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Abstract—For the accuracy of the autoregressive model,
variable selection and model order are two main problems.
We hope to select variables and determine the order at the
same time. The improved adaptive LASSO method (IALASSO)
not only notices the sensitivity of the time series, but pays
attention to the influence of the lag order. We show that
the IALASSO estimator enjoys asymptotic properties under
certain conditions. Simulation studies demonstrate that the
IALASSO estimator is superior than the other method. Finally,
by applying IALASSO to actual time series data, the prediction
accuracy is higher.

Index Terms—Adaptive LASSO, variable selection, autore-
gressive model, lag effect

I. INTRODUCTION

THERE are many methods of parameter estimation,
including least squares estimation, maximum likelihood

estimation, ridge regression estimation [1] and the other
methods [2]–[4], but these methods have a common dis-
advantage that they cannot reduce the set of explanatory
variables. Variable selection is an important method for di-
mensionality reduction and mining hidden structures in data,
which can improve model interpretability and prediction
accuracy. Classical variable selection methods include AIC
[5], Mallows’Cp [6], BIC [7] and EICw [8]. These traditional
methods are discrete and not stable in variable selection.
In order to solve this problem, Tibshirani [9] proposed the
LASSO, which makes some regression coefficients become
0 to achieve variable selection by using penalized likelihood
method. At the same time, the regression coefficients of
significant variables are estimated. On the basis of the
LASSO, many scholars have conducted in-depth research and
continuous improvement, and have proposed many model
selection methods [10]–[15]. For example, Zou found that
the LASSO uses the same degree of compression for all
coefficients, and does not have the Oracle properties [16].
So the Adaptive LASSO method is proposed, which has the
Oracle properties and uses different degrees of compression
for different coefficients.

The existed reference has shown that the LASSO is an
effective variable selection method, especially in the analy-
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sis of high-dimensional data models. If LASSO is applied
to time series models, its good performance will further
play a role in variable selection. Nardi et al. [17] showed
that LASSO has good applicability in estimating regression
coefficients and determining the order of AR(p) models.
Che et al. [18] presented the AHO-Lasso-SVR model by
applying support vector regression forecasting. However, the
correlation between the time series will affect the process of
parameter estimation and variable selection. Noted that the
Adaptive LASSO is proposed for cross-sectional data, it does
not consider the sensitivity of the time series model with the
time order and ignores the impact of the lag order on the
time series modeling. Therefore, these facts will cause that
the Adaptive LASSO can not perform very well for the time
series model, which can easily lead to inaccurate estimation
and prediction.

In order to fully consider the characteristics of the time
series model and retain the advantages of the Adaptive
LASSO, we modify the objective function of the Adaptive
LASSO and the penalty term, and propose the improved
Adaptive LASSO (IALASSO) for the autoregressive model
in this paper. We want to achieve the goal that the penalty
function has a heavier penalty to more backward lag term and
a lighter penalty to more forward lag term. Besides, we also
assure that the penalty function is related with the distance
to the middle term. This method gives a lighter penalty to
the lag terms farther away from the middle. In this paper, we
mainly focus on using the Adaptive LASSO with improved
penalty term for variable selection and parameter estimation
of autoregressive time series models.

The rest of this paper is organized as follows. In Section
II we propose the IALASSO estimator and introduce the
improved penalty term in detail. The main theoretical prop-
erties of the IALASSO estimator are given in Section III. In
Section IV, simulation studies of the proposed method are
presented. As an application, the stock price data is selected
for fitting and prediction in Section V.

II. ADAPTIVE LASSO WITH IMPROVED PENALTY
TERM(IALASSO)

A. Penalized likelihood method

A classical linear regression model can be set as yi =∑p
j=1 β0jxij + εi, i = 1, 2, ..., n. There are n groups of

observations, and each group of observations consists of
an response variable yi and p related predictor variables
xi = (xi1, xi2, ..., xip)

T , where β0 = (β01, β02, ..., β0p)
T

are unknown parameters and εi is the error term. The goal
of linear regression is to predict the response value from
the predictor variables and to be able to find out which
predictors are important. Estimating the parameter vector β0
is the core work to achieve the above goals. The traditional
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OLS approach is to minimize the following function

min
β

n∑
i=1

(yi −
p∑
j=1

βjxij)
2. (1)

In general the OLS estimator of the parameters is not equal
to 0, which means that the final model become difficult to
interpret if p is large. When n < p, the OLS estimator is
not unique, and there are infinite solutions. Therefore it is
necessary to constrain this estimation process by a penalty
function. On the basis of OLS, the constraint condition about
β is added by the penalty function pλ (|β|). The penalized
least squares estimation is established [19] as follows

β̂ = argmin[
n∑
i=1

(yi −
p∑
j=1

βjxij)
2 +

p∑
j=1

pλ(|βj |)].

