCE SIMULATION RESULT 

Function 
Average Fitness Score 

tmax = 25 tmax = 50 tmax = 75 

1 7.985x102 2.641x101 8.891x10-1 

2 0 0 0 

3 2.033x104 1.343x104 8.820x103 

4 4.749x101 4.041x101 3.643x101 

5 1.994x105 8.531x103 5.283x102 

6 9.235x102 1.351x101 9.325x10-1 

7 1.126 5.386x10-1 2.976x10-1 

8 -7.316x103 -7.581x103 -7.665x103 

9 1.511x102 1.229x102 1.408x102 

10 1.247x101 9.989 1.186x101 

11 9.982 1.202 3.434x10-1 

12 8.767x103 2.043x101 1.083x101 

13 1.098x105 6.388x101 3.627x101 

14 5.164 1.5804 1.369 

15 9.221x10-3 3.447x10-3 8.036x10-3 

16 -1.032 -1.032 -1.032 

17 3.981x10-1 3.981x10-1 3.981x10-1 

18 3.000 3.000 3.000 

19 -4.954x10-2 -4.758x10-2 4.695x10-2 

20 -3.259 -3.245 -3.282 

21 -4.884 -5.676 -5.280 

22 -3.701 -4.572 -4.131 

23 -5.211 -4.596 -4.728 

 

Table 6 shows that RCO performs well in the convergence 

aspect. There are 14 functions that the stable result is 

achieved in the very low iteration. Most of them are 

multimodal functions. Meanwhile, there are five unimodal 

functions that the convergence has not been reached when the 

maximum iteration is set at 75. 

The third simulation is carried out to assess the relation 

between the population and the performance of RCO. Its 

performance is measured based on the average fitness score. 

Like in the first and second simulations, the 23 functions are 

used as the problem. In this simulation, there are three values 

of population size which are 5, 15, and 15. All these values 

represent very low population size because they are still 

below the standard value in the first simulation. Meanwhile, 

the maximum iteration is set to 100. The result is exhibited in 

Table 7. 

Table 7 indicates the variety of responses due to the 

increase of population size. In general, in the first group of 

functions, the increase of swarm size improves the 

performance, except in Schwefel 2.22. In Schwefel 2.22, the 

global optimal solution was achieved when the population 

size was still 5. In the second group of functions, the 

significant improvement is achieved only in three functions 

(Griewank, Penalized, and Penalized 2). In the third function, 

significant improvement is achieved only in Shekel Foxholes. 

Meanwhile, in three functions (Six Hump Camel, Branin, and 

Goldstein Price), there is not any significant improvement 

because the global optimal solution has been achieved. 

 
TABLE VII 

RELATION BETWEEN SWARM SIZE AND AVERAGE FITNESS SCORE 

Function 
Average Fitness Score 

n(X) = 5 n(X) = 10 n(X) = 15 

1 2.711x103 2.284x101 9.516x10-1 

2 0.000 0.000 0.000 

3 3.085x104 1.585x104 1.123x104 

4 6.071x101 4.773x101 3.739x101 

5 8.936x105 8.649x103 7.047x102 

6 1.976x103 2.305x101 5.036x10-1 

7 1.022 5.285x10-1 2.796x10-1 

8 -6.444x103 -7.486x103 -7.353x103 

9 2.087x102 1.505x102 1.347x102 

10 1.671x101 1.210x101 9.932 

11 2.467x101 1.221 2.120x10-1 

12 1.190x105 2.093x101 1.181x101 

13 1.804x106 6.575x101 3.523x101 

14 7.128 2.156 1.329 

15 1.487x10-2 6.737x10-3 6.340x10-3 

16 -1.032 -1.032 -1.032 

17 3.981x10-1 3.981x10-1 3.981x10-1 

18 5.250 3.000 3.000 

19 -3.898x10-2 -4.309x10-2 -4.954x10-2 

20 -3.285 -3.273 -3.254 

21 -5.977 -5.563 -6.065 

22 -4.199 -5.340 -5.339 

23 -4.017 -4.179 -4.961 

 

The fourth simulation is used to assess the performance of 

RCO in optimizing the real-case problem. RCO is challenged 

to optimize the outsourcing problem. The outsourcing 

problem is chosen because this outsourcing strategy is 

essential and expected in supply chain management, 

especially in the production system. Outsourcing is important 

because, in general, every manufacturer's production 

capacity, skilled workers, and technology resource are limited 

[34]. Its limitation comes from two circumstances. First, a 

manufacturer is not able to produce all the product items it 

offers. This circumstance usually occurs in a manufacturer 

that sells multiple products. Second, its production capacity 

is limited, so the ordered quantity surpasses the production 

capacity. Moreover, in the global supply chain era, 

outsourcing around the globe has become more strategic [35]. 

