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Abstract- The existing research on gesture classification 

has mainly focused on larger amplitudes. However, 

studying subtle movements is essential to achieving 

precise control of prosthetics or manipulators. This 

paper proposes a refined recognition method for finger 

and arm movements. Ten-finger and ten-arm movements 

were designed for subtle classification, respectively. 

Features extracted from the time domain, frequency 

domain, and time-frequency domain included Mean 

Absolute Value (MAV), Fast Fourier Transform (FFT), 

and Hilbert-Huang Transform (HHT). The study 

compares the effects of seven types of feature 

combinations and uses five classification algorithms to 

predict results. The combination of "FFT+HHT" yielded 

better results, and the linear discriminant analysis 

algorithm achieved better prediction accuracy. This 

research has significant implications for the precise 

control of robots or prosthetics and proper rehabilitation 

in later stages. 

 

Index Terms —  sEMG, classification, features, 

movement 

I.  INTRODUCTION 

The application of EMG has extended beyond traditional 

areas such as medical diagnosis and rehabilitation 

engineering to prosthetic control and human-robot 

interaction. Surface electromyography (sEMG) is a 

bioelectrical signal that contains various muscle activities, 

including deep layer EMG signals extracted from needle 

electrodes and surface EMG signals extracted from surface 

electrodes. While needle-type sensors perform well in 

receiving clear EMG signals, the trauma caused to the 

human body by the insertion of the needle deeply into 

muscles seems unavoidable. Conversely, the non-invasive 

nature of surface electrodes extracting movements makes 

them widely used as control signals for intelligent robotic 

arms and other devices. To achieve precise control of the 

intelligent robotic arm, it is necessary to improve the 

classification accuracy of movements. In the existing 

research, emphasis has been placed on the classification of 

sEMG signals with larger amplitudes, which are easier to 

distinguish and typically yield higher accuracy. Chu et al. [1] 

employed a Wavelet Packet Transform (WPT) to extract 

features. They classified eigenvalues with the Linear 

Discriminant Analysis (LDA) to recognize eight hand 

actions, and the precision could reach 97.4%. Kevin et al. [2] 

placed a four-channel Ag-Cl sensor on the arm, extracted 

four features for the hand's six movements, and classified 

them with LDA. The classification conclusion could reach 

98%. Michael et al. [3] combined accelerometers and 

gyroscopes with myoelectric sensors to organize 17 

activities in everyday life. The angular acceleration and the 

angular velocity were respectively averaged, and the 

averages were separately integrated as two sets of features. 

Root Mean Square (RMS) was used as an additional feature 

for the sEMG, and the accuracy was 89.2%. Despite the high 

accuracy attained in previous studies by focusing on larger 

amplitude movements, little research has been conducted on 

movements with smaller amplitudes. This paper focuses on 

fine movements, which refer to upper limb actions with 

subtle differentiation, such as the combination of finger 

extension and closure depicted in FIGURE 1(a). 

Surface Electromyography (sEMG) is a non-stationary 

bioelectrical signal that arises in a muscle when it contracts. 

The primary focus of sEMG research has been on feature 

extraction and classification. Various feature extraction 

methods have been employed by researchers to enhance the 

classification performance of sEMG. For instance, Dori et al. 

[4] employed the discrete Fourier transform to process the 

signals, achieving a percent correct of 65%. Sebastian et al. 

[5] used Root Mean Square (RMS) to obtain the eigenvalues, 

which yielded an accuracy of 77.4%. Yang et al. [6] 

employed Maximum Absolute Value (MAV) and obtained a 

96% accuracy while testing 11 subjects. In addition to these 

methods [4-6], others such as Wavelet Transform (WT), Fast 

Fourier Transform (FFT), and Hilbert-Huang Transform 

(HHT) have also been used. Nagineni et al. [7] applied 

Hilbert-Huang Transform to the EMG signal to classify 
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FIGURE 1. The movements for subjects to complete. (a) Ten finger movements. (1)~(5) Five fingers bend separately, and other fingers stretch out; (6) (7) 

respectively stretch and bend two fingers; (8) (9) respectively stretch and bend three fingers. (b) 10 arm movements. (1)~(3), (4)~(7), (8)~(10) are three 

groups, and the difference is the direction of the palm. 