When the penalty function takes different functions, different
variable selection methods can be constructed. The L1 penal-
ty function pλ (|β|) = λ |β| corresponds to LASSO, Ridge
regression with the L2 penalty function pλ (|β|) = λβ2, and
Bridge regression with the Lq (0 < q < 1) penalty function
pλ (|β|) = λ |β|q .

B. LASSO

The LASSO method aims to preserve the important fea-
tures of the independent variables by assigning some coeffi-
cients to 0. It is widely used in high dimensional data, where
the number of features p is much larger than the number of
observations n. The LASSO estimator β̂LASSO is defined as

β̂LASSO = argmin[
n∑
i=1

(yi −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

|βj |],

where λ is a non-negative tuning parameter and the penalty
function is λ

∑p
j=1 |βj |.

The complexity of LASSO is controlled by λ. The smaller
the λ, the lighter the penalty for the linear model with more
variables. When λ is sufficiently large, the LASSO can make
some coefficients in the model strictly equal to 0, so that a
model with fewer variables is finally obtained. By construct-
ing a penalty function, it can compress the coefficients of
variables and make some regression coefficients become 0,
so as to achieve the purpose of variable selection.

C. Adaptive LASSO

Zou [20] proposed Adaptive LASSO, which aims to im-
prove LASSO regression by introducing weight coefficient,
and uses adaptive weight in the penalty function to penal-
ize different parameters. It also has a sparse solution and
Oracle properties, which means it has the same asymptotic
distribution as the case when the real parameters are known
in advance. The Adaptive LASSO estimator β̂ALASSO is
defined as

β̂ALASSO = argmin[

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

ωj |βj |],

where the penalty function is λ
∑p
j=1 ωj |βj |.

The adaptive weight is selected by

ωj =
1∣∣∣β̃j∣∣∣γ , (j = 1, 2, ..., p)

where γ > 0 and β̃ is estimated by LASSO or the other
method. The positive value γ is a power of the adaptive
weight and associated with higher order. The Adaptive
LASSO is obtained by selecting the tuning parameter λ and
the adaptive weight order γ from two-dimensional cross-
validation. The Adaptive LASSO method uses different de-
grees of compression for different coefficients and the supe-
riority of this method is to effectively correct the estimation
bias of the model and speed up the convergence rate.

For time series model, in view of time sensitivity, variables
with higher lag order usually have poorer predictive ability
for the future. Combined with time series characteristics,
Wang et al. [21] proposed the MALASSO, which combined
with the characteristics of the time series model on the basis
of Adaptive LASSO by giving a heavier penalty to the later
order. The adaptive penalty weight is as follows

ωj =
jγ2∣∣∣β̃j∣∣∣γ1 ,

where γ1 is the positive penalty parameter of the coefficient,
and γ2 is the positive penalty parameter for the lag order.
The larger the j, the larger the penalty weight ωj . By giving
a heavier penalty for the lag period, we limit the size of the
parameter space to reduce the complexity of the model and
improve the convergence speed. Therefore the accuracy and
efficiency of parameter estimation and variable selection can
be improved.

D. IALASSO

For time series model, the MALASSO ignores that the
penalty function should be related with the distance to the
middle term, which means the penalty function should give
a lighter penalty to more forward lag term. Based on this, a
new penalty method can be proposed to appropriately adjust
the penalty function of the MALASSO. The specific method
is to divide the intermediate term of the lag order, and give a
relatively heavier penalty to the coefficient whose lag order
is larger than the middle term. A relatively lighter penalty
for coefficients whose lag order is smaller than the middle
term ensures that the leading lag terms enter the model with
larger probability.

The advantage of this improvement is that the compres-
sion of different coefficients can speed up the automatic
adjustment, limit the size of the parameter space to reduce
the complexity of the model, and improve the convergence
speed. In order to achieve the purpose of improving the
accuracy and efficiency of variable selection and parameter
estimation, we propose the IALASSO method with the
adaptive penalty weight as follows

ωj =
jsgn(j−

p+1
2 )γ2∣∣∣β̃j∣∣∣γ1 . (2)

Therefore, for the AR(p) model the estimator of the
IALASSO is defined as

β̂IALASSO = argmin[
n∑
i=1

(yi −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

ωj |βj |],

where ωj is defined by (2). When the lag order j is less than
the middle term, the penalty is lighter by ωj = j−γ2

|β̃j|γ1 =
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|β̃j|γ1 jγ2 . When the lag order j is larger than the middle

term, the penalty will be heavier by ωj = jγ2

|β̃j|γ1 .

