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Abstract—Numerical solutions for unsteady heat conduction
problems governed by a Laplacian type equation with quadrat-
ically varying coefficients for anisotropic inhomogeneous media
are sought using a mixed Laplace transform and boundary
element method. Several examples for anisotropic quadratically
graded media are considered. The results demonstrate ease of
implementation and accuracy of the method.

Index Terms—anisotropic functionally graded materials, un-
steady heat conduction, simulation, boundary element method

I. INTRODUCTION

We will consider unsteady heat conduction problems gov-
erned by a Laplace type equation with variable coefficients
of the form

∂

∂xi

[
κij (x)

∂T (x, t)

∂xj

]
= ψ (x)

∂T (x, t)

∂t
i, j = 1, 2

(1)
where [κij ] is the conductivity, which is a symmetric matrix
with positive determinant, T is the temperature, ψ is the rate
of the temperature change, x is the spatial variable, and t
is the time variable. In equation (1), summation convention
holds for repeated indices so that explicitly equation (1) takes
the form
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∂x1

(
κ12
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∂x2

)
+
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∂x2

(
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∂T

∂x1

)
+

∂

∂x2

(
κ22

∂T

∂x2

)
= ψ

∂T

∂t

Equation (1) is usually used to model antiplane strain in elas-
tostatics and plane thermostatic problems (see for examples
[1]–[4]).

In recent years, there has been a growing interest in
functionally graded materials (FGMs), and various studies
have been conducted on them for different purposes. FGMs
are materials that exhibit varying properties based on a
mathematical function, and as such, equation (1) is pertinent
to their study. These materials are usually engineered to
meet specific practical requirements, and this underscores
the importance of solving equation (1), as it can help in
the development of FGMs that meet desired performance
standards (as demonstrated, for example, in references [9],
[10]).
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A number of studies on the heat conduction equation
had been done for finding its numerical solutions. The
studies can be classified according to the anisotropy of the
media and the variability of coefficients (inhomogeneity of
the media). For examples, [1]–[3] considered a constant
coefficients (homogeneous media) anisotropic equation, [4]
solved an anisotropic equation with variable coefficients
(inhomogeneous media). Some other studies on problems
of inhomogeneous anisotropic media for several types of
governing equations had been done (see for examples, [5],
[6], [7], [8]).

This paper is intended to extend the recently published
works in [11] for steady anisotropic Laplace type equation
with spatially variable coefficients of the form

∂

∂xi

[
κij (x)

∂T (x, t)

∂xj

]
= 0

to unsteady anisotropic Laplace type equation with spatially
variable coefficients of the form (1).

II. THE INITIAL-BOUNDARY VALUE PROBLEM

The goal is to find solutions and their derivatives to
equation (1) for time t ≥ 0 and inside a region Ω in R2 with
a continuous boundary ∂Ω. On ∂Ω1 the dependent variable
T (x, t) (x = (x1, x2)) is specified and on ∂Ω2

F (x, t) = κij (x)
∂T (x, t)

∂xi
nj (2)

is specified where ∂Ω = ∂Ω1 ∪ ∂Ω2 and n = (n1, n2)
denotes the outward pointing normal to ∂Ω. The initial
condition is taken to be

T (x, 0) = 0 (3)

III. THE INTEGRAL EQUATION

The coefficients κij , ψ are required to take the form

κij (x) = κijg(x) (4)
ψ (x) = ψg(x) (5)

where the κij , ψ are constants. Further we assume that
the coefficients κij (x) and ψ (x) are graded quadratically
according to the gradation function

g(x) = (c0 + cixi)
2 (6)

where c0 and ci are constants. Therefore (6) satisfies

κij
∂2g1/2

∂xi∂xj
= 0 (7)
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Use of (4)-(5) in (1) yields

κij
∂

∂xi

(
g
∂T

∂xj

)
= ψg

∂T

∂t
(8)

