
 

  

Abstract— The non-parametric regression method becomes 

an alternative that prioritizes flexibility. Therefore, it is 

possible to obtain a regression curve model when its shape is 

not yet known. Multivariate adaptive regression spline 

(MARS) is one of the non-parametric approaches. In 1991, 

MARS was introduced by Friedman. The MARS approach, 

which uses nonparametric regression, can consider additive 

and interactive effects between predictor variables. MARS 

modeling has typically been used to model continuous or 

categorical data. However, researchers in the health sector not 

only encounter data with continuous or categorical responses 

but also count data. The original MARS method did not 

support count data with varying variances and means. 

Therefore, this study aims to develop the Spatial Error 

Model—Multivariate Adaptive Generalized Poisson Regression 

Spline (SEM-MAGPRS), which combines the MARS method 

with the generalized Poisson regression method with spatial 

effects. 

 
Keywords: count data; generalized Poisson regression; MARS; 

SEM; spatial regression. 

I. INTRODUCTION 

ne of the popular methods in mathematical modeling 

is regression analysis, which is applied in various 

fields. Regression analysis encompasses three distinct 

approaches, namely parametric, semi-parametric, and non-

parametric. The utilization of the parametric regression is 

employed in instances where the regression curve is already 

established. These conditions make parametric regression 

inflexible in data modeling, especially when data with 

nonlinear patterns and high dimensionality exist. Non-

parametric regression is considered a viable alternative that 

emphasizes flexibility, i.e., it is possible to obtain a 
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regression curve model when its shape is not yet known. 

The development of non-parametric regression has been 

examined by several researchers, i.e., nonparametric 

identification [1], development of local linear kernel 

estimators for nonparametric regression [2], multi-response 

nonparametric regression [3], nonparametric regression for 

employing best input [4], nonparametric multiple imputation 

[5], and a nonparametric approach for forecasting [6]. 

MARS is one of the non-parametric regression 

techniques. Friedman first introduced MARS in 1991. This 

approach, which uses nonparametric regression, can 

consider additive and interactive effects between predictor 

variables [7]. The unknown pattern of correlations between 

the response and predictors can be used by MARS to obtain 

good predictions for the regression curve's form [8]. The 

functional relation form of the predictor variables and 

response is not also assumed by MARS. It has a form that is 

adaptable and practical. MARS has a knot that is capable of 

processing data that exhibits altered behavior patterns at 

specific sub-intervals. 

The MARS approach combines the truncated spline and 

recursive partitioning regression (RPR). When using several 

predictors, the truncated spline approach has issues 

estimating the position and the number of knots. There will 

be many combinations for the predictor count, knot location, 

and knot count. Meanwhile, the process of determining 

knots in MARS involves an adaptive approach, as opposed 

to seeking them individually through combination. In this 

instance, the limitation of a truncated spline can be 

addressed through this approach [7], [8]. 

The adaptive process in MARS has been executed 

through a stepwise algorithm that incorporates both forward 

and backward procedures [9]. The forward stepwise method 

is a technique used to construct a model with the minimum 

number of basis functions, where truncated spline basis 

functions (including knots and interactions) are 

incrementally added to the model. Subsequently, the 

forward stepwise basis function is selected during the 

backward stepwise process to derive a parsimonious model 

that relies on the minimum value of the generalized cross-

validation (GCV) as it exerts the most notable impact on the 

estimated response [10]. 

Generally, MARS modeling has been applied to modeling 

continuous or categorical data. In addition, the researchers 

in the health sector encounter not only continuous or 

categorical responses but also count data. Therefore, the 

development of the count data analysis needs particular 
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concern. However, the MARS method has not supported the 

count data type with different variances and means. 

Therefore, this study aims to combine the MARS method 

with the generalized Poisson regression method to develop 

the Multivariate Adaptive Generalized Poisson Regression 

Spline (MAGPRS). 

In many cases, data have spatial effects. When 

observational data has a relationship between regions, called 

spatial data, the method of data analysis usually has 

limitations in making assumptions, namely those related to 

correlated error issues and/or heterogeneity issues. Since 

observations at one location have a strong relationship or 

dependency with observations at another location nearby, 

they are called spatial effects [11]. Spatial effects can be 

divided into spatial autocorrelation and spatial 

heterogeneity. The existence of dependence (spatial error 

correlation) in the cross-sectional data causes spatial 

autocorrelation, while spatial heterogeneity is due to the 

random effect of the region, namely the differences in 

features from one region to another. Therefore, we need a 

method that can accommodate dependency factors and 

spatial heterogeneity. Spatial regression with the area 

approach can be an alternative to resolving the effects of 

dependence and spatial heterogeneity [11]. One method that 

can be used in spatial area regression is the Spatial Error 

Model (SEM). 