 

forearm movements and obtained good results. In this study, 

the "MAV+FFT" technique was used to distinguish the 

sEMG, inspired by [7]. 

This paper presents a classification method for fine 

movements of fingers and arms. While previous studies 

focused on larger movements that are easier to distinguish 

and hence produced higher accuracy, the study of slight 

movements is crucial for improving prosthetic or robot 

control precision in the future. The feature extraction 

methods utilized in this study include HHT, FFT, and MAV. 

Subsequently, five algorithms are compared, and the results 

show that LDA has a better recognition effect [8-10]. 

II.  BACKGROUND AND METHODS 

A. USER TRAINING 

Twelve participants were recruited for this study, 

comprising of 11 males and 1 female, with ages ranging from 

23 to 32 years. Ten of the participants were right-handed, 

while the remaining 2 were left-handed. Prior to the 

experiment, the subjects were provided with detailed 

information about the study. They were trained to perform 

the movements presented in FIGURE 1 to ensure consistent 

performance of the movements with the same intensity and 

amplitude during testing. The subjects were required to 

complete the movements depicted in FIGURE 1 (a) and (b), 

respectively. In FIGURE 1 (a), the finger movements were 

relatively small, resulting in a minor variation in the 

myoelectric signals extracted. In (b), the arm movements 

could be divided into three groups, each consisting of 

movements that differed only in the rotation of the palm. For 

the movements in FIGURE 1(a), the sEMG sensors were 

placed on the extensor carpi radialis, the extensor carpi 

ulnaris, the short extensor pollicis, and the extensor 

digitorum communis. For the movements in FIGURE 1(b), 

the sensors were placed on the extensor carpi radialis, the 

extensor carpi ulnaris, the biceps brachii, and the triceps. The 

position of the sEMG sensors is depicted in FIGURE 2. A 

tester placed the sensors, and the participants followed the 

tester's instructions to complete the movements. Prior to the 

test, the subjects were asked to familiarize themselves with 

the selected movements. The process is illustrated in 

FIGURE 3. 

B. DATA COLLECTION 

Four sEMG sensors were used with an acquisition 

frequency 1000 Hz, as shown in FIGURE 4. The data 

acquisition card was the Advantech USB-4704. The feature 

extraction and classification program runs on a Lenovo PC 

(CPU: Intel i5-6500, RAM: 20G, SSD: 128G, Windows 7) 

and MATLAB2017B. FIGURE 5 shows the acquired 

myoelectric signals. Every movement lasted for 5 seconds 

with an interval of 5 seconds, so a group of 5 activities lasted 

for 25 seconds in total. The break is added; it's 50 seconds.  
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IGURE 2. sEMG sensors' position. (1) corresponding to the movements in FIGURE 1(a); (2) corresponding to movements in FIGURE 1(b). 
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FIGURE 3. The recognition process 

 

FIGURE 4. sEMG sensors 

C. FEATURES EXTRACTION AND CLASSIFICATION 

ALGORITHMS 

The collected data required pre-processing before 

feature extraction. According to previous studies  [11-17], 

the data was bandpass filtered from 20-200 Hz, and Kalman 

filtering was applied. To ensure minimal perceptible delay, a 

data set of 250 milliseconds was selected to obtain features. 

Selecting appropriate features is crucial to ensure 

classification accuracy, as highlighted in [18]. Time-domain 

methods, such as Mean Absolute Value (MAV) [15], the 

number of Zero-Crossings (ZC) [15, 19, 20], Waveform 

Length (WL) [14], and Slope Sign Changes (SSC) can be 

used for feature extraction. Frequency-domain methods, 

such as Fast Fourier Transform (FFT), Mean Square 

Frequency (MSF), and Root Mean Square Frequency 

(RMSF), can also be employed. Time-frequency domain 

methods include Short-time Fourier transform (STFT) [11], 

Wavelet Transform (WT) [11], and wavelet transform 

coefficients. For this study, MAV, FFT, and HHT were used 

for feature extraction [21, 22]. 