Let
T (x, t) = g−1/2 (x)σ (x, t) (9)

therefore substitution of (4) and (9) into (2) gives

F (x, t) = −Fg (x)σ (x, t) + g1/2 (x)Fσ (x, t) (10)

where

Fg (x) = κij
∂g1/2

∂xj
ni Fσ (x) = κij

∂σ

∂xj
ni

Also, (8) may be written in the form

κij
∂

∂xi

[
g
∂
(
g−1/2σ

)
∂xj

]
= ψg

∂
(
g−1/2σ

)
∂t

which can be simplified

κij
∂

∂xi

(
g1/2

∂σ

∂xj
+ gσ

∂g−1/2

∂xj

)
= ψg1/2

∂σ

∂t

Use of the identity

∂g−1/2

∂xi
= −g−1 ∂g

1/2

∂xi

implies

κij
∂

∂xi

(
g1/2

∂σ

∂xj
− σ

∂g1/2

∂xj

)
= ψg1/2

∂σ

∂t

Rearranging and neglecting the zero terms yield

g1/2κij
∂2σ

∂xi∂xj
− σκij

∂2g1/2

∂xi∂xj
= ψg1/2

∂σ

∂t

Equation (7) then implies

κij
∂2σ

∂xi∂xj
= ψ

∂σ

∂t
(11)

Taking the Laplace transform of (9), (10), (11) and applying
the initial condition (3) we obtain

σ∗ (x, s) = g1/2 (x)T ∗ (x, s) (12)
Fσ∗ (x, s) = [F ∗ (x, s) + Fg (x)σ

∗ (x, s)] g−1/2 (x) (13)

κij
∂2σ∗

∂xi∂xj
− sψσ∗ = 0 (14)

where s is the variable of the Laplace-transformed domain.
A boundary integral equation for the solution of (14) is

given in the form

η (x0)σ
∗ (x0, s) =

∫
∂Ω

[Γ (x,x0)σ
∗ (x, s)

−Φ (x,x0)Fσ∗ (x, s)] dS (x) (15)

where x0 = (a, b), η = 0 if (a, b) /∈ Ω ∪ ∂Ω, η = 1 if
(a, b) ∈ Ω, η = 1

2 if (a, b) ∈ ∂Ω and ∂Ω has a continuously
turning tangent at (a, b). The so called fundamental solution
Φ in (15) satisfies

κij
∂2Φ

∂xi∂xj
− sψΦ = δ (x− x0)

and the Γ is given by

Γ (x,x0) = κij
∂Φ (x,x0)

∂xj
ni

where δ is the Dirac delta function. For two-dimensional
problems Φ and Γ are given by

Φ (x,x0) =


K
2π lnR if sψ = 0
ıK
4 H

(2)
0 (ωR) if sψ < 0

−K
2π K0 (ωR) if sψ > 0

Γ (x,x0) =


K
2π

1
Rκij

∂R
∂xj

ni if sψ = 0
−ıKω

4 H
(2)
1 (ωR)κij

∂R
∂xj

ni if sψ < 0
Kω
2π K1 (ωR)κij

∂R
∂xj

ni if sψ > 0

(16)

where

K = τ̈ /D

ω =

√
|sψ|/D

D =
[
κ11 + 2κ12τ̇ + κ22

(
τ̇2 + τ̈2

)]
/2

R =

√
(ẋ1 − ȧ)2 + (ẋ2 − ḃ)2

ẋ1 = x1 + τ̇x2

ȧ = a+ τ̇ b

ẋ2 = τ̈x2

ḃ = τ̈ b

where τ̇ and τ̈ are respectively the real and the positive
imaginary parts of the complex root τ of the quadratic

κ11 + 2κ12τ + κ22τ
2 = 0

and H
(2)
0 , H(2)

1 denote the Hankel function of second kind
and order zero and order one respectively. K0, K1 denote
the modified Bessel function of order zero and order one
respectively, ı =

√
−1. Use of (12) and (13) in (15) yields

ηg1/2T ∗ =

∫
∂Ω

[(
g1/2Γ− FgΦ

)
T ∗

−
(
g−1/2Φ

)
F ∗

]
dS (17)

This equation provides a boundary integral equation for
determining T ∗ and its derivatives at all points of Ω.

After solving the boundary integral equation in the
Laplace transform variable using a standard boundary el-
ement method, the solutions and their derivatives in the
Laplace transform variable are obtained. The Stehfest for-
mula is then used for a numerical Laplace transform inver-
sion to find the solutions and their derivatives in the original
time variable. The obtained solutions and their derivatives are
for the original variable t, which were previously transformed
to the Laplace transform variable s. The Stehfest formula is

T (x, t) ≃ ln 2

t

N∑
m=1

VmT
∗ (x, sm)

∂T (x, t)

∂x1
≃ ln 2

t

N∑
m=1

Vm
∂T ∗ (x, sm)

∂x1
(18)

∂T (x, t)

∂x2
≃ ln 2

t

N∑
m=1

Vm
∂T ∗ (x, sm)