In this work, the scenario is a single product and multiple 

vendors. This manufacturer is a sock manufacturer. A 

manufacturer outsources only one product. On the other hand, 

there are several vendors that can produce this product for the 

manufacturer. Each vendor has its production capacity. 

Moreover, each vendor has its product price that can be seen 

from the manufacturer’s perspective as the outsourcing price. 

Every outsourcing order must be in the economic order 

quantity (EOQ).  

The parameters set regarding this outsourcing 

optimization problem are as follows. The system contains ten 

vendors. Five vendors are prominent, while five others are 

small vendors. The order quantity constraint for the big 

vendor is from 1,000 to 2,000 dozen for each vendor. The 

order quantity constraint for the small vendor is from 100 to 

500 dozen. The outsourcing cost for the big vendor ranges 

from 108,000 to 120,000 rupiah per dozen. On the other hand, 

the outsourcing cost for the small vendor ranges from 96,000 
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to 108,000 rupiah per dozen. The small vendors can offer 

lower outsourcing costs because they have not paid the value-

added tax, and their labor cost is lower than the big ones. On 

the other hand, the prominent vendors offer a bigger 

production capacity. Although the outsourcing cost of the 

prominent vendors is higher than the small vendors, the 

manufacturer still needs the prominent vendors because the 

total outsourcing quantity is much higher than the total 

production capacity of the small vendors. In this simulation, 

the total outsourcing quantity is 8,000 dozen. The objective is 

to minimize the total outsourcing cost, which is obtained by 

accumulating the outsourcing cost of all vendors. 

This simulation confronts the RCO with five algorithms: 

PSO, MPA, GWO, KMA, and POA. The swarm size is set at 

10, and the maximum iteration is set at 50. This setting 

represents the low swarm and low iteration. The result is 

exhibited in Table 8. 

 
TABLE VIII 

OUTSOURCING SIMULATION RESULT 

Algorithm Total Cost 

PSO Rp 891,993,454 

GWO Rp 938,451,310 

MPA Rp 881,247,272 

KMA Rp 884,176,421 

POA Rp 878,230,000 

RCO Rp 882,671,250 

  

Table 8 shows that RCO is competitive enough among 

other algorithms to optimize this outsourcing problem. The 

performance of RCO is better than PSO, GWO, and KMA. 

Meanwhile, its performance is worse than MPA and POA. 

Table 7 also shows that the performance gap among these 

algorithms is tight. RCO is 1.0%, 5.9% and 0.2% better than 

PSO GWO and KMA. On the other hand, RCO is 0.2% and 

0.5% worse than MPA and POA. 

IV. DISCUSSION 

In this section, a comprehensive analysis, and the findings 

regarding the simulation result will be discussed. This 

discussion is also divided into three issues: the general 

performance in addressing the 23 functions, the convergence, 

and the performance in addressing the outsourcing 

optimization problem. 

In general, RCO is proven as a good and competitive 

algorithm for addressing the 23 functions. It can find an 

acceptable solution for all functions. Most of these solutions 

are quasi-optimal ones, while four of them are global optimal 

ones. This achievement occurs in all function groups: the high 

dimension unimodal functions, high dimension multimodal 

functions, and fixed dimension multimodal functions. It 

means that RCO has met the general requirements for any 

metaheuristic where the acceptable solution should be found 

when the iteration ends, and the local optimal trap should be 

avoided. The result also shows that its performance is good 

in all space sizes. 

The result also shows that RCO is a competitive 

metaheuristic benchmarked with the five sparing algorithms: 

PSO GWO, MPA, KMA, and POA in addressing the 23 

functions. RCO is significantly superior to PSO, KMA, and 

POA. Meanwhile, MPA and GWO are difficult to beat. RCO 

is superior to MPA and GWO in addressing fixed dimension 

functions. Meanwhile, RCO is inferior to MPA and GWO in 

addressing high dimension functions.  

Based on the result related to the convergence aspect, 

RCO is proven as a metaheuristic that can achieve 

convergence in the low iteration. It needs a low 

computational process to address the optimization problem. 

This performance is achieved primarily by addressing the 

multimodal functions. It also means that RCO can step away 

from the local optimal trap and find the area where the global 

optimal member exists in the early iteration. 