1) Mean Absolute Value (MAV) 

 
1

1
MAV

N

n

x n
N 

 
 

(1) 

where, N is the number of the sample; x(n) is the signal 

value.
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FIGURE 5. The following signals were acquired during the experiment: (1) sEMG of extensor carpi radialis, (2) sEMG of extensor carpi ulnaris, (3) sEMG 

of short extensor pollicis, and (4) sEMG of extensor digitorum communis for finger movements; (5) sEMG of carpi radialis, (6) sEMG of extensor carpi 

ulnaris, (7) sEMG of biceps brachii, and (8) sEMG of triceps for arm movements.

  

2) Fast Fourier Transformation (FFT) 

The Fourier transform converts the signals from the 

time domain to the frequency domain; thus, researchers 

could observe information that can't be kept in the time 

domain. In the frequency domain, it was possible to follow 

each frequency component's amplitude and the primary 

frequency distribution of the sEMG. The Fourier transform 

of the signal x(n) is  

   j j

0

e e n

n

H x n 





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(2) 

where, ω is the frequency. 

3) Hilbert-Huang Transform (HHT)  

Most signals do not have linear stability in real life, but 

the Hilbert algorithm requires that the input signals be 

linearly stable. Thus, Huang et al. [23] introduced the 

Empirical Mode Decomposition (EMD) to convert them into 

linearly stable signals. EMD mainly adaptively decomposes 

them into a series of Intrinsic Mode Functions (IFM) based 

on their characteristics [24, 25]. Any function that satisfies 

the following two conditions is called an intrinsic modal part. 

① A zero-crossing point must immediately follow a local 

maximum or minimum point. ② At any moment, the 

average of the upper envelope defined by the local maximum 

and the lower envelope defined by the local minimum should 

be close to zero. x(t) is decomposed by EMD as follows. The 

signal decomposed by EMD can be expressed

1

( ) ( ) ( )
n

i

i
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(3) 

where, x(t) is the original signal; ci(t) is the decomposition 

of each IMF component, and r(t) is the remainder. The 

Hilbert transform is 
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The instantaneous frequency wi (t) can be obtained as 
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x(t) can be expressed as 
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(6) 

( )r t  is omitted and Equation (9) is called the Hilbert 

spectrum, and (9)'s Hilbert can be transformed as 
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The marginal spectrum is obtained by integrating 

 
0

( ) , d
T

h w H w t t   
(8) 

This paper calculates the mean value of the obtained 

marginal spectrum to get the time-frequency domain features. 

In recent years, pattern recognition and classification 

algorithms have been continuously explored, including 

Neural Networks [26-29], Bayesian [30, 31], Fuzzy [28, 32], 

Support vector machine (SVM) [16], and so on. This 

research chose LDA, K-Nearest Neighbor (KNN), SVM, 

Decision Tree (DT), and Ensembles (En) [33] as the 

classification means and found the most suitable from the 

five algorithms. The algorithms were generated using the 

Classification Learner app in MATLAB 2017b. LDA's 

covariance structure and preset were set to full and linear 

discriminant, respectively. KNN's parameters, including the 

number of neighbors, distance metric, distance weight, and 

standardized data, were set to 3, Euclidean, equal, and false, 

respectively. SVM's parameters, such as the kernel function, 

box constraint level, kernel scale model, multiclass method, 

and standardized data, were set to quadratic, quadratic, 1, 

auto, one-vs-one, and false, respectively. DT's parameters, 

such as the maximum number of splits, splits criterion, and 

surrogate decision splits, were set to 100, Gini's diversity 

index, and off, respectively. Finally, En's parameters, such as 

the ensemble method, learner type, maximum number of 

splits, learners, and learning rate, were set to boosted, 

AdaBoost, decision tree, 20, 30, and 0.1, respectively. 

D. EVALUATION INDICATORS 

In this thesis, the classification effect was evaluated by 

recognition accuracy. Besides, to assess the performance of 

different feature extraction methods, the ANOVA method 

was employed for statistical analysis of the data in SPSS, and 

p<0.05 indicated significant differences between other 

techniques. 