III. THEORETICAL PROPERTIES

For the convenience of statement, we introduce some
notations firstly. For AR(p) model Y = Xβ0 + ε, where
ε = (εp+1, εp+2, ..., εT )

T , {εt} are random errors with
mean 0 and variance σ2, {xt} is the time series, Y =
(xp+1, xp+2, ..., xT )

T and

X =


xp xp−1 · · · x1
xp+1 xp · · · x2

...
...

...
...

xT−1 xT−2 · · · xT−p

 .
Denote β = (β1, β2, ..., βp)

T , 1
T−p

∑T
t=1XtX

T
t :=

CT and suppose CT → C(T → ∞), where Xt =
(xt−1, ..., xt−p)

T and C is a nonnegative definite non-
singular matrix.

A. Consistency of the estimator

From the previous discussion, the IALASSO estimator of
AR(p) model can be obtaind by

β̂IALASSO

= argmin[
1

T − p

T∑
t=p+1

(xt −
p∑
j=1

βjxt−j)
2

+
λT
T − p

p∑
j=1

ωj |βj |],

(3)

where λT is the tuning parameter related to sample size T .

Theorem 1 If λT = o(T )(T → ∞), then the IALASSO
estimator β̂IALASSO is consistent to β0.

Proof: Firstly denote

QT (β) =
1

T − p

T∑
t=p+1

(
Yt −XT

t β
)2

+
λT
T − p

p∑
j=1

ωj |βj | ,

then we can easily get that

QT (β)

=
1

T − p

T∑
t=p+1

[
XT
t (β0 − β) + εt

]2
+

λT
T − p

p∑
j=1

ωj |βj |

= (β − β0)TCT (β − β0) +
2

T − p
(β0 − β)T

T∑
t=p+1

Xtεt

+
1

T − p

T∑
t=p+1

ε2t +
λT
T − p

p∑
j=1

ωj |βj | ,

where {εt} is not correlated with {xt} at the same period.
Besides this, notice the fact that QT (β) is convex, which
yields that for any compact set S,

sup
β∈S
|QT (β)−Q(β)− σ2| p−→ 0,

where

Q(β) = (β − β0)TC(β − β0) + ( lim
T→∞

λT
T − p

)

p∑
j=1

ωj |βj | .

In view of QT (β) ≥ 1
T−p

∑T
t=p+1

(
Yt −XT

t β
)2

and

argmin( 1
T−p

∑T
t=p+1

(
Yt −XT

t β
)2
) = Op(1), we can get

that
argmin(QT (β)) = Op(1).

It follows from the above formula that

argmin(QT (β))
p−→ argmin(Q(β) + σ2),

which yields that the IALASSO estimator β̂IALASSO is
consistent to β0 when λT = o(T ).

B. Asymptotic normality

Theorem 2 If limT→∞
λT√
T
= λ0, then√

T − p
(
β̂IALASSO − β0

)
d−→ argminV

where

V (u) = −2uTW + λ0

p∑
j=1

[ujωjsgn(β0j)I(β0j 6= 0)

+ ωj |uj |I(β0j = 0)] + uTCu,W ∼ N(0, σ2C)

and u is any p-dimensional vector. Especially when λ0 = 0,
√
T − p

(
β̂IALASSO − β0

)
d−→ C−1W ∼ N(0, σ2C−1).

Proof: For the p-dimensional vector β = β0 + u, we
can obtain that

VT (u) = QT (β)−QT (β0)

=
T∑

t=p+1

[(εt − uTXt/
√
T − p)2 − ε2t ]

+ λT

p∑
j=1

ωj [|β0j + uj/
√
T − p| − |β0j |]

(4)

has minimum at the point
√
T − p

(
β̂IALASSO − β0

)
. For

the first part of (4), it holds that
T∑

t=p+1

[(εt − uTXt/
√
T − p)2 − ε2t ]

d−→ −2uTW + uTCu.

For the second part of (4), we can easily get

λTωj [|β0j + uj/
√
T − p| − |β0j |]

= λT /
√
T − pωj |uj | → λ0ωj |uj |,

when β0j = 0 and

λTωj [|β0j + uj/
√
T − p| − |β0j |]

≥ λT /
√
T − pωjsgn(β0j)uj → λ0ωjsgn(β0j)uj

when β0j 6= 0. Therefore for the p-dimensional vector u,

VT (u)
d−→ V (u).