The kind of discrete or count data that exhibits spatial 

correlation is what drives us to build a new Spatial Error 

Model – Multivariate Adaptive Generalized Poisson 

Regression Spline (SEM-MAGPRS). The objective of this 

suggested model is to use a nonparametric regression 

strategy to account for types of count data that have spatial 

effects. The estimator can be used with other count 

distributions even though it was created under the 

generalized Poisson distribution assumption. This study 

proposes an application of the Ordinary Least Square (OLS) 

method to estimate the SEM-MAGPRS model within an 

information-theoretic framework. 

 

II. LITERATURE REVIEW 

A. MARS 

Friedman came up with a method for nonparametric 

multivariate regression called MARS. It has a flexible 

functional structure, and it is assumed that the functional 

relationship between response and predictor variables is 

unknown [7]. With this method, the problem with Recursive 

Partition Regression (RPR), which is that the model it 

creates is not continuous on knots, is fixed. Knots on MARS 

are not identified individually from these combinations but 

rather through an adaptive process. A backward and forward 

stepwise algorithm is used in the adaptive process of 

MARS. Therefore, MARS is a technique used to solve 

classification and regression problems to predict response 

variables based on several predictors [8], [12]–[14].  

The general MARS model can be written as the 

following equation: 

( ) = + =, 1, ,i i iy f i nx  (1) 
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Then, 

a   : parameter of basis function 

M : number of maximum basis function 

Km : maximum interaction of m-th basis 

function 

kms  : sign of basis function in the k-th 

interaction and m-th basis function, 

where kms  is +1 or -1 

( ),v k m i
x  : v-th predictor variable, where v is an index 

of predictor variables related to k-th 

interaction and m-th basis function in 

MARS function 

kmt   :  value of knot in k-th interaction and m-th 

basis function 

The Ordinary Least Squares (OLS) method for estimating 

the parameters of the MARS model will minimize the 

following functions: 
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The next step is to get the first derivative of the function 

Tε ε  with respect to a , then the result is equal to zero. 
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Then, the MARS model estimator is: 

( ) ( )
−

=
1

ˆ T T
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B. Generalized Poisson Distribution 

Generalized Poisson distribution has two parameters, 

i.e.,   and   as dispersion parameter. If 0 = , then it calls 

equidispersion cases. If 0  , then it calls overdispersion 

cases. If 0  , then it calls underdispersion cases [15]. 

Suppose ( )~ ,i iY GP   , where 1,2,...,i n= , is a random 

sample, then the probability density function of the 

generalized Poisson distribution is [16]: 
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The mean and variance of Generalized Poisson 

distribution are ( )i iE Y =  dan ( ) ( )
2

1i i iV Y  = + . 

 

C. Generalized Poisson Regression 

Generalized Poisson Regression (GPR) is a 

Generalized Linear Model (GLM) and therefore requires a 

link function component. The link function of the 

Generalized Poisson regression has been obtained in the 

following ways [17]: 

a. Do the logarithms of the two sides of the function 
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b. Do the exponential of the two sides of the equation 

obtained in the first step 
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c. Do the mathematical manipulations 
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Therefore, the link function of the Generalized Poisson 

Regression is ( )log  . The general model of the GPR is: 
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D. MAGPRS 

The Multivariate Adaptive Generalized Poisson 

Regression Spline (MAGPRS) is a mix of the MARS and 

the Generalized Poisson Regression methods. This equation 

can be used to express the general MAGPRS model [18], 

[19]: 

( ) ~ ,iY GP  

( )

( )

( )

( )

( )

0 ( , ) i

1 1

0 ( , ) i

1 1

0 ( , ) i

1 1

0

1

ln ( )

ln

exp

exp

exp

m

m

m

KM

i i m km v k m km

m k

KM

i m km v k m km

m k

KM

i m km v k m km

m k

M

m mi i

m

f a a s x t

a a s x t

a a s x t

a a B







= = +

= = +

= = +

=

 = = + −
 

 = + −
 

 
  = + −
   
 

 
 = +
 
 

=

 

 

 



x

x

Ba

 

(

7) 

 

E. Spatial Error Model (SEM) 

Spatial are things that have to do with a place or region, 

and spatial data are observations that have to do with a place 

or region. Locations close to each other often affect links 

between areas, so spatial analysis is needed to figure out 

how locations and responses affect each other. 