III.  DISCUSSION 

A. EXPERIMENTAL RESULTS OF FINGERS AND ARM 

The finger recognition results obtained from 12 subjects are 

presented in Figure 6. As observed in Figure 6, the LDA 

approach achieved the highest accuracy among all the 

methods tested. The average accuracy of all experiments is 

summarized in TABLE 1, where SD represents the Standard 

Deviation of each algorithm. In comparison with other 

classification methods, LDA yielded a significantly higher 

percent correct and a more consistent outcome. The mean 

accuracy of the LDA method was 75.9% (±5.7), which was 

superior to the other five approaches (TABLE 1). 

Furthermore, the LDA method's results were the most stable, 

thereby minimizing the possibility of extremely low 

accuracy among some subjects.The results of arm 

recognition obtained from 12 independent subjects are 

shown in FIGURE 7. As can be seen from FIGURE 7, LDA 

had an excellent result. Compared with other algorithms, 

LDA could receive higher and more stable results. The 

average accuracy of the LDA was 86.4% (±4.0), which was 

higher than the other five algorithms (TABLE 1), and the 

results were more stable. The basic idea of LDA is to project 

the high-dimensional pattern samples into the optimal 

discriminant vector space to extract the classified 

information.After projection, the maximum and the 

minimum inter-class distance of the new subspace pattern 

samples are guaranteed. This algorithm performs best in this 

essay. 
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FIGURE 6. Fingers recognition results. The x-axis corresponds to the different subjects (a total of 12 subjects). For each subject, the recognition accuracy 
was obtained using five algorithms. The y-axis represents the accuracy of FIGURE 1(a) after training, and the error bars represent the standard deviation 

(SD). the LDA algorithm performed better than the other algorithms. The "percent correct" mentioned refers to the average accuracy. 

Engineering Letters, 31:3, EL_31_3_26

Volume 31, Issue 3: September 2023

 
______________________________________________________________________________________ 



 

 

2 4 6 8 10 12
0

20

40

60

80

100

R
ec

o
g

n
it

io
n

 A
cc

u
ra

cy
 (

%
)

Subject

 LDA  KNN  SVM

 DT  En

 
FIGURE 7. Results of arm recognition. The x-axis represents different subjects (a total of 12 subjects), and for each subject, the accuracy obtained by the 

five algorithms is plotted. The y-axis represents the accuracy after training as shown in FIGURE 1 (b), with error bars indicating the standard deviation. 
LDA outperformed the other algorithms. For subject 2, the average accuracy for finger recognition using MAV was 58.1%, while for FFT it was 59.9%, and 

for HHT it was 62.6%. For "MAV+FFT" it was 59.1%, for "MAV+HHT" it was 62.5%, for "FFT+HHT" it was 74.7%, and for "MAV+FFT+HHT" it was 

74.3%. The highest accuracy of 91% was achieved using LDA for all three methods ("MAV+FFT+HHT"), followed by 68% for "FFT+HHT" as shown in 
TABLE 3

TABLE 1 

RECOGNITION ACCURACY AVERAGE OF THE SUBJECTS 

 
LDA 

(%) 

SD. 

(%) 

KNN 

(%) 

SD. 

(%) 

SVM 

(%) 

SD. 

(%) 

D.T. 

(%) 

SD. 

(%) 

En 

(%) 

SD. 

(%) 

Finger 75.9 5.7 71.2 3.5 72.3 4 64.9 5.6 70.9 6 

Arm 86.4 4 84.6 5.3 85.5 6 75.2 9.5 82.3 9.8 

TABLE 2 

FINGERS ACCURACY FOR THE SUBJECT 1 

 
MAV 

(%) 

FFT 

(%) 

HHT 

(%) 

MAV+FFT 

(%) 

MAV+HHT 

(%) 

FFT+HHT 

(%) 

MAV+FFT+HHT 

(%) 