∂x2
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TABLE I
VALUES OF Vm OF THE STEHFEST FORMULA

Vm N = 6 N = 8 N = 10 N = 12

V1 1 −1/3 1/12 −1/60
V2 −49 145/3 −385/12 961/60
V3 366 −906 1279 −1247
V4 −858 16394/3 −46871/3 82663/3
V5 810 −43130/3 505465/6 −1579685/6
V6 −270 18730 −236957.5 1324138.7
V7 −35840/3 1127735/3 −58375583/15
V8 8960/3 −1020215/3 21159859/3
V9 164062.5 −8005336.5
V10 −32812.5 5552830.5
V11 −2155507.2
V12 359251.2

where

sm =
ln 2

t
m

Vm = (−1)
N
2 +m ×

min(m,N2 )∑
k=[m+1

2 ]

kN/2 (2k)!(
N
2 − k

)
!k! (k − 1)! (m− k)! (2k −m)!

A simple script is developed to calculate the values of the
coefficients Vm,m = 1, 2, . . . , N for any even number N .
Table (I) shows the values of Vm for several values of N .

IV. NUMERICAL EXAMPLES

To verify the analysis developed in previous sections,
various problems are considered, some of which have an-
alytical solutions and others which do not. These problems
belong to a system that is governed by equation (1) with
specific initial and boundary conditions, and the coefficients
κij (x) and ψ (x) in equation (1) are of the form (4) and (5),
respectively, with g(x) being a quadratic function of the form
[6]. The coefficients κij (x) and ψ (x) represent diffusivity
or conductivity and the change rate of the unknown T (x, t),
respectively. Numerical solutions are obtained using the
standard boundary element method (BEM) with constant
elements, and a unit square is taken as the geometrical do-
main for all problems. The numerical solutions are obtained
for the time interval 0 ≤ t ≤ 5. A FORTRAN script is
developed to compute the solutions, and the elapsed CPU
time is calculated using a specific FORTRAN command.
The Stehfest formula is used with different values of N
(N = 6, 8, 10, 12) to obtain the results. It is found that
N = 10 gives the most stable and optimized results, while
increasing N from 10 to 12 yields worse results due to round-
off errors, as noted by Hassanzadeh and Pooladi-Darvish
[12]. Therefore, N = 10 is used in (18) for the Stehfest
formula.

For all problems the inhomogeneity function is taken to
be

g1/2(x) = 1− 0.15x1 − 0.3x2

and the constant anisotropy coefficient κij

κij =

[
1 0.1
0.1 0.85

]

-

6

x1

x2

D(0, 1)

A(0, 0) B(1, 0)

C(1, 1)

Fig. 1. The domain Ω

A. Examples with analytical solutions

1) Problem 1:: The analytical solutions are assumed to
take a separable variables form

T (x, t) = g−1/2 (x)h (x) f (t)

where h (x) , f (t) are continuous functions. The boundary
conditions are assumed to be (see Figure 1)

F is given on side AB
F is given on side BC
T is given on side CD
F is given on side AD

Case 1:: We take

h(x) = 0.5− 0.15x1 − 0.35x2

f(t) = 1− exp (−1.75t)

Thus for h(x) to satisfy (14)

ψ = 0

Case 2:: For the analytical solution we take

h(x) = sin (0.5− 0.15x1 − 0.35x2)

f(t) = t/5

So that in order for h(x) to satisfy (14)

ψ = −0.137125/s

Case 3:: We take

h(x) = exp (−0.5 + 0.15x1 + 0.35x2)

f(t) = 0.16t (5− t)

Therefore (14) gives

ψ = 0.137125/s

As shown in Figures 2, 3 and 4 for all cases the errors
mainly occur in the fourth decimal place. Figures 5 and
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Fig. 2. The errors of interior solution T for the Case 1 (first row), Case
2 (second row), Case 3 (third row) of Problem 1

Fig. 3. The errors of interior solution ∂T/∂x1 at t = 2.5 for the Case 1
(first row), Case 2 (second row), Case 3 (third row) of Problem 1

Fig. 4. The errors of interior solution ∂T/∂x2 at t = 2.5 for the Case 1
(first row), Case 2 (second row), Case 3 (third row) of Problem 1

Fig. 5. The scattering T solutions at t = 2.5 for the Case 1 (first row),
Case 2 (second row), Case 3 (third row) of Problem 1
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Fig. 6. The flow vector (∂T/∂x1, ∂T/∂x2) solutions at t = 2.5 for the
Case 1 (first row), Case 2 (second row), Case 3 (third row) of Problem 1

6 indicate the consistency between the scattering and the
flow solutions. Figure 7 shows that the variation of the
T solution follows the way the associated function f(t)
changes. Specifically for the Case 1 of associated function
f(t) = 1− exp (−1.75t) the T solution will converge to 1.