The spatial regression model is the development of a 

simple regression model. In 1998, a general spatial model 

was developed using cross-sectional spatial data [11]. One 

of the spatial regression models is the spatial error model. 
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III. METHODS 

This study develops MAGPRS with a spatial model. This 

model is the development of MARS and Generalized 

Poisson Regression considering spatial influences in the 

process modeling, which is SEM-MAGPRS. Estimation of 

the SEM-MAGPRS parameters can be performed using the 

Ordinary Least Squares (OLS) method by following these 

steps: 

1. Define SEM model for count data. 

( )exp = +μ Xβ Wu  (9) 

2. Define the SEM-MAGPRS model. 
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3. Construct the least squares function. 
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4. Find the first derivation of the least squares function. 

 

IV. RESULTS AND DISCUSSION 

A. Least Square Function 

According to equation (10) and (11), ε  for the SEM-

MAGPRS model is: 

( )exp ,= − +ε y Ba Wu  (12) 

then the least squares function of the SEM-MAGPRS is: 
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(13) 

Finding the estimated model parameters is a little bit 

simpler once the least squares function has been obtained. 

 

B. Estimation of the basis function coefficient 

Lemma 1. When the response variable is considered to 

have a Generalized Poisson distribution and the MARS 

model can accommodate the count data type and integrate 

spatial dependence, the model is SEM-MAGPRS. 

Additionally, the following is the estimated parameter of the 

basis function for SEM-MAGPRS:  
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If Lemma 1 is satisfied, the estimated parameter of the 

basis function for SEM-MAGPRS can be found by the least 

squares function in equation (13). 

( )( )
( )

( )( )

( )( ) ( )( )
( )

( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( )

0 1

1

' 2 exp '

exp ' exp, , ,

0 2 exp '

2 exp ' exp

ˆ ˆ ˆexp ' exp

ˆexp '

mS a a a



 



 

 



−

 − +
 
 + + +  =

 

= − +

+ + +

 = + + 

+

y y Ba Wu y

Ba Wu Ba Wu

a a

B Ba Wu y

Ba Ba Wu Ba Wu

a Ba Wu Ba Wu

Ba Wu y

  

In Appendix 2, there is a more detailed explanation of how 

to estimate the basis function parameters for SEM-

MAGPRS by using OLS. 

 

C. Estimation of the spatial lag coefficient on the error 

Lemma 2. When the response variable is considered to 

have a Generalized Poisson distribution, and the MARS 

model can accommodate the count data type and integrate 

spatial dependence, the model is SEM-MAGPRS. 

Additionally, the following is the estimated parameter of the 

spatial lag on the error for SEM-MAGPRS:  
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If Lemma 2 is satisfied, the estimated parameter of the 

spatial lag on the error for SEM-MAGPRS can be find 

through least square function in equation (13). 
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In Appendix 3, there is a more detailed explanation of how 

to estimate the spatial lag parameters for SEM-MAGPRS by 

using OLS. 

Engineering Letters, 31:3, EL_31_3_41

Volume 31, Issue 3: September 2023

 
______________________________________________________________________________________ 



 

D. Simulation Studies 

In these simulation studies, we generated the data using this scenario: 

Table I Simulation Data 

Variables Scenario 

X1 Uniform (0.1, 5) 

X2 Uniform (0.1, 5) 

X3 Uniform (0.1, 5) 

X4 Uniform (0.1, 5) 

X5 Uniform (0.1, 5) 

Y Poisson ( )4 =  

The data generated is given in Appendix 1. Moreover, the data visualization has been shown in this figure. 

 
Figure 1 Data Visualization 

Figure 1 demonstrates that the predictor variables are independent and lack a discernible pattern. Then, Figure 2 shows the 

relationship between predictor variables and response variable. 

 
Figure 2 Response and Predictor Variables
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Visually, the relationship between response and predictor 

variables tends to appear unknown. Therefore, a non-

parametric approach is appropriate instead of a parametric 

approach. But in this study, we will compare parametric and 

non-parametric approaches.  

We examined the simulation data using some methods: 

SEM-MAGPRS, MAGPRS, and a generalized linear model. 