It follows from the convexity of VT that

argmin(VT ) =
√
T − p

(
β̂IALASSO − β0

)
d−→ argmin(V ).
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When λ0 = 0,

√
T − p

(
β̂IALASSO − β0

)
d−→ C−1W ∼ N(0, σ2C−1),

which shows that the IALASSO estimator is asymptotically
normal.

IV. NUMERICAL SIMULATION

In order to evaluate the numerical performance of IALAS-
SO estimator, we simulate data from the following four
AR(p) models:

AR (1) : yt = −0.8yt−1 + εt

AR (2) : yt = 0.5yt−1 − 0.3yt−2 + εt

AR (3) : yt = 0.8yt−1 − 0.7yt−2 + 0.3yt−3 + εt

AR (4) : yt = 0.5yt−1 + 0.6yt−2 − 0.2yt−3 + 0.3yt−4 + εt

Before using ALASSO, MALASSO and IALASSO for pa-
rameter estimation, we determine the length of time series
data T equals 300, 500, 700 respectively. The times of simu-
lation N is 200. In order to comprehensively evaluate the per-
formance of the estimation method, we select four indicators,
namely EE, MSE, FP and FN. Here EE (Estimation Error) is
the average value of the values obtained by ‖β̂−β0‖2, which
is used to evaluate the accuracy of the estimation method.
MSE (Mean Square Error) equals the average value of the
numerical values obtained by ‖Y −Xβ̂‖2, which is used to
evaluate the prediction ability of the estimation method. FP
(False Positive) represents the average number of variables
that mistake zero variables for non-zero variables. FN (False
Negative) represents the average number of variables that
mistake non-zero variables for zero variables.

TABLE I
SIMULATION RESULTS FOR AR(1) MODEL

Setting Method EE MSE FP FN

T=300 ALASSO 0.0023 0.0578 0.2300 0
MALASSO 0.0051 0.0579 0.3200 0
IALASSO 0.0037 0.0581 0.2100 0

T=500 ALASSO 0.0017 0.0448 0.2100 0
MALASSO 0.0023 0.0451 0.2400 0
IALASSO 0.0019 0.0449 0.1900 0

T=700 ALASSO 0.0011 0.0379 0.1800 0
MALASSO 0.0014 0.0380 0.2400 0
IALASSO 0.0013 0.0379 0.1600 0

TABLE II
SIMULATION RESULTS FOR AR(2) MODEL

Setting Method EE MSE FP FN

T=300 ALASSO 0.0108 0.0578 0.2400 0
MALASSO 0.0144 0.0578 0.4400 0
IALASSO 0.0097 0.0577 0.2900 0

T=500 ALASSO 0.0059 0.0450 0.2400 0
MALASSO 0.0062 0.0449 0.2700 0
IALASSO 0.0063 0.0447 0.2200 0

T=700 ALASSO 0.0034 0.0378 0.1700 0
MALASSO 0.0043 0.0379 0.2600 0
IALASSO 0.0035 0.0379 0.1100 0

TABLE III
SIMULATION RESULTS FOR AR(3) MODEL

Setting Method EE MSE FP FN

T=300 ALASSO 0.0232 0.0582 0.2300 0.030
MALASSO 0.0215 0.0579 0.2600 0
IALASSO 0.0220 0.0577 0.2650 0

T=500 ALASSO 0.0127 0.0447 0.2100 0
MALASSO 0.0119 0.0447 0.2000 0
IALASSO 0.0114 0.0449 0.2100 0

T=700 ALASSO 0.0063 0.0378 0.1600 0
MALASSO 0.0067 0.0378 0.2050 0
IALASSO 0.0054 0.0377 0.1700 0

TABLE IV
SIMULATION RESULTS FOR AR(4) MODEL

Setting Method EE MSE FP FN

T=300 ALASSO 0.0278 0.0578 0.1450 0.1250
MALASSO 0.0282 0.0578 0.1400 0
IALASSO 0.0282 0.0577 0.1400 0

T=500 ALASSO 0.0161 0.0447 0.1050 0.0200
MALASSO 0.0144 0.0446 0.1000 0
IALASSO 0.0153 0.0447 0.0850 0

T=700 ALASSO 0.0108 0.0378 0.1100 0
MALASSO 0.0109 0.0378 0.0900 0
IALASSO 0.0108 0.0376 0.0700 0

The following conclusions can be obtained from TABLE
I to TABLE IV.