Based on the third simulation result, there are variety 

regarding the response of algorithm regarding the increase of 

population size. In many unimodal functions, the increase of 

population size improves performance significantly. On the 

other hand, in many multimodal functions, the increase of 

population size does not improve performance significantly. 

In regard to the simulation result on addressing the 

outsourcing optimization problem, RCO is also proven 

competitive among the sparing algorithms. It is better than 

three metaheuristics but worse than two metaheuristics. But 

the performance gap among the algorithms is narrow.  

Overall, the simulation result strengthens the no-free-

lunch theory that states that there is no algorithm suitable to 

address all kinds of problems. The performance or quality of 

a technique is highly related to the problem it tries to address. 

This circumstance can be seen from the result in the 

theoretical optimization problem and real-world or practical 

optimization problem. In general, RCO is superior in 

addressing the fixed dimension multimodal functions. Its 

superiority is applied to all sparing algorithms. However, 

RCO is inferior to GWO and MPA in addressing high 

dimension functions. The opposite result occurs in the 

outsourcing optimization problem. POA outperforms RCO in 

the outsourcing optimization problem and becomes the best 

metaheuristic in addressing this problem, although POA is 

inferior in addressing the 23 functions. This circumstance 

also comes from the different characteristics between the 23 

functions and the outsourcing optimization problem. In the 23 

functions, the solution is formatted in a high precision 

floating point. Contrary, in the optimization work on 

outsourcing problem, the solution is presented in the integer. 

The opposite result also occurs in GWO. GWO becomes the 

most challenging metaheuristic to beat in addressing the 23 

functions, but its performance is the worst among all 

metaheuristics in addressing the outsourcing optimization 

problem. 

The computational complexity of RCO can be explained 

as follows. This complexity can be split into two parts: the 

initialization and the iteration. During the initialization, the 

complexity can be presented as O(n(X).d). In the 

initialization, there are two loops where the loop for whole 

population is the outer loop while the loop for whole 

dimensions is the inner loop. Meanwhile, during the iteration, 

the complexity can be presented as O(tmax.n(X).d). In the 

iteration, there are three loops. Loop until maximum iteration 

is the outer loop, loop for whole population is the middle 

loop, and loop for whole dimensions is the inner loop. 

There are several considerations regarding the designed 

RCO. Despite its general outstanding performance relative to 

its competitors, RCO is still inferior to GWO and MPA in 

solving high dimension problems. This weakness can be used 
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as a baseline for future development and improvement. 

Second, many latest metaheuristics are developed by 

deploying multiple strategies, such as osprey optimization 

algorithm (OOA) [36], extended stochastic coati optimization 

(ESCO) [37], average subtraction-based optimization 

(ASBO) [38], adaptive balance optimization (ABO) [39], 

clouded leopard optimization (CLO) [40], and so on. This 

approach is designed to overcome the weaknesses of a 

strategy with the strengths of other strategies. Furthermore, 

there are various practical optimization problems, and their 

complexity increases as time goes on. These recent and 

upcoming problems can be used as use-cases for RCO to 

prove its superiority.  

V. CONCLUSION 

This work has presented that the run-catch optimizer 

(RCO) becomes a good and competitive metaheuristic, 

although RCO does not have adjusted parameters except the 

swarm size and the maximum iteration, it meets the general 

requirements of an acceptable and competitive metaheuristic. 

First, it can find the acceptable member or solution within the 

iteration constraint. Second, it can avoid the local optimal 

trap. The assessment result shows that RCO is competitive in 

addressing the 23 functions and the outsourcing optimization 

problem. RCO also can achieve convergence in the constraint 

of the low iteration in many functions. Most of them are 

multimodal functions. RCO outperforms PSO, GWO, MPA, 

KMA, and POA in addressing 21, 12, 13, 21, and 20 functions 

respectively in addressing the 23 functions. Meanwhile, RCO 

is better than PSO, GWO, and KMA, but worse than MPA 

and POA in addressing the outsourcing optimization 

problem. 

This work has exhibited that the designed technique is 

promising to become the baseline for future improvement and 

development. RCO should be utilized in many other 

optimization problems to assess its performance more 

comprehensively. Future studies can be conducted by 

combining this technique with other techniques to combine 

both advantages. Meanwhile, future improvement should not 

be conducted by adding more adjusted parameters. Moreover, 

it is also suggested that the improvement can be conducted to 

make RCO become more adaptive, especially in speeding up 

the convergence once the area of the global optimal member 

is found or to make RCO can find the area of the global 

optimal member exists earlier. 
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