For the computation of the numerical solutions the CPU
elapses 401.703125 seconds for the Case 1, 6810.40625
seconds for the Case 2, and 3303.90625 seconds for the
Case 3. The longer computation time for the Cases 2 and
3 is produced by the iterative calculation of the polynomial
approximation of the Hankel and Bessel functions in the
fundamental solutions (16).

B. Examples without analytical solutions

The aim is to show the effect of inhomogeneity and
anisotropy of the considered material on the solution T .

1) Problem 2:: The material is supposed to be either
inhomogeneous or homogeneous and either anisotropic or
isotropic. If the material is homogeneous then

g(x) = 1

and if it is isotropic then

κij =

[
1 0
0 1

]
So that there are four cases regarding the material,
namely anisotropic inhomogeneous, anisotropic homoge-
neous, isotropic inhomogeneous and isotropic homogeneous
material. We set ψ = 1 and the boundary conditions are (see
Figure 1)
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Fig. 7. Solutions T at some interior points (x1, x2) for the Case 1 (top),
Case 2 (center) and Case 3 (bottom) of Problem 1

F = f(t) on side AB
F = 0 on side BC
T = 0 on side CD
F = 0 on side AD

Four cases of the function f(t) will be considered, namely

Case 1: f(t) = 1
Case 2: f(t) = 1− exp (−1.75t)
Case 3: f(t) = t/5
Case 4: f(t) = 0.16t (5− t)

In fact, for the case of isotropic and homogeneous material
the system is geometrically symmetric about the axis x1 =
0.5. And this is verified by the results in Figures 8 and 9.
In addition, Figure 8 also shows the effect of anisotropy and
inhomogeneity on the asymmetry of the solution T . And
Figure 9 indicates that the solution T tends to follow the
variation of the function f(t) associated for the boundary
condition on the side AB.

Figure 10 shows again the effect of anisotropy and inho-
mogeneity on the solution T and the tendency of the solution
T to agree the variation of the corresponding function f(t).
In particular, for bigger t the boundary conditions on the
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Fig. 8. Symmetry of solution T when f(t) = 1 for Problem 2

side AB with f(t) = f1(t) = 1 and f(t) = f2(t) = 1 −
exp (−1.75t) are identical. This is verified by the results in
Figure 10, the two plots for the cases when f(t) = f1(t) = 1
and f(t) = f2(t) = 1−exp (−1.75t) will coincide as t goes
to infinity.

After all, the results suggest it is important to put the
anisotropy and inhomogeneity into account in any practical
application.

V. CONCLUSION

The Laplace transform and standard boundary element
method have been used together to solve unsteady heat
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Fig. 9. Symmetry of solution T when f(t) = 1 − exp (−1.75t) (top),
f(t) = t/5 (center) and f(t) = 0.16t (5− t) (bottom) for Problem 2

conduction problems for anisotropic functionally graded ma-
terials described by the Laplace type equation (1). This nu-
merical method used to solve the problems is quite accurate
and very easy to be implemented. It involves a time variable-
free fundamental solution which provides greater accuracy
compared to other methods with singular time points in their
fundamental solution.

The study was applied to the category of quadratically
graded materials. The coefficients of diffusivity or conduc-
tivity, represented by κij (x) and the change rate of the
unknown T (x, t), represented by ψ (x), depend solely on the
spatial variable x and the same inhomogeneity or gradation
function g(x). The research could be extended in the future
to include cases where the coefficients depend on different
gradation functions varying with the time variable t.

Before the boundary integral equation (17) can be used,
the boundary conditions of T (x, t) or F (x, t) in the original
system must be Laplace transformed. Therefore, at the begin-
ning of a problem, an approximation of boundary conditions
is required. To obtain accurate results, it is essential to use a
precise technique for numerical Laplace transform inversion.
Based on the results for problems in Section (IV-A), the
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Fig. 10. Solutions T at (x1, x2) = (0.5, 0.5) for Problem 2

Stehfest formula (18) was found to be quite accurate.
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