1) For the AR model, Adaptive LASSO and its related
methods can perform variable selection and parameter
estimation. The simulation results of the IALASSO
method are generally better than the ALASSO and
MALASSO.

2) Under the same scenario, with the increase of the sam-
ple size, the performance of the IALASSO estimator
is getting better and better.

3) For the IALASSO, not only the correct variables are
selected, but the accuracy of parameter estimation is
also higher than that of the ALASSO and MALASSO.
On the whole, for AR model the IALASSO estimator
can select the correct signal variables, and estimate
parameters more accurately.

V. REAL DATA APPLICATIONS

In this section, we will apply a dataset to illustrate the
performance of IALASSO estimator. We select the daily
opening price data of the Chinese stock of Pingan Bank from
May 13th, 2019 to April 2nd, 2022, and reserve the last 25
days as test data.
A. Perliminary processing of data

Before modeling, the time series is not stationary by sta-
tionarity test, so the log-transform and first-order difference
of daily opening price is taken.

By ADF test on the series, it is found that the time series
is stationary, and a corresponding model can be established.
By observing ACF and PACF diagrams, we try to establish
an ARIMA(5,1,0) for the series. By using the maximum
likelihood method to estimate the parameters, we can get
the following model

ÔlnYt = 0.0077OlnYt−1 + 0.0227OlnYt−2
+ 0.0556OlnYt−3 − 0.0294OlnYt−4 − 0.1019OlnYt−5.
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Now the residual sequence has no autocorrelation basical-
ly, and can be regarded as a white noise series by using the
Ljung-Box test. So the model of ARIMA(5,1,0) can extract
most of the information of the series. Before modelling the
opening price series using the penalized methods, we denote

Y = (OlnYp+1,OlnYp+2, ...,OlnYT )
T
,

X =


OlnYp OlnYp−1 ... OlnY1

OlnYp+1 OlnYp ... OlnY2
... ... ... ...

OlnYT−1 OlnYT−2 ... OlnYT−p

.
ALASSO, MALASSO and IALASSO are used to model

by the BIC criterion and the obtained models are as follows

ALASSO : ÔlnYt = 0.0002789− 0.0502181OlnYt−5

MALASSO : ÔlnYt = 0.0002755 + 0.0165881OlnYt−3
− 0.0553417OlnYt−5

IALASSO : ÔlnYt = 0.0002751 + 0.0078352OlnYt−3
− 0.0466015OlnYt−5

There is no autocorrelation and partial autocorrelation in
the residual sequence, and the Ljung Box test also shows
that the residual is a white noise sequence.

B. Model prediction

By using the above models we predict the daily opening
price of the next 25 days. For further comparison, we
calculate the mean absolute percentage error (MAPE) of the
four methods respectively

MAPE = (

T−p∑
i=1

(|Yi − Ŷi
Yi

|) ∗ 100%)/(T − p).

TABLE V
COMPARISON OF THE PREDICTIVE ABILITY OF FOUR METHODS

MAPE ARIMA ALASSO MALASSO IALASSO

In-sample 0.7125% 0.3041% 0.3429% 0.2846%
Out-of-sample 1.4615% 0.5253% 0.5262% 0.5179%

From TABLE V the values of MAPE obtained by the four
methods are very small. Among them, the in-sample and out-
of-sample MAPE of IALASSO are 0.2846% and 0.5179%
respectively, which is the smallest among four methods.
Therefore the model established by the IALASSO method
is generally better than the other methods.

VI. CONCLUDING REMARKS

Since the Adaptive LASSO model ignores the influence of
the lag order for time series model, it is impossible to predict
the time series data well. Therefore, we propose the IALAS-
SO method for the AR model in this paper. The IALASSO
estimator is to divide the middle term of lag order, which can
put relatively heavier penalty to the coefficients whose lag
order are larger than the middle term and put relatively lighter
penalty to the coefficients whose lag order are less than the
middle term. The IALASSO can ensure the front lag term
enter the model with a high probability. The advantage of this
improvement is that the compression of different coefficients
can speed up the automatic adjustment, limit the size of

the parameter space, and improve the convergence speed.
So the IALASSO method can improve the accuracy and
efficiency of variable selection and parameter estimation. In
the parts of numerical simulation, we give several simulation
studies to examine the asymptotic results, which show that
the IALASSO method is feasible and efficient in variable
selection and parameter estimation.
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