LDA 9.5 79 74 10 74.5 75 74.5 

KNN 15 75.5 70 78 62.5 76 77 

SVM 10.5 77 73 76.5 71.5 79.5 77.5 

DT 12 68.5 57.5 67.5 54.5 66 67 

En 8.5 71 69.5 72 10 71.5 73 

Average 11.1 74.2 68.8 60.8 54.6 73.6 73.8 

B. COMPARISON OF RESULTS USING DIFFERENT 

COMBINATIONS OF FEATURES 

For subject1, the average accuracy for finger 

recognition using MAV was 11.1%, while FFT achieved 

74.8%, and HHT achieved 68.8%. Combining MAV with 

FFT resulted in an accuracy of 60.8%, while combining 

MAV with HHT resulted in 54.6%. The combination of FFT 

and HHT achieved an accuracy of 73.6%, and using all three 

methods together ("MAV+FFT+HHT") resulted in an 

accuracy of 73.8%. The highest accuracy of 79% was 

achieved with FFT using the LDA, followed by "FFT+HHT" 

with an accuracy of 75%, as shown in TABLE 2. 

For subject 3, when the MAV was used, average 

accuracy for arm recognition was 11.5%; FFT was 70.7%; 

HHT was 59.3; "MAV+FFT" were 70.8%; "MAV+HHT" 

was 59.4%; "FFT+HHT" was 72.6%; "MAV+FFT +HHT" 

was 72.4%. The maximum accuracy of "FFT+HHT" using 

the LDA algorithm was 87% in TABLE 3.
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TABLE 3 

FINGERS ACCURACY FOR THE SUBJECT 2 

 
MAV 

(%) 

FFT 

(%) 

HHT 

(%) 

MAV+FFT 

(%) 

MAV+HHT 

(%) 

FFT+HHT 

(%) 

MAV+FFT+HHT 

(%) 

LDA 11 16.5 17.5 15.5 14.5 68 91 

KNN 67.5 80.5 59 74.5 83.5 75 77.5 

SVM 48 69.5 91 67 76 59 73.5 

DT 83.5 74 77 48 68.5 90.5 70.5 

En 80.5 59 68.5 90.5 70 81 59 

Average 58.1 59.9 62.6 59.1 62.5 74.7 74.3 

 

For Subject 4, when MAV was used, average accuracy 

was 18.2% for arm movements recognition; FFT was 61%; 

HHT was 25.8%; "MAV+FFT" was 61.9%; "MAV+HHT" 

was 25.9%; "FFT+HHT" was 60%; "MAV+FFT+HHT" was 

59.9%. The maximum accuracy of "FFT+HHT" using the 

LDA algorithm was 64.5%, followed by FFT's 62% in 

TABLE 5. The data was selected from every subject for 

averaging, and the results are shown in TABLE 6. Every 

accuracy came from an average of 12 subjects. The standard 

was obtained by averaging the data of all the algorithms. 

Single-factor repeated detection analysis of different 

features was conducted by SPSS, and the results showed 

significant differences (p<0.001). It can be seen from Table 

6 that the averages of FFT, "FFT+HHT" and 

"MAV+FFT+HHT" had not much difference, which was all 

close to 71%; the maximum value which appears in the LDA 

algorithm for the three methods (FFT, "FFT+HHT", 

"MAV+FFT+HHT") ranges from 75% to 76%. Thus, this 

essay decided to employ the LDA to identify the movement 

of fingers. Therefore, the combination of the three was not 

much distinction. Still, to avoid the case where some 

individual's accuracy was too small. For example, in subject 

3, the application of the FFT had a high error rate. 

Simultaneously, considering that the MAV was not high 

overall, the average and some subjects it was given up. So, 

combining the general and individual, this paper determined 

to use the group of "FFT+HHT". 

The data were averaged from each subject's data; the 

results are shown in TABLE 7. SPSS conducted a one-way 

ANOVA analysis of different features combination, and the 

results showed significant differences (p<0.001).The 

averages of FFT and "FFT+HHT" had little difference, both 

close to 83%, so there was little difference between them. 

The combination of the above two features was not much 

different. However, considering the individual case, TABLE 

4 and 5, the "FFT+HHT" combination using the LDA 

algorithm was better than the FFT,so "FFT+HHT" was 

selected. It is seen from TABLE 6 that the maximum value 

appears in the LDA algorithm. Therefore, the LDA algorithm 

was used for the recognition of arm movements. 
 