The generalized linear model is a parametric approach for 

non-normal data, such as generalized Poisson data. The 

results of the generalized linear model have been shown in 

Table II. 

Table II Modeling Using a Generalized Linear Model 

Variables Estimate 

(Intercept) 1.04754 

x1 0.01796 

x2 -0.14253 

x3 -0.09097 

x4 0.19598 

x5 0.1618 

Next, when modeling using MAGPRS and SEM-

MAGPRS, it is classified as a non-parametric approach. The 

results of the MAGPRS methods will be presented in this 

table. 

Table III Modeling Using MAGPRS 

Variables Estimate 

(Intercept) 1.234257 

h(x4-2.75099) 0.505807 

Furthermore, the following table presents the results of 

modeling using SEM-MAGPRS methods. 

Table IV Modeling Using SEM-MAGPRS 

Variables Estimate 

(Intercept) 3.37662 

h(x4-2.75099) 2.79305 

A comparison of these methods using AIC criteria is 

given in this table: 

Table V Comparison of methods 

Methods AIC 

Generalized Linear Model 121.37 

MAGPRS 111.40 

SEM-MAGPRS 106.18 

According to the AIC criterion, the best model is the one 

with the lowest AIC value. The model with the lowest AIC 

value is the SEM-MAGPRS model, with a value of 106.18. 

So, the non-parametric model is better than the parametric 

model. This result is consistent with previous research, 

which shows that the non-parametric model is better than 

the parametric model [18]. 

 

V.  CONCLUSION 

The Spatial Error Model - Multivariate Adaptive 

Generalized Poisson Regression Spline (SEM-MAGPRS) is 

a spatial and non-parametric regression model that we 

proposed in this study. The purpose of this proposed model 

is to accommodate the types of count data that have spatial 

effects.  

We have demonstrated how to estimate the parameter of 

SEM-MAGPRS using ordinary least squares (OLS) 

approaches. It is easy to see how the same process used to 

create the SEM-MAGPRS model may also be used to 

construct other MARS models based on various 

distributions. 

Based on a comparison of the simulation studies, it can be 

shown that the SEM-MAGPRS model is the best model with 

the lowest AIC value. 

 

VI. ABBREVIATIONS 

The following abbreviations are used in this article: 

MARS Multivariate Adaptive Regression 

Spline 

MAGPRS Multivariate Adaptive Generalized 

Poisson Regression Spline 

SEM Spatial Error Model 

SEM-MAGPRS Spatial Error Model – Multivariate 

Adaptive Generalized Poisson 

Regression Spline 

GCV Generalized cross-validation 

OLS Ordinary Least Squares 

 

 

Appendix 1 Simulation data 

Y X1 X2 X3 X4 X5 

3 2.136 2.226 3.068 2.994 3.035 

0 3.074 1.954 3.327 2.627 1.004 

5 1.059 2.900 2.711 0.609 4.272 

5 1.699 2.008 3.552 1.650 3.111 

5 4.468 3.455 4.069 2.698 4.204 

4 2.820 1.313 2.192 3.305 0.364 

2 2.252 2.049 3.603 2.241 1.878 

5 0.428 0.310 2.538 0.921 3.632 

7 0.510 1.180 1.985 3.555 1.190 

4 0.912 4.158 1.993 1.374 0.489 

1 4.029 3.708 1.373 1.512 2.854 

0 0.268 3.947 1.726 2.751 4.099 

3 2.928 1.374 2.861 0.781 2.319 

9 3.037 4.971 0.244 4.765 3.619 

3 0.814 3.267 2.213 0.104 2.660 

5 3.128 2.590 1.768 3.174 2.040 

4 3.848 4.852 1.821 2.713 4.133 

5 3.832 3.224 1.654 2.384 1.866 

6 3.350 1.769 0.388 3.782 1.477 

1 0.102 3.886 1.302 2.118 1.650 

4 3.089 1.792 4.981 2.756 1.196 

5 2.453 0.143 0.892 0.961 2.561 

5 1.932 4.996 2.122 3.740 3.178 

5 1.254 2.689 1.975 1.350 4.156 

4 4.797 1.027 0.361 1.429 1.265 

4 2.161 2.141 4.042 0.830 3.911 

9 1.586 1.966 2.303 4.631 4.244 
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Appendix 2 Estimation of Basis Function Parameters for SEM-MAGPRS 
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Appendix 3 Estimation of Spatial Lag Parameter for SEM-MAGPRS 
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