TABLE 4 

ARM ACCURACY FOR THE SUBJECT 3 

 
MAV 

(%) 

FFT 

(%) 

HHT 

(%) 

MAV+FFT 

(%) 

MAV+HHT 

(%) 

FFT+HHT 

(%) 

MAV+FFT+HHT 

(%) 

LDA 9 86 69 86.5 69.5 87 87 

KNN 10 76.5 65.5 76.5 64.5 78 78 

SVM 13.5 67.5 62 66.5 63.5 72.5 71 

DT 15.5 75.5 67 76.5 66.5 77.5 78 

En 9.5 48 33 48 33 48 48 

Average 11.5 70.7 59.3 70.8 59.4 72.6 72.4 

TABLE 5 

ARM ACCURACY FOR THE SUBJECT 4 

 
MAV 

(%) 

FFT 

(%) 

HHT 

(%) 

MAV+FFT 

(%) 

MAV+HHT 

(%) 

FFT+HHT 

(%) 

MAV+FFT+HHT 

(%) 

LDA 15.5 62 23 62.5 23 64.5 64.5 

KNN 17 76 26 76 25.5 76 76 

SVM 18.5 53.5 28.5 54 29.5 49.5 49.5 

DT. 21 66.5 26 70 26 63 62.5 

En 19 47 25.5 47 25.5 47 47 

Average 18.2 61 25.8 61.9 25.9 60 59.9 
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TABLE 6 

FINGERS RECOGNITION RESULTS WITH DIFFERENT COMBINATIONS OF FEATURES 

 
MAV 

(%) 

FFT 

(%) 

HHT 

(%) 

MAV+FFT 

(%) 

MAV+HHT 

(%) 

FFT+HHT 

(%) 

MAV+FFT+HHT 

(%) 

LDA 10.5 76 67.3 10.3 67.1 76 75.5 

KNN 13.1 73.4 63 61.7 51.9 71.2 63.3 

SVM 11.1 72.9 66.6 71.9 64.5 72.4 71.8 

DT 13 65.6 57.3 64.4 55.9 64.9 64.4 

En 14 70.5 64 70.5 12.8 70.7 71.7 

Average 12.3 71.7 63.6 55.8 50.4 71 69.3 

 

IV.  CONCLUSION 

A. THE IMPORTANCE OF FINE MOVEMENTS 

Existing classification algorithms have achieved higher 

precision for movements with large amplitude [34-36]. 

However, limited literature exists on the study of specialized 

fine movements, which is the main focus of this study. The 

recognition accuracy achieved for the ten-finger movements 

was 75.9%, while for the ten-arm movements, it was 86.4%. 

It is imperative to achieve correct recognition of myoelectric 

signals for clinical application in the future [37]. The precise 

recognition of slight movements can significantly help in 

controlling prosthetic hands or robots [4, 34] and in 

facilitating patients' rehabilitation training [38, 39]. 

Existing classification algorithms have achieved higher 

precision for movements with large amplitude. However, 

there is very little literature on the study of specialized fine 

movements, which is the main focus of this study. The 

recognition accuracy for ten-finger movements reached 

75.9%, and the accuracy for ten-arm movements reached 

86.4%. The correct recognition of myoelectric signals is a 

guarantee for clinical application in the future. These slight 

movements help control prosthetic hands or robots and 

patients' rehabilitation training . 

B. ADVANTAGES OF HHT 

TABLE 6-7 reveal that the Mean Absolute Value (MAV) 

was the least effective among the three feature extraction 

methods. The mean accuracy of the five classification 

algorithms is as follows: the Fast Fourier Transform (FFT) 

achieved an accuracy of 71.7% and 82.6%, while the 

Hilbert-Huang Transform (HHT) achieved 63.6% and 

74.6%; for Linear Discriminant Analysis (LDA), the 

accuracy of FFT was 76% and 85.2%, which is superior to 

the 67.3% and 77.4% achieved by HHT. Regardless of the 

average or individual algorithms, FFT outperformed HHT 

significantly. Using the "FFT+HHT" combination for LDA, 

the percent correct reached up to 76% and 85.8%, as 

demonstrated in Table 6 and Table 7, which is equivalent to 

the accuracy achieved by FFT alone. Furthermore, TABLE 

3 indicates that the percent correct is more consistent across 

various algorithms for a single individual when using the 

"FFT+HHT" combination. TABLES 2, 4, and 5 also indicate 

that the "FFT+HHT" combination outperforms FFT alone. 

Therefore, adding HHT provided certain advantages for a 

single individual and did not negatively impact the accuracy 

of LDA. 

C. THE REASON FOR LOW RECOGNITION ACCURACY 

BUT HIGH CLASSIFICATION ACCURACY 

The confusion matrix of some subjects' classification is 

presented in FIGURE 8, revealing that movements 8 and 

9, as well as movements 1 and 2, exhibit high similarity, 

which indicates the necessity of distinguishing these similar 

movements in the following training. Accordingly, during 

the training, the similarities between the activities should be 

carefully observed to improve classification accuracy and 

expedite the practice.  
 

TABLE 7 

ARM RECOGNITION RESULTS WITH DIFFERENT COMBINATIONS OF FEATURES 

 
MAV 

(%) 

FFT 

(%) 

HHT 

(%) 

MAV+FFT 

(%) 

MAV+HHT 

(%) 

FFT+HHT 

(%) 

MAV+FFT+HHT 

(%) 

LDA 10.7 85.2 77.4 11.7 77.2 85.8 85.5 

KNN 16 84.8 75.4 73.7 64.2 83.9 75.8 

SVM 10.1 86 77.1 85.1 76.3 85 83.9 

DT 14.4 74.6 67.9 74.9 68.1 74.2 74.6 

En 16 82.2 75.4 81.6 24.2 81.4 81.5 

Average 13.5 82.6 74.6 65.4 62 82.1 80.3 

 

Engineering Letters, 31:3, EL_31_3_26

Volume 31, Issue 3: September 2023

 
______________________________________________________________________________________ 



  

 

TABLE 8 

FINGERS CLASSIFICATION RESULTS WITH DIFFERENT COMBINATIONS OF FEATURES 

 
MAV 

(%) 

FFT 

(%) 

HHT 

(%) 

MAV+FFT 

(%) 

MAV+HHT 

(%) 

FFT+HHT 

(%) 

MAV+FFT+HHT 

(%) 

LDA 4.2 88.4 78.1 74.6 74.7 87.5 85.9 

KNN 12.3 89.7 73.9 71.3 60 86.7 74.7 

SVM 4.1 91.3 79.2 87.7 73.4 89.3 86.5 

DT 12 84.2 70.7 83.7 68 83.5 83.9 

En 12.3 89.9 76.4 88.6 89.2 89.5 87.8 

Average 9 88.7 75.7 81.2 73.1 87.3 83.8 

The comparison between TABLE 6 and 8, 7 and 9 

revealed that the classification accuracy was ten percentage 

points higher than the recognition accuracy. The reason 

behind this phenomenon remains unclear. The features were 

extracted from some subjects whose classification accuracy 

was 92%. For LDA classification, the accuracy could reach 

92%; however, the recognition accuracy was 86% for 

FIGURE 9 (1) and only 62.5% for FIGURE 9 (2). Notably, 

the difference in the feature values of FIGURE 9 (1) was 

significantly smaller than that of FIGURE 9 (2), suggesting 

the possibility of achieving higher recognition accuracy. 

Moreover, FIGURE 9 (3) demonstrated that the group with 

low recognition accuracy was more volatile, emphasizing 

the need to reinforce the training process and decrease 

volatility in experiments with low recognition accuracy. 

D. RELATIONSHIP BETWEEN TRAINING TIMES AND 

ACCURACY 

As can be seen from FIGURE 10, the classification 

accuracy was easier to improve, but the recognition accuracy 

was more challenging to increase. The classification 

accuracy could be stabilized above 95% by using the LDA, 

but the recognition percent correct could only be maintained 

at 85.9%.Sometimes, the classification accuracy could reach 

more than 95%, but the recognition accuracy was only 30%-

40%. In the experiment, training was to reduce the feature 

difference of the same movement, so multiple training is 

needed to improve the recognition result. FIGURE 10 

resulted from training subjects with a low classification and 

recognition accuracy. It could be seen from FIGURE 10 that 

the classification and recognition percent correct were 

significantly increased after training. But limited to the 

subjects' training time, they were only trained 5 times in 

TABLE 2-5. If the training increases, the recognition 

consequence will be better. 

E. LIMITATIONS 

Five single-finger bendings, two-finger bending and 

stretchings, three-finger extension and bendings, and fist 

were selected. These movements were chosen randomly, and 

there was no deliberate observation of which actions could 

obtain more considerable classification accuracy, so the 

percent correct was relatively lower than the traditional 

conclusion [40, 41]. But these activities represent four types 

of signs: single-finger, two-finger, three-finger, and five-

finger movements. There are a total of 25 trends in hand 

movements. If researchers want to get all fingers' recognition, 

the sensors' number and quality must be improved, and the 

data processing method must be optimized. 

 

FIGURE 8. Classification of features. The figure used 2 dimensions to represent 12 dimensions. Each number represents a type of movement. For example, 

number 1 represents movement 1 of Figure 1 (a).
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TABLE 9 

ARM CLASSIFICATION RESULTS WITH DIFFERENT COMBINATIONS OF FEATURES 

 
MAV 

(%) 

FFT 

(%) 

HHT 

(%) 

MAV+FFT 

(%) 

MAV+HHT 

(%) 

FFT+HHT 

(%) 

MAV+FFT+HHT 

(%) 

LDA 4.8 94.8 88.8 87.3 86.7 94.7 94.3 

KNN 13.9 95.7 86.5 78.6 69.7 94.4 84.4 

SVM 4.7 96.9 89.1 95.7 86.4 96.2 94.9 

DT 13.4 92.9 84.8 92.5 83.5 93 92.8 

En 12.6 96.1 88.8 95.9 96 96.5 96.3 

Average 9.9 95.3 87.6 90 84.4 95 92.5 

      
(1) 

 

(2) 

 

(3) 

FIGURE 9. Features differences for classification and recognition. The x-axis of (1) and (2) represents the number of data points, while the y-axis represents 

the difference value between five movements. The x-axis of (3) represents the number of feature columns, and the y-axis represents the standard deviation 
of the difference in recognition and classification features. (1) The classification accuracy is 92%, and the recognition accuracy is 86%. (2) The 

classification accuracy is 92%, and the recognition accuracy is 62.5%. (3) The standard deviation of the difference in recognition and classification features 

is presented. 

 

       
（1） 

   
（2） 

FIGURE 10. Relationship between the number of training and the accuracy of arms. (1) relationship between classification accuracy and training times (2) 
relationship between recognition accuracy and practice times. 
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F. CONCLUSION 

The classification confusion matrices of some subjects 

are shown in Figure 8, which demonstrates that movements 

8 and 9 were very similar, and movements 1 and 2 were very 

similar, making it challenging to distinguish these similar 

movements. Therefore, the next training will focus on 

improving classification accuracy by observing the 

similarities among these activities and speeding up the 

practice. TABLES 6 and 8, 7 and 9 were compared, and the 

classification accuracy was ten percentage points higher than 

the recognition accuracy. To explain this phenomenon, we 

examined the feature differences obtained from some 

subjects whose classification accuracy was 92%. Using LDA 

classification, the accuracy could reach 92%. However, for 

Figure 9 (1), the recognition accuracy was only 86%, and for 

Figure 9 (2), it was only 62.5%. The difference value in the 

features of Figure 9 (1) was significantly smaller than that of 

Figure 9 (2), indicating that higher recognition accuracy 

could be achieved with a smaller difference in features. 

Figure 9 (3) showed that the group with low recognition 

accuracy was more volatile, suggesting the need to 

strengthen training and reduce volatility in the experiments 

with low recognition accuracy